Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/*
 * Copyright (c) 2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <stdlib.h>
#include <ztest.h>
#include <zephyr/types.h>

struct timer_data {
	int expire_cnt;
	int stop_cnt;
	int64_t timestamp;
};

#define DURATION 100
#define PERIOD 50
#define EXPIRE_TIMES 4
#define WITHIN_ERROR(var, target, epsilon) (abs((target) - (var)) <= (epsilon))

/* ms can be converted precisely to ticks only when a ms is exactly
 * represented by an integral number of ticks.  If the conversion is
 * not precise, then the reverse conversion of a difference in ms can
 * end up being off by a tick depending on the relative error between
 * the first and second ms conversion, and we need to adjust the
 * tolerance interval.
 */
#define INEXACT_MS_CONVERT ((CONFIG_SYS_CLOCK_TICKS_PER_SEC % MSEC_PER_SEC) != 0)

#if CONFIG_NRF_RTC_TIMER
/* On Nordic SOCs one or both of the tick and busy-wait clocks may
 * derive from sources that have slews that sum to +/- 13%.
 */
#define BUSY_TICK_SLEW_PPM 130000U
#else
/* On other platforms assume the clocks are perfectly aligned. */
#define BUSY_TICK_SLEW_PPM 0U
#endif
#define PPM_DIVISOR 1000000U

/* If the tick clock is faster or slower than the busywait clock the
 * remaining time for a partially elapsed timer in ticks will be
 * larger or smaller than expected by a value that depends on the slew
 * between the two clocks.  Produce a maximum error for a given
 * duration in microseconds.
 */
#define BUSY_SLEW_THRESHOLD_TICKS(_us)				\
	k_us_to_ticks_ceil32((_us) * BUSY_TICK_SLEW_PPM		\
			     / PPM_DIVISOR)

static void duration_expire(struct k_timer *timer);
static void duration_stop(struct k_timer *timer);

/** TESTPOINT: init timer via K_TIMER_DEFINE */
K_TIMER_DEFINE(ktimer, duration_expire, duration_stop);

static struct k_timer duration_timer;
static struct k_timer period0_timer;
static struct k_timer expire_timer;
static struct k_timer sync_timer;
static struct k_timer periodicity_timer;
static struct k_timer status_timer;
static struct k_timer status_anytime_timer;
static struct k_timer status_sync_timer;
static struct k_timer remain_timer;

static ZTEST_BMEM struct timer_data tdata;

extern void test_time_conversions(void);

#define TIMER_ASSERT(exp, tmr)			 \
	do {					 \
		if (!(exp)) {			 \
			k_timer_stop(tmr);	 \
			zassert_true(exp, NULL); \
		}				 \
	} while (0)

static void init_timer_data(void)
{
	tdata.expire_cnt = 0;
	tdata.stop_cnt = 0;

	if (IS_ENABLED(CONFIG_MULTITHREADING)) {
		k_usleep(1); /* align to tick */
	}

	tdata.timestamp = k_uptime_get();
}

static bool interval_check(int64_t interval, int64_t desired)
{
	int64_t slop = INEXACT_MS_CONVERT ? 1 : 0;

	/* Tickless kernels will advance time inside of an ISR, so it
	 * is always possible (especially with high tick rates and
	 * slow CPUs) for us to arrive at the uptime check above too
	 * late to see a full period elapse before the next period.
	 * We can alias at both sides of the interval, so two
	 * one-ticks deltas (NOT one two-tick delta!)
	 */
	if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
		slop += 2 * k_ticks_to_ms_ceil32(1);
	}

	if (abs(interval - desired) > slop) {
		return false;
	}

	return true;
}

/* entry routines */
static void duration_expire(struct k_timer *timer)
{
	/** TESTPOINT: expire function */
	int64_t interval = k_uptime_delta(&tdata.timestamp);

	tdata.expire_cnt++;
	if (tdata.expire_cnt == 1) {
		TIMER_ASSERT(interval_check(interval, DURATION), timer);
	} else {
		TIMER_ASSERT(interval_check(interval, PERIOD), timer);
	}

