Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
/**
 * @file
 *
 * @brief Public APIs for the CAN drivers.
 */

/*
 * Copyright (c) 2018 Alexander Wachter
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#ifndef ZEPHYR_INCLUDE_DRIVERS_CAN_H_
#define ZEPHYR_INCLUDE_DRIVERS_CAN_H_

/**
 * @brief CAN Interface
 * @defgroup can_interface CAN Interface
 * @ingroup io_interfaces
 * @{
 */

#include <zephyr/types.h>
#include <device.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {
#endif

#define CAN_EX_ID      (1 << 31)
#define CAN_MAX_STD_ID (0x7FF)
#define CAN_STD_ID_MASK CAN_MAX_STD_ID
#define CAN_EXT_ID_MASK (0x1FFFFFFF)
#define CAN_MAX_DLC    (8)
#define CAN_MAX_DLEN