Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*  NVS: non volatile storage in flash
 *
 * Copyright (c) 2018 Laczen
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <drivers/flash.h>
#include <string.h>
#include <errno.h>
#include <inttypes.h>
#include <fs/nvs.h>
#include <sys/crc.h>
#include "nvs_priv.h"

#include <logging/log.h>
LOG_MODULE_REGISTER(fs_nvs, CONFIG_NVS_LOG_LEVEL);

/* basic routines */
/* nvs_al_size returns size aligned to fs->write_block_size */
static inline size_t nvs_al_size(struct nvs_fs *fs, size_t len)
{
	uint8_t write_block_size = fs->flash_parameters->write_block_size;

	if (write_block_size <= 1U) {
		return len;
	}
	return (len + (write_block_size - 1U)) & ~(write_block_size - 1U);
}
/* end basic routines */

/* flash routines */
/* basic aligned flash write to nvs address */
static int nvs_flash_al_wrt(struct nvs_fs *fs, uint32_t addr, const void *data,
			     size_t len)
{
	const uint8_t *data8 = (const uint8_t *)data;
	int rc = 0;
	off_t offset;
	size_t blen;
	uint8_t buf[NVS_BLOCK_SIZE];

	if (!len) {
		/* Nothing to write, avoid changing the flash protection */
		return 0;
	}

	offset = fs->offset;
	offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
	offset += addr & ADDR_OFFS_MASK;

	blen = len & ~(fs->flash_parameters->write_block_size - 1U);
	if (blen > 0) {
		rc = flash_write(fs->flash_device, offset, data8, blen);
		if (rc) {
			/* flash write error */
			goto end;
		}
		len -= blen;
		offset += blen;
		data8 += blen;
	}
	if (len) {
		memcpy(buf, data8, len);
		(void)memset(buf + len, fs->flash_parameters->erase_value,
			fs->flash_parameters->write_block_size - len);

		rc = flash_write(fs->flash_device, offset, buf,
				 fs->flash_parameters->write_block_size);
	}

end:
	return rc;
}

/* basic flash read from nvs address */
static int nvs_flash_rd(struct nvs_fs *fs, uint32_t addr, void *data,
			 size_t len)
{
	int rc;
	off_t offset;

	offset = fs->offset;
	offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
	offset += addr & ADDR_OFFS_MASK;

	rc = flash_read(fs->flash_device, offset, data, len);
	return rc;

}

/* allocation entry write */
static int nvs_flash_ate_wrt(struct nvs_fs *fs, const struct nvs_ate *entry)
{
	int rc;

	rc = nvs_flash_al_wrt(fs, fs->ate_wra, entry,
			       sizeof(struct nvs_ate));
	fs->ate_wra -= nvs_al_size(fs, sizeof(struct nvs_ate));

	return rc;
}

/* data write */
static int nvs_flash_data_wrt(struct nvs_fs *fs, const void *data, size_t len)
{
	int rc;

	rc = nvs_flash_al_wrt(fs, fs->data_wra, data, len);
	fs->data_wra += nvs_al_size(fs, len);

	return rc;
}

/* flash ate read */
static int nvs_flash_ate_rd(struct nvs_fs *fs, uint32_t addr,
			     struct nvs_ate *entry)
{
	return nvs_flash_rd(fs, addr, entry, sizeof(struct nvs_ate));
}

/* end of basic flash routines */

/* advanced flash routines */

/* nvs_flash_block_cmp compares the data in flash at addr to data
 * in blocks of size NVS_BLOCK_SIZE aligned to fs->write_block_size
 * returns 0 if equal, 1 if not equal, errcode if error
 */
static int nvs_flash_block_cmp(struct nvs_fs *fs, uint32_t addr, const void *data,
				size_t len)
{
	const uint8_t *data8 = (const uint8_t *)data;
	int rc;
	size_t bytes_to_cmp, block_size;
	uint8_t buf[NVS_BLOCK_SIZE];

	block_size =
		NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U);

	while (len) {
		bytes_to_cmp = MIN(block_size, len);
		rc = nvs_flash_rd(fs, addr, buf, bytes_to_cmp);
		if (rc) {
			return rc;
		}
		rc = memcmp(data8, buf, bytes_to_cmp);
		if (rc) {
			return 1;
		}
		len -= bytes_to_cmp;
		addr += bytes_to_cmp;
		data8 += bytes_to_cmp;
	}
	return 0;
}