	if (tdata.expire_cnt >= EXPIRE_TIMES) {
		k_timer_stop(timer);
	}
}

static void duration_stop(struct k_timer *timer)
{
	tdata.stop_cnt++;
}

static void period0_expire(struct k_timer *timer)
{
	tdata.expire_cnt++;
}

static void status_expire(struct k_timer *timer)
{
	/** TESTPOINT: status get upon timer expired */
	TIMER_ASSERT(k_timer_status_get(timer) == 1, timer);
	/** TESTPOINT: remaining get upon timer expired */
	TIMER_ASSERT(k_timer_remaining_get(timer) >= PERIOD, timer);

	if (tdata.expire_cnt >= EXPIRE_TIMES) {
		k_timer_stop(timer);
	}
}

static void busy_wait_ms(int32_t ms)
{
	k_busy_wait(ms*1000);
}

static void status_stop(struct k_timer *timer)
{
	/** TESTPOINT: remaining get upon timer stopped */
	TIMER_ASSERT(k_timer_remaining_get(timer) == 0, timer);
}

/**
 * @brief Tests for the Timer kernel object
 * @defgroup kernel_timer_tests Timer
 * @ingroup all_tests
 * @{
 * @}
 */

/**
 * @brief Test duration and period of Timer
 *
 * Validates initial duration and period of timer.
 *
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start() with specific initial duration and period.
 * Stops the timer using k_timer_stop() and checks for proper completion
 * of duration and period.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
 * k_busy_wait()
 */
void test_timer_duration_period(void)
{
	init_timer_data();
	/** TESTPOINT: init timer via k_timer_init */
	k_timer_start(&duration_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
	busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);
	/** TESTPOINT: check expire and stop times */
	TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &duration_timer);
	TIMER_ASSERT(tdata.stop_cnt == 1, &duration_timer);

	k_timer_start(&duration_timer, K_FOREVER, K_MSEC(PERIOD));
	TIMER_ASSERT(tdata.stop_cnt == 1, &duration_timer);
	/* cleanup environemtn */
	k_timer_stop(&duration_timer);
}

/**
 *
 * @brief Test restart the timer
 *
 * @details Validates initial duration and period of timer. Start the timer with
 * specific duration and period. Then starts the timer again, and check
 * the status of timer.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_stop, k_uptime_get(),
 * k_busy_wait()
 *
 */
void test_timer_restart(void)
{
	init_timer_data();
	k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
		      K_MSEC(PERIOD));
	busy_wait_ms(DURATION + PERIOD * (EXPIRE_TIMES - 1) + PERIOD / 2);

	/** TESTPOINT: restart the timer */
	k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
		      K_MSEC(PERIOD));
	/* Restart timer, timer's status is reset to zero */
	TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == 0,
		     &status_anytime_timer);

	/* cleanup environment */
	k_timer_stop(&status_anytime_timer);
}


/**
 * @brief Test Timer with zero period value
 *
 * Validates initial timer duration, keeping timer period to zero.
 * Basically, acting as one-shot timer.
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start() with specific initial duration and period as
 * zero. Stops the timer using k_timer_stop() and checks for proper
 * completion.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
 * k_busy_wait()
 */
void test_timer_period_0(void)
{
	init_timer_data();
	/** TESTPOINT: set period 0 */
	k_timer_start(&period0_timer,
		      K_TICKS(k_ms_to_ticks_floor32(DURATION)
			      - BUSY_SLEW_THRESHOLD_TICKS(DURATION
							  * USEC_PER_MSEC)),
		      K_NO_WAIT);
	/* Need to wait at least 2 durations to ensure one-shot behavior. */
	busy_wait_ms(2 * DURATION + 1);

	/** TESTPOINT: ensure it is one-shot timer */
	TIMER_ASSERT((tdata.expire_cnt == 1)
		     || (INEXACT_MS_CONVERT
			 && (tdata.expire_cnt == 0)), &period0_timer);
	TIMER_ASSERT(tdata.stop_cnt == 0, &period0_timer);