/* nvs_flash_cmp_const compares the data in flash at addr to a constant
 * value. returns 0 if all data in flash is equal to value, 1 if not equal,
 * errcode if error
 */
static int nvs_flash_cmp_const(struct nvs_fs *fs, uint32_t addr, uint8_t value,
				size_t len)
{
	int rc;
	size_t bytes_to_cmp, block_size;
	uint8_t cmp[NVS_BLOCK_SIZE];

	block_size =
		NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U);

	(void)memset(cmp, value, block_size);
	while (len) {
		bytes_to_cmp = MIN(block_size, len);
		rc = nvs_flash_block_cmp(fs, addr, cmp, bytes_to_cmp);
		if (rc) {
			return rc;
		}
		len -= bytes_to_cmp;
		addr += bytes_to_cmp;
	}
	return 0;
}

/* flash block move: move a block at addr to the current data write location
 * and updates the data write location.
 */
static int nvs_flash_block_move(struct nvs_fs *fs, uint32_t addr, size_t len)
{
	int rc;
	size_t bytes_to_copy, block_size;
	uint8_t buf[NVS_BLOCK_SIZE];

	block_size =
		NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U);

	while (len) {
		bytes_to_copy = MIN(block_size, len);
		rc = nvs_flash_rd(fs, addr, buf, bytes_to_copy);
		if (rc) {
			return rc;
		}
		rc = nvs_flash_data_wrt(fs, buf, bytes_to_copy);
		if (rc) {
			return rc;
		}
		len -= bytes_to_copy;
		addr += bytes_to_copy;
	}
	return 0;
}

/* erase a sector and verify erase was OK.
 * return 0 if OK, errorcode on error.
 */
static int nvs_flash_erase_sector(struct nvs_fs *fs, uint32_t addr)
{
	int rc;
	off_t offset;

	addr &= ADDR_SECT_MASK;

	offset = fs->offset;
	offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);

	LOG_DBG("Erasing flash at %lx, len %d", (long int) offset,
		fs->sector_size);
	rc = flash_erase(fs->flash_device, offset, fs->sector_size);

	if (rc) {
		return rc;
	}

	if (nvs_flash_cmp_const(fs, addr, fs->flash_parameters->erase_value,
			fs->sector_size)) {
		rc = -ENXIO;
	}

	return rc;
}

/* crc update on allocation entry */
static void nvs_ate_crc8_update(struct nvs_ate *entry)
{
	uint8_t crc8;

	crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
	entry->crc8 = crc8;
}

/* crc check on allocation entry
 * returns 0 if OK, 1 on crc fail
 */
static int nvs_ate_crc8_check(const struct nvs_ate *entry)
{
	uint8_t crc8;

	crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
	if (crc8 == entry->crc8) {
		return 0;
	}
	return 1;
}

/* nvs_ate_cmp_const compares an ATE to a constant value. returns 0 if
 * the whole ATE is equal to value, 1 if not equal.
 */

static int nvs_ate_cmp_const(const struct nvs_ate *entry, uint8_t value)
{
	const uint8_t *data8 = (const uint8_t *)entry;
	int i;

	for (i = 0; i < sizeof(struct nvs_ate); i++) {
		if (data8[i] != value) {
			return 1;
		}
	}

	return 0;
}

/* nvs_ate_valid validates an ate:
 *     return 1 if crc8 and offset valid,
 *            0 otherwise
 */
static int nvs_ate_valid(struct nvs_fs *fs, const struct nvs_ate *entry)
{
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	if ((nvs_ate_crc8_check(entry)) ||
	    (entry->offset >= (fs->sector_size - ate_size))) {
		return 0;
	}

	return 1;

}

/* nvs_close_ate_valid validates an sector close ate: a valid sector close ate:
 * - valid ate
 * - len = 0 and id = 0xFFFF
 * - offset points to location at ate multiple from sector size
 * return 1 if valid, 0 otherwise
 */
static int nvs_close_ate_valid(struct nvs_fs *fs, const struct nvs_ate *entry)
{
	size_t ate_size;

	if ((!nvs_ate_valid(fs, entry)) || (entry->len != 0U) ||
	    (entry->id != 0xFFFF)) {
		return 0;
	}

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
	if ((fs->sector_size - entry->offset) % ate_size) {
		return 0;
	}

	return 1;
}

/* store an entry in flash */
static int nvs_flash_wrt_entry(struct nvs_fs *fs, uint16_t id, const void *data,
				size_t len)
{
	int rc;
	struct nvs_ate entry;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	entry.id = id;
	entry.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK);
	entry.len = (uint16_t)len;
	entry.part = 0xff;

	nvs_ate_crc8_update(&entry);

	rc = nvs_flash_data_wrt(fs, data, len);
	if (rc) {
		return rc;
	}
	rc = nvs_flash_ate_wrt(fs, &entry);
	if (rc) {
		return rc;
	}

	return 0;
}
/* end of flash routines */

/* If the closing ate is invalid, its offset cannot be trusted and
 * the last valod ate of the sector should instead try to be recovered by going
 * through all ate's.
 *
 * addr should point to the faulty closing ate and will be updated to the last
 * valid ate. If no valid ate is found it will be left untouched.
 */
static int nvs_recover_last_ate(struct nvs_fs *fs, uint32_t *addr)
{
	uint32_t data_end_addr, ate_end_addr;
	struct nvs_ate end_ate;
	size_t ate_size;
	int rc;

	LOG_DBG("Recovering last ate from sector %d",
		(*addr >> ADDR_SECT_SHIFT));

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	*addr -= ate_size;
	ate_end_addr = *addr;
	data_end_addr = *addr & ADDR_SECT_MASK;
	while (ate_end_addr > data_end_addr) {
		rc = nvs_flash_ate_rd(fs, ate_end_addr, &end_ate);
		if (rc) {
			return rc;
		}
		if (nvs_ate_valid(fs, &end_ate)) {
			/* found a valid ate, update data_end_addr and *addr */
			data_end_addr &= ADDR_SECT_MASK;
			data_end_addr += end_ate.offset + end_ate.len;
			*addr = ate_end_addr;
		}
		ate_end_addr -= ate_size;
	}

	return 0;
}

/* walking through allocation entry list, from newest to oldest entries
 * read ate from addr, modify addr to the previous ate
 */
static int nvs_prev_ate(struct nvs_fs *fs, uint32_t *addr, struct nvs_ate *ate)
{
	int rc;
	struct nvs_ate close_ate;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	rc = nvs_flash_ate_rd(fs, *addr, ate);
	if (rc) {
		return rc;
	}

	*addr += ate_size;
	if (((*addr) & ADDR_OFFS_MASK) != (fs->sector_size - ate_size)) {
		return 0;
	}

	/* last ate in sector, do jump to previous sector */
	if (((*addr) >> ADDR_SECT_SHIFT) == 0U) {
		*addr += ((fs->sector_count - 1) << ADDR_SECT_SHIFT);
	} else {
		*addr -= (1 << ADDR_SECT_SHIFT);
	}

	rc = nvs_flash_ate_rd(fs, *addr, &close_ate);
	if (rc) {
		return rc;
	}

	rc = nvs_ate_cmp_const(&close_ate, fs->flash_parameters->erase_value);
	/* at the end of filesystem */
	if (!rc) {
		*addr = fs->ate_wra;
		return 0;
	}

	/* Update the address if the close ate is valid.
	 */
	if (nvs_close_ate_valid(fs, &close_ate)) {
		(*addr) &= ADDR_SECT_MASK;
		(*addr) += close_ate.offset;
		return 0;
	}
	/* The close_ate was invalid, `lets find out the last valid ate
	 * and point the address to this found ate.
	 *
	 * remark: if there was absolutely no valid data in the sector *addr
	 * is kept at sector_end - 2*ate_size, the next read will contain
	 * invalid data and continue with a sector jump
	 */
	return nvs_recover_last_ate(fs, addr);
}

static void nvs_sector_advance(struct nvs_fs *fs, uint32_t *addr)
{
	*addr += (1 << ADDR_SECT_SHIFT);
	if ((*addr >> ADDR_SECT_SHIFT) == fs->sector_count) {
		*addr -= (fs->sector_count << ADDR_SECT_SHIFT);
	}
}