	/* cleanup environemtn */
	k_timer_stop(&period0_timer);
}

/**
 * @brief Test Timer with K_FOREVER period value
 *
 * Validates initial timer duration, keeping timer period to K_FOREVER.
 * Basically, acting as one-shot timer.
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start() with specific initial duration and period as
 * zero. Stops the timer using k_timer_stop() and checks for proper
 * completion.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
 * k_busy_wait()
 */
void test_timer_period_k_forever(void)
{
	init_timer_data();
	/** TESTPOINT: set period 0 */
	k_timer_start(
		&period0_timer,
		K_TICKS(k_ms_to_ticks_floor32(DURATION) -
			BUSY_SLEW_THRESHOLD_TICKS(DURATION * USEC_PER_MSEC)),
		K_FOREVER);
	tdata.timestamp = k_uptime_get();

	/* Need to wait at least 2 durations to ensure one-shot behavior. */
	busy_wait_ms(2 * DURATION + 1);

	/** TESTPOINT: ensure it is one-shot timer */
	TIMER_ASSERT((tdata.expire_cnt == 1) ||
			     (INEXACT_MS_CONVERT && (tdata.expire_cnt == 0)),
		     &period0_timer);
	TIMER_ASSERT(tdata.stop_cnt == 0, &period0_timer);

	/* cleanup environemtn */
	k_timer_stop(&period0_timer);
}

/**
 * @brief Test Timer without any timer expiry callback function
 *
 * Validates timer without any expiry_fn(set to NULL). expiry_fn() is a
 * function that is invoked each time the timer expires.
 *
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start(). Stops the timer using k_timer_stop() and
 * checks for expire_cnt to zero, as expiry_fn was not defined at all.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_stop(), k_uptime_get(),
 * k_busy_wait()
 */
void test_timer_expirefn_null(void)
{
	init_timer_data();
	/** TESTPOINT: expire function NULL */
	k_timer_start(&expire_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
	busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);

	k_timer_stop(&expire_timer);
	/** TESTPOINT: expire handler is not invoked */
	TIMER_ASSERT(tdata.expire_cnt == 0, &expire_timer);
	/** TESTPOINT: stop handler is invoked */
	TIMER_ASSERT(tdata.stop_cnt == 1, &expire_timer);

	/* cleanup environment */
	k_timer_stop(&expire_timer);
}

/* Wait for the next expiration of an OS timer tick, to synchronize
 * test start
 */
static void tick_sync(void)
{
	k_timer_start(&sync_timer, K_NO_WAIT, K_MSEC(1));
	k_timer_status_sync(&sync_timer);
	k_timer_stop(&sync_timer);
}

/**
 * @brief Test to check timer periodicity
 *
 * Timer test to check for the predictability with which the timer
 * expires depending on the period configured.
 *
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start() with specific period. It resets the timer’s
 * status to zero with k_timer_status_sync and identifies the delta
 * between each timer expiry to check for the timer expiration period
 * correctness. Finally, stops the timer using k_timer_stop().
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_status_sync(),
 * k_timer_stop(), k_uptime_get(), k_uptime_delta()
 */
void test_timer_periodicity(void)
{
	uint64_t period_ms = k_ticks_to_ms_floor64(k_ms_to_ticks_ceil32(PERIOD));
	int64_t delta;

	/* Start at a tick boundary, otherwise a tick expiring between
	 * the unlocked (and unlockable) start/uptime/sync steps below
	 * will throw off the math.
	 */
	tick_sync();

	init_timer_data();
	/** TESTPOINT: set duration 0 */
	k_timer_start(&periodicity_timer, K_NO_WAIT, K_MSEC(PERIOD));

	/* clear the expiration that would have happened due to
	 * whatever duration that was set. Since timer is likely
	 * to fire before call to k_timer_status_sync(), we have
	 * to synchronize twice to ensure that the timestamp will
	 * be fetched as soon as possible after timer firing.
	 */
	k_timer_status_sync(&periodicity_timer);
	k_timer_status_sync(&periodicity_timer);
	tdata.timestamp = k_uptime_get();

	for (int i = 0; i < EXPIRE_TIMES; i++) {
		/** TESTPOINT: expired times returned by status sync */
		TIMER_ASSERT(k_timer_status_sync(&periodicity_timer) == 1,
			     &periodicity_timer);

		delta = k_uptime_delta(&tdata.timestamp);