/* allocation entry close (this closes the current sector) by writing offset
 * of last ate to the sector end.
 */
static int nvs_sector_close(struct nvs_fs *fs)
{
	int rc;
	struct nvs_ate close_ate;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	close_ate.id = 0xFFFF;
	close_ate.len = 0U;
	close_ate.offset = (uint16_t)((fs->ate_wra + ate_size) & ADDR_OFFS_MASK);

	fs->ate_wra &= ADDR_SECT_MASK;
	fs->ate_wra += (fs->sector_size - ate_size);

	nvs_ate_crc8_update(&close_ate);

	rc = nvs_flash_ate_wrt(fs, &close_ate);

	nvs_sector_advance(fs, &fs->ate_wra);

	fs->data_wra = fs->ate_wra & ADDR_SECT_MASK;

	return 0;
}


/* garbage collection: the address ate_wra has been updated to the new sector
 * that has just been started. The data to gc is in the sector after this new
 * sector.
 */
static int nvs_gc(struct nvs_fs *fs)
{
	int rc;
	struct nvs_ate close_ate, gc_ate, wlk_ate;
	uint32_t sec_addr, gc_addr, gc_prev_addr, wlk_addr, wlk_prev_addr,
	      data_addr, stop_addr;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	sec_addr = (fs->ate_wra & ADDR_SECT_MASK);
	nvs_sector_advance(fs, &sec_addr);
	gc_addr = sec_addr + fs->sector_size - ate_size;

	/* if the sector is not closed don't do gc */
	rc = nvs_flash_ate_rd(fs, gc_addr, &close_ate);
	if (rc < 0) {
		/* flash error */
		return rc;
	}

	rc = nvs_ate_cmp_const(&close_ate, fs->flash_parameters->erase_value);
	if (!rc) {
		rc = nvs_flash_erase_sector(fs, sec_addr);
		if (rc) {
			return rc;
		}
		return 0;
	}

	stop_addr = gc_addr - ate_size;

	if (nvs_close_ate_valid(fs, &close_ate)) {
		gc_addr &= ADDR_SECT_MASK;
		gc_addr += close_ate.offset;
	} else {
		rc = nvs_recover_last_ate(fs, &gc_addr);
		if (rc) {
			return rc;
		}
	}

	do {
		gc_prev_addr = gc_addr;
		rc = nvs_prev_ate(fs, &gc_addr, &gc_ate);
		if (rc) {
			return rc;
		}

		if (!nvs_ate_valid(fs, &gc_ate)) {
			continue;
		}

		wlk_addr = fs->ate_wra;
		do {
			wlk_prev_addr = wlk_addr;
			rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
			if (rc) {
				return rc;
			}
			/* if ate with same id is reached we might need to copy.
			 * only consider valid wlk_ate's. Something wrong might
			 * have been written that has the same ate but is
			 * invalid, don't consider these as a match.
			 */
			if ((wlk_ate.id == gc_ate.id) &&
			    (nvs_ate_valid(fs, &wlk_ate))) {
				break;
			}
		} while (wlk_addr != fs->ate_wra);

		/* if walk has reached the same address as gc_addr copy is
		 * needed unless it is a deleted item.
		 */
		if ((wlk_prev_addr == gc_prev_addr) && gc_ate.len) {
			/* copy needed */
			LOG_DBG("Moving %d, len %d", gc_ate.id, gc_ate.len);

			data_addr = (gc_prev_addr & ADDR_SECT_MASK);
			data_addr += gc_ate.offset;

			gc_ate.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK);
			nvs_ate_crc8_update(&gc_ate);

			rc = nvs_flash_block_move(fs, data_addr, gc_ate.len);
			if (rc) {
				return rc;
			}

			rc = nvs_flash_ate_wrt(fs, &gc_ate);
			if (rc) {
				return rc;
			}
		}
	} while (gc_prev_addr != stop_addr);

	rc = nvs_flash_erase_sector(fs, sec_addr);
	if (rc) {
		return rc;
	}
	return 0;
}

static int nvs_startup(struct nvs_fs *fs)
{
	int rc;
	struct nvs_ate last_ate;
	size_t ate_size, empty_len;
	/* Initialize addr to 0 for the case fs->sector_count == 0. This
	 * should never happen as this is verified in nvs_init() but both
	 * Coverity and GCC believe the contrary.
	 */
	uint32_t addr = 0U;
	uint16_t i, closed_sectors = 0;
	uint8_t erase_value = fs->flash_parameters->erase_value;

	k_mutex_lock(&fs->nvs_lock, K_FOREVER);

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
	/* step through the sectors to find a open sector following
	 * a closed sector, this is where NVS can to write.
	 */
	for (i = 0; i < fs->sector_count; i++) {
		addr = (i << ADDR_SECT_SHIFT) +
		       (uint16_t)(fs->sector_size - ate_size);
		rc = nvs_flash_cmp_const(fs, addr, erase_value,
					 sizeof(struct nvs_ate));
		if (rc) {
			/* closed sector */
			closed_sectors++;
			nvs_sector_advance(fs, &addr);
			rc = nvs_flash_cmp_const(fs, addr, erase_value,
						 sizeof(struct nvs_ate));
			if (!rc) {
				/* open sector */
				break;
			}
		}
	}
	/* all sectors are closed, this is not a nvs fs */
	if (closed_sectors == fs->sector_count) {
		rc = -EDEADLK;
		goto end;
	}

	if (i == fs->sector_count) {
		/* none of the sectors where closed, in most cases we can set
		 * the address to the first sector, except when there are only
		 * two sectors. Then we can only set it to the first sector if
		 * the last sector contains no ate's. So we check this first
		 */
		rc = nvs_flash_cmp_const(fs, addr - ate_size, erase_value,
				sizeof(struct nvs_ate));
		if (!rc) {
			/* empty ate */
			nvs_sector_advance(fs, &addr);
		}
	}

	/* addr contains address of closing ate in the most recent sector,
	 * search for the last valid ate using the recover_last_ate routine
	 */

	rc = nvs_recover_last_ate(fs, &addr);
	if (rc) {
		goto end;
	}


	/* addr contains address of the last valid ate in the most recent sector
	 * search for the first ate containing all cells erased, in the process
	 * also update fs->data_wra.
	 */
	fs->ate_wra = addr;
	fs->data_wra = addr & ADDR_SECT_MASK;

	while (fs->ate_wra >= fs->data_wra) {
		rc = nvs_flash_ate_rd(fs, fs->ate_wra, &last_ate);
		if (rc) {
			goto end;
		}

		rc = nvs_ate_cmp_const(&last_ate, erase_value);

		if (!rc) {
			/* found ff empty location */
			break;
		}

		if (nvs_ate_valid(fs, &last_ate)) {
			/* complete write of ate was performed */
			fs->data_wra = addr & ADDR_SECT_MASK;
			/* Align the data write address to the current
			 * write block size so that it is possible to write to
			 * the sector even if the block size has changed after
			 * a software upgrade (unless the physical ATE size
			 * will change)."
			 */
			fs->data_wra += nvs_al_size(fs, last_ate.offset + last_ate.len);

			/* ate on the last possition within the sector is
			 * reserved for deletion an entry
			 */
			if (fs->ate_wra == fs->data_wra && last_ate.len) {
				/* not a delete ate */
				rc = -ESPIPE;
				goto end;
			}
		}

		fs->ate_wra -= ate_size;
	}

	/* if the sector after the write sector is not empty gc was interrupted
	 * we need to restart gc, first erase the sector before restarting gc
	 * otherwise the data may not fit into the sector.
	 */
	addr = fs->ate_wra & ADDR_SECT_MASK;
	nvs_sector_advance(fs, &addr);
	rc = nvs_flash_cmp_const(fs, addr, erase_value, fs->sector_size);
	if (rc < 0) {
		goto end;
	}
	if (rc) {
		/* the sector after fs->ate_wrt is not empty */
		rc = nvs_flash_erase_sector(fs, fs->ate_wra);
		if (rc) {
			goto end;
		}
		fs->ate_wra &= ADDR_SECT_MASK;
		fs->ate_wra += (fs->sector_size - 2 * ate_size);
		fs->data_wra = (fs->ate_wra & ADDR_SECT_MASK);
		rc = nvs_gc(fs);
		goto end;
	}