		/** TESTPOINT: check if timer fired within 1ms of the
		 *  expected period (firing time).
		 *
		 * Please note, that expected firing time is not the
		 * one requested, as the kernel uses the ticks to manage
		 * time. The actual perioid will be equal to [tick time]
		 * multiplied by k_ms_to_ticks_ceil32(PERIOD).
		 *
		 * In the case of inexact conversion the delta will
		 * occasionally be one less than the expected number.
		 */
		TIMER_ASSERT(WITHIN_ERROR(delta, period_ms, 1)
			     || (INEXACT_MS_CONVERT
				 && (delta == period_ms - 1)),
			     &periodicity_timer);
	}

	/* cleanup environment */
	k_timer_stop(&periodicity_timer);
}

/**
 * @brief Test Timer status and time remaining before next expiry
 *
 * Timer test to validate timer status and next trigger expiry time
 *
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start() and checks for timer current status with
 * k_timer_status_get() and remaining time before next expiry using
 * k_timer_remaining_get(). Stops the timer using k_timer_stop().
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_status_get(),
 * k_timer_remaining_get(), k_timer_stop()
 */
void test_timer_status_get(void)
{
	init_timer_data();
	k_timer_start(&status_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
	/** TESTPOINT: status get upon timer starts */
	TIMER_ASSERT(k_timer_status_get(&status_timer) == 0, &status_timer);
	/** TESTPOINT: remaining get upon timer starts */
	TIMER_ASSERT(k_timer_remaining_get(&status_timer) >= DURATION / 2,
		     &status_timer);

	/* cleanup environment */
	k_timer_stop(&status_timer);
}

/**
 * @brief Test Timer status randomly after certain duration
 *
 * Validate timer status function using k_timer_status_get().
 *
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start() with specific initial duration and period.
 * Checks for timer status randomly after certain duration.
 * Stops the timer using k_timer_stop().
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_status_get(),
 * k_timer_stop(), k_busy_wait()
 */
void test_timer_status_get_anytime(void)
{
	init_timer_data();
	k_timer_start(&status_anytime_timer, K_MSEC(DURATION),
		      K_MSEC(PERIOD));
	busy_wait_ms(DURATION + PERIOD * (EXPIRE_TIMES - 1) + PERIOD / 2);

	/** TESTPOINT: status get at any time */
	TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == EXPIRE_TIMES,
		     &status_anytime_timer);
	busy_wait_ms(PERIOD);
	TIMER_ASSERT(k_timer_status_get(&status_anytime_timer) == 1,
		     &status_anytime_timer);

	/* cleanup environment */
	k_timer_stop(&status_anytime_timer);
}

/**
 * @brief Test Timer thread synchronization
 *
 * Validate thread synchronization by blocking the calling thread until
 * the timer expires.
 *
 * It initializes the timer with k_timer_init(), then starts the timer
 * using k_timer_start() and checks timer status with
 * k_timer_status_sync() for thread synchronization with expiry count.
 * Stops the timer using k_timer_stop.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_status_sync(),
 * k_timer_stop()
 */
void test_timer_status_sync(void)
{
	init_timer_data();
	k_timer_start(&status_sync_timer, K_MSEC(DURATION), K_MSEC(PERIOD));

	for (int i = 0; i < EXPIRE_TIMES; i++) {
		/** TESTPOINT: check timer not expire */
		TIMER_ASSERT(tdata.expire_cnt == i, &status_sync_timer);
		/** TESTPOINT: expired times returned by status sync */
		TIMER_ASSERT(k_timer_status_sync(&status_sync_timer) == 1,
			     &status_sync_timer);
		/** TESTPOINT: check timer not expire */
		TIMER_ASSERT(tdata.expire_cnt == (i + 1), &status_sync_timer);
	}

	init_timer_data();
	k_timer_start(&status_sync_timer, K_MSEC(DURATION), K_MSEC(PERIOD));
	busy_wait_ms(PERIOD*2);
	zassert_true(k_timer_status_sync(&status_sync_timer), NULL);

	/* cleanup environment */
	k_timer_stop(&status_sync_timer);
	zassert_false(k_timer_status_sync(&status_sync_timer), NULL);
}