	/* possible data write after last ate write, update data_wra */
	while (fs->ate_wra > fs->data_wra) {
		empty_len = fs->ate_wra - fs->data_wra;

		rc = nvs_flash_cmp_const(fs, fs->data_wra, erase_value,
				empty_len);
		if (rc < 0) {
			goto end;
		}
		if (!rc) {
			break;
		}

		fs->data_wra += fs->flash_parameters->write_block_size;
	}

	/* If the ate_wra is pointing to the first ate write location in a
	 * sector and data_wra is not 0, erase the sector as it contains no
	 * valid data (this also avoids closing a sector without any data).
	 */
	if (((fs->ate_wra + 2 * ate_size) == fs->sector_size) &&
	    (fs->data_wra != (fs->ate_wra & ADDR_SECT_MASK))) {
		rc = nvs_flash_erase_sector(fs, fs->ate_wra);
		if (rc) {
			goto end;
		}
		fs->data_wra = fs->ate_wra & ADDR_SECT_MASK;
	}

end:
	k_mutex_unlock(&fs->nvs_lock);
	return rc;
}

int nvs_clear(struct nvs_fs *fs)
{
	int rc;
	uint32_t addr;

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	for (uint16_t i = 0; i < fs->sector_count; i++) {
		addr = i << ADDR_SECT_SHIFT;
		rc = nvs_flash_erase_sector(fs, addr);
		if (rc) {
			return rc;
		}
	}
	return 0;
}

int nvs_init(struct nvs_fs *fs, const char *dev_name)
{

	int rc;
	struct flash_pages_info info;
	size_t write_block_size;

	k_mutex_init(&fs->nvs_lock);

	fs->flash_device = device_get_binding(dev_name);
	if (!fs->flash_device) {
		LOG_ERR("No valid flash device found");
		return -ENXIO;
	}

	fs->flash_parameters = flash_get_parameters(fs->flash_device);
	if (fs->flash_parameters == NULL) {
		LOG_ERR("Could not obtain flash parameters");
		return -EINVAL;
	}

	write_block_size = flash_get_write_block_size(fs->flash_device);

	/* check that the write block size is supported */
	if (write_block_size > NVS_BLOCK_SIZE || write_block_size == 0) {
		LOG_ERR("Unsupported write block size");
		return -EINVAL;
	}

	/* check that sector size is a multiple of pagesize */
	rc = flash_get_page_info_by_offs(fs->flash_device, fs->offset, &info);
	if (rc) {
		LOG_ERR("Unable to get page info");
		return -EINVAL;
	}
	if (!fs->sector_size || fs->sector_size % info.size) {
		LOG_ERR("Invalid sector size");
		return -EINVAL;
	}

	/* check the number of sectors, it should be at least 2 */
	if (fs->sector_count < 2) {
		LOG_ERR("Configuration error - sector count");
		return -EINVAL;
	}

	rc = nvs_startup(fs);
	if (rc) {
		return rc;
	}

	/* nvs is ready for use */
	fs->ready = true;

	LOG_INF("%d Sectors of %d bytes", fs->sector_count, fs->sector_size);
	LOG_INF("alloc wra: %d, %x",
		(fs->ate_wra >> ADDR_SECT_SHIFT),
		(fs->ate_wra & ADDR_OFFS_MASK));
	LOG_INF("data wra: %d, %x",
		(fs->data_wra >> ADDR_SECT_SHIFT),
		(fs->data_wra & ADDR_OFFS_MASK));

	return 0;
}

ssize_t nvs_write(struct nvs_fs *fs, uint16_t id, const void *data, size_t len)
{
	int rc, gc_count;
	size_t ate_size, data_size;
	struct nvs_ate wlk_ate;
	uint32_t wlk_addr, rd_addr;
	uint16_t required_space = 0U; /* no space, appropriate for delete ate */
	bool prev_found = false;

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
	data_size = nvs_al_size(fs, len);

	/* The maximum data size is sector size - 3 ate
	 * where: 1 ate for data, 1 ate for sector close
	 * and 1 ate to always allow a delete.
	 */
	if ((len > (fs->sector_size - 3 * ate_size)) ||
	    ((len > 0) && (data == NULL))) {
		return -EINVAL;
	}

	/* find latest entry with same id */
	wlk_addr = fs->ate_wra;
	rd_addr = wlk_addr;

	while (1) {
		rd_addr = wlk_addr;
		rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
		if (rc) {
			return rc;
		}
		if ((wlk_ate.id == id) && (nvs_ate_valid(fs, &wlk_ate))) {
			prev_found = true;
			break;
		}
		if (wlk_addr == fs->ate_wra) {
			break;
		}
	}

	if (prev_found) {
		/* previous entry found */
		rd_addr &= ADDR_SECT_MASK;
		rd_addr += wlk_ate.offset;

		if (len == 0) {
			/* do not try to compare with empty data */
			if (wlk_ate.len == 0U) {
				/* skip delete entry as it is already the
				 * last one
				 */
				return 0;
			}
		} else if (len == wlk_ate.len) {
			/* do not try to compare if lengths are not equal */
			/* compare the data and if equal return 0 */
			rc = nvs_flash_block_cmp(fs, rd_addr, data, len);
			if (rc <= 0) {
				return rc;
			}
		}
	} else {
		/* skip delete entry for non-existing entry */
		if (len == 0) {
			return 0;
		}
	}