/**
 * @brief Test statically defined Timer init
 *
 * Validate statically defined timer init using K_TIMER_DEFINE
 *
 * It creates prototype of K_TIMER_DEFINE to statically define timer
 * init and starts the timer with k_timer_start() with specific initial
 * duration and period. Stops the timer using k_timer_stop() and checks
 * for proper completion of duration and period.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_start(), K_TIMER_DEFINE(), k_timer_stop()
 * k_uptime_get(), k_busy_wait()
 */
void test_timer_k_define(void)
{
	init_timer_data();
	/** TESTPOINT: init timer via k_timer_init */
	k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
	busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);

	/** TESTPOINT: check expire and stop times */
	TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &ktimer);
	TIMER_ASSERT(tdata.stop_cnt == 1, &ktimer);

	/* cleanup environment */
	k_timer_stop(&ktimer);

	init_timer_data();
	/** TESTPOINT: init timer via k_timer_init */
	k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));

	/* Call the k_timer_start() again to make sure that
	 * the initial timeout request gets cancelled and new
	 * one will get added.
	 */
	busy_wait_ms(DURATION / 2);
	k_timer_start(&ktimer, K_MSEC(DURATION), K_MSEC(PERIOD));
	tdata.timestamp = k_uptime_get();
	busy_wait_ms(DURATION + PERIOD * EXPIRE_TIMES + PERIOD / 2);

	/** TESTPOINT: check expire and stop times */
	TIMER_ASSERT(tdata.expire_cnt == EXPIRE_TIMES, &ktimer);
	TIMER_ASSERT(tdata.stop_cnt == 1, &ktimer);

	/* cleanup environment */
	k_timer_stop(&ktimer);
}

static void user_data_timer_handler(struct k_timer *timer);

K_TIMER_DEFINE(timer0, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer1, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer2, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer3, user_data_timer_handler, NULL);
K_TIMER_DEFINE(timer4, user_data_timer_handler, NULL);

static ZTEST_DMEM struct k_timer *user_data_timer[5] = {
	&timer0, &timer1, &timer2, &timer3, &timer4
};

static const intptr_t user_data[5] = { 0x1337, 0xbabe, 0xd00d, 0xdeaf, 0xfade };

static ZTEST_BMEM int user_data_correct[5];

static void user_data_timer_handler(struct k_timer *timer)
{
	int timer_num = timer == user_data_timer[0] ? 0 :
			timer == user_data_timer[1] ? 1 :
			timer == user_data_timer[2] ? 2 :
			timer == user_data_timer[3] ? 3 :
			timer == user_data_timer[4] ? 4 : -1;

	if (timer_num == -1) {
		return;
	}

	intptr_t data_retrieved = (intptr_t)k_timer_user_data_get(timer);

	user_data_correct[timer_num] = user_data[timer_num] == data_retrieved;
}

/**
 * @brief Test user-specific data associated with timer
 *
 * Validate user-specific data associated with timer
 *
 * It creates prototype of K_TIMER_DEFINE and starts the timer using
 * k_timer_start() with specific initial duration, alongwith associated
 * user data using k_timer_user_data_set and k_timer_user_data_get().
 * Stops the timer using k_timer_stop() and checks for correct data
 * retrieval after timer completion.
 *
 * @ingroup kernel_timer_tests
 *
 * @see K_TIMER_DEFINE(), k_timer_user_data_set(), k_timer_start(),
 * k_timer_user_data_get(), k_timer_stop()
 */
void test_timer_user_data(void)
{
	int ii;

	for (ii = 0; ii < 5; ii++) {
		intptr_t check;

		k_timer_user_data_set(user_data_timer[ii],
				      (void *)user_data[ii]);
		check = (intptr_t)k_timer_user_data_get(user_data_timer[ii]);

		zassert_true(check == user_data[ii], NULL);
	}

	for (ii = 0; ii < 5; ii++) {
		k_timer_start(user_data_timer[ii], K_MSEC(50 + ii * 50),
			      K_NO_WAIT);
	}

	uint32_t wait_ms = 50 * ii + 50;

	if (IS_ENABLED(CONFIG_MULTITHREADING)) {
		k_msleep(wait_ms);
	} else {
		uint32_t wait_us = 1000 * wait_ms;

		k_busy_wait(wait_us + (wait_us * BUSY_TICK_SLEW_PPM) / PPM_DIVISOR);
	}

	for (ii = 0; ii < 5; ii++) {
		k_timer_stop(user_data_timer[ii]);
	}

	for (ii = 0; ii < 5; ii++) {
		zassert_true(user_data_correct[ii], NULL);
	}
}

/**
 * @brief Test accuracy of k_timer_remaining_get()
 *
 * Validate countdown of time to expiration
 *
 * Starts a timer, busy-waits for half the DURATION, then checks the
 * remaining time to expiration and stops the timer. The remaining time
 * should reflect the passage of at least the busy-wait interval.
 *
 * @ingroup kernel_timer_tests
 *
 * @see k_timer_init(), k_timer_start(), k_timer_stop(),
 * k_timer_remaining_get()
 */

void test_timer_remaining(void)
{
	uint32_t dur_ticks = k_ms_to_ticks_ceil32(DURATION);
	uint32_t target_rem_ticks = k_ms_to_ticks_ceil32(DURATION / 2);
	uint32_t rem_ms, rem_ticks, exp_ticks;
	int32_t delta_ticks;
	uint32_t slew_ticks;
	uint64_t now;


	init_timer_data();
	k_timer_start(&remain_timer, K_MSEC(DURATION), K_NO_WAIT);
	busy_wait_ms(DURATION / 2);
	rem_ticks = k_timer_remaining_ticks(&remain_timer);
	now = k_uptime_ticks();
	rem_ms = k_timer_remaining_get(&remain_timer);
	exp_ticks = k_timer_expires_ticks(&remain_timer);
	k_timer_stop(&remain_timer);
	TIMER_ASSERT(tdata.expire_cnt == 0, &remain_timer);
	TIMER_ASSERT(tdata.stop_cnt == 1, &remain_timer);

	/*
	 * While the busy_wait_ms() works with the maximum possible resolution,
	 * the k_timer api is limited by the system tick abstraction. As result
	 * the value obtained through k_timer_remaining_get() could be larger
	 * than actual remaining time with maximum error equal to one tick.
	 */
	zassert_true(rem_ms <= (DURATION / 2) + k_ticks_to_ms_floor64(1),
		     NULL);

	/* Half the value of DURATION in ticks may not be the value of
	 * half DURATION in ticks, when DURATION/2 is not an integer
	 * multiple of ticks, so target_rem_ticks is used rather than
	 * dur_ticks/2.  Also set a threshold based on expected clock
	 * skew.
	 */
	delta_ticks = (int32_t)(rem_ticks - target_rem_ticks);
	slew_ticks = BUSY_SLEW_THRESHOLD_TICKS(DURATION * USEC_PER_MSEC / 2U);
	zassert_true(abs(delta_ticks) <= MAX(slew_ticks, 1U),
		     "tick/busy slew %d larger than test threshold %u",
		     delta_ticks, slew_ticks);

	/* Note +1 tick precision: even though we're calcluating in
	 * ticks, we're waiting in k_busy_wait(), not for a timer
	 * interrupt, so it's possible for that to take 1 tick longer
	 * than expected on systems where the requested microsecond
	 * delay cannot be exactly represented as an integer number of
	 * ticks.
	 */
	zassert_true(((int64_t)exp_ticks - (int64_t)now) <= (dur_ticks / 2) + 1,
		     NULL);
}

void test_timeout_abs(void)
{
#ifdef CONFIG_TIMEOUT_64BIT
	const uint64_t exp_ms = 10000000;
	uint64_t rem_ticks;
	uint64_t exp_ticks = k_ms_to_ticks_ceil64(exp_ms);
	k_timeout_t t = K_TIMEOUT_ABS_TICKS(exp_ticks), t2;
	uint64_t t0, t1;

	/* Check the other generator macros to make sure they produce
	 * the same (whiteboxed) converted values
	 */
	t2 = K_TIMEOUT_ABS_MS(exp_ms);
	zassert_true(t2.ticks == t.ticks, NULL);

	t2 = K_TIMEOUT_ABS_US(1000 * exp_ms);
	zassert_true(t2.ticks == t.ticks, NULL);

	t2 = K_TIMEOUT_ABS_NS(1000 * 1000 * exp_ms);
	zassert_true(t2.ticks == t.ticks, NULL);

	t2 = K_TIMEOUT_ABS_CYC(k_ms_to_cyc_ceil64(exp_ms));
	zassert_true(t2.ticks == t.ticks, NULL);