	/* calculate required space if the entry contains data */
	if (data_size) {
		/* Leave space for delete ate */
		required_space = data_size + ate_size;
	}

	k_mutex_lock(&fs->nvs_lock, K_FOREVER);

	gc_count = 0;
	while (1) {
		if (gc_count == fs->sector_count) {
			/* gc'ed all sectors, no extra space will be created
			 * by extra gc.
			 */
			rc = -ENOSPC;
			goto end;
		}

		if (fs->ate_wra >= fs->data_wra + required_space) {

			rc = nvs_flash_wrt_entry(fs, id, data, len);
			if (rc) {
				goto end;
			}
			break;
		}


		rc = nvs_sector_close(fs);
		if (rc) {
			goto end;
		}

		rc = nvs_gc(fs);
		if (rc) {
			goto end;
		}
		gc_count++;
	}
	rc = len;
end:
	k_mutex_unlock(&fs->nvs_lock);
	return rc;
}

int nvs_delete(struct nvs_fs *fs, uint16_t id)
{
	return nvs_write(fs, id, NULL, 0);
}

ssize_t nvs_read_hist(struct nvs_fs *fs, uint16_t id, void *data, size_t len,
		      uint16_t cnt)
{
	int rc;
	uint32_t wlk_addr, rd_addr;
	uint16_t cnt_his;
	struct nvs_ate wlk_ate;
	size_t ate_size;

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	if (len > (fs->sector_size - 2 * ate_size)) {
		return -EINVAL;
	}

	cnt_his = 0U;

	wlk_addr = fs->ate_wra;
	rd_addr = wlk_addr;

	while (cnt_his <= cnt) {
		rd_addr = wlk_addr;
		rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
		if (rc) {
			goto err;
		}
		if ((wlk_ate.id == id) &&  (nvs_ate_valid(fs, &wlk_ate))) {
			cnt_his++;
		}
		if (wlk_addr == fs->ate_wra) {
			break;
		}
	}

	if (((wlk_addr == fs->ate_wra) && (wlk_ate.id != id)) ||
	    (wlk_ate.len == 0U) || (cnt_his < cnt)) {
		return -ENOENT;
	}

	rd_addr &= ADDR_SECT_MASK;
	rd_addr += wlk_ate.offset;
	rc = nvs_flash_rd(fs, rd_addr, data, MIN(len, wlk_ate.len));
	if (rc) {
		goto err;
	}

	return wlk_ate.len;

err:
	return rc;
}

ssize_t nvs_read(struct nvs_fs *fs, uint16_t id, void *data, size_t len)
{
	int rc;

	rc = nvs_read_hist(fs, id, data, len, 0);
	return rc;
}

ssize_t nvs_calc_free_space(struct nvs_fs *fs)
{

	int rc;
	struct nvs_ate step_ate, wlk_ate;
	uint32_t step_addr, wlk_addr;
	size_t ate_size, free_space;

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	free_space = 0;
	for (uint16_t i = 1; i < fs->sector_count; i++) {
		free_space += (fs->sector_size - ate_size);
	}

	step_addr = fs->ate_wra;

	while (1) {
		rc = nvs_prev_ate(fs, &step_addr, &step_ate);
		if (rc) {
			return rc;
		}

		wlk_addr = fs->ate_wra;

		while (1) {
			rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
			if (rc) {
				return rc;
			}
			if ((wlk_ate.id == step_ate.id) ||
			    (wlk_addr == fs->ate_wra)) {
				break;
			}
		}

		if ((wlk_addr == step_addr) && step_ate.len &&
		    (nvs_ate_valid(fs, &step_ate))) {
			/* count needed */
			free_space -= nvs_al_size(fs, step_ate.len);
			free_space -= ate_size;
		}

		if (step_addr == fs->ate_wra) {
			break;
		}

	}
	return free_space;
}