	/* Now set the timeout and make sure the expiration time is
	 * correct vs. current time.  Tick units and tick alignment
	 * makes this math exact, no slop is needed.  Note that time
	 * is advancing always, so we add a retry condition to be sure
	 * that a tick advance did not happen between our reads of
	 * "now" and "expires".
	 */
	init_timer_data();
	k_timer_start(&remain_timer, t, K_FOREVER);

	if (IS_ENABLED(CONFIG_MULTITHREADING)) {
		k_usleep(1);
	}

	do {
		t0 = k_uptime_ticks();
		rem_ticks = k_timer_remaining_ticks(&remain_timer);
		t1 = k_uptime_ticks();
	} while (t0 != t1);

	zassert_true(t0 + rem_ticks == exp_ticks,
		     "Wrong remaining: now %lld rem %lld expires %lld (%d)",
		     (uint64_t)t0, (uint64_t)rem_ticks, (uint64_t)exp_ticks,
		     t0+rem_ticks-exp_ticks);

	k_timer_stop(&remain_timer);
#endif
}

void test_sleep_abs(void)
{
	if (!IS_ENABLED(CONFIG_MULTITHREADING)) {
		/* k_sleep is not supported when multithreading is off. */
		return;
	}

	const int sleep_ticks = 50;
	int64_t start, end;

	k_usleep(1); /* tick align */

	start = k_uptime_ticks();
	k_sleep(K_TIMEOUT_ABS_TICKS(start + sleep_ticks));
	end = k_uptime_ticks();

	/* Systems with very high tick rates and/or slow idle resume
	 * (I've seen this on intel_adsp) can occasionally take more
	 * than a tick to return from k_sleep().  Set a 100us real
	 * time slop.
	 */
	k_ticks_t late = end - (start + sleep_ticks);

	zassert_true(late >= 0 && late < k_us_to_ticks_ceil32(100),
		     "expected wakeup at %lld, got %lld (late %lld)",
		     start + sleep_ticks, end, late);
}

static void timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn,
		       k_timer_stop_t stop_fn)
{
	if (IS_ENABLED(CONFIG_MULTITHREADING)) {
		k_object_access_grant(timer, k_current_get());
	}

	k_timer_init(timer, expiry_fn, stop_fn);
}

void test_main(void)
{
	timer_init(&duration_timer, duration_expire, duration_stop);
	timer_init(&period0_timer, period0_expire, NULL);
	timer_init(&expire_timer, NULL, duration_stop);
	timer_init(&sync_timer, NULL, NULL);
	timer_init(&periodicity_timer, NULL, NULL);
	timer_init(&status_timer, status_expire, status_stop);
	timer_init(&status_anytime_timer, NULL, NULL);
	timer_init(&status_sync_timer, duration_expire, duration_stop);
	timer_init(&remain_timer, duration_expire, duration_stop);

	if (IS_ENABLED(CONFIG_MULTITHREADING)) {
		k_thread_access_grant(k_current_get(), &ktimer, &timer0, &timer1,
			      &timer2, &timer3, &timer4);
	}

	ztest_test_suite(timer_api,
			 ztest_unit_test(test_time_conversions),
			 ztest_user_unit_test(test_timer_duration_period),
			 ztest_user_unit_test(test_timer_restart),
			 ztest_user_unit_test(test_timer_period_0),
			 ztest_user_unit_test(test_timer_period_k_forever),
			 ztest_user_unit_test(test_timer_expirefn_null),
			 ztest_user_unit_test(test_timer_periodicity),
			 ztest_user_unit_test(test_timer_status_get),
			 ztest_user_unit_test(test_timer_status_get_anytime),
			 ztest_user_unit_test(test_timer_status_sync),
			 ztest_user_unit_test(test_timer_k_define),
			 ztest_user_unit_test(test_timer_user_data),
			 ztest_user_unit_test(test_timer_remaining),
			 ztest_user_unit_test(test_timeout_abs),
			 ztest_user_unit_test(test_sleep_abs));
	ztest_run_test_suite(timer_api);
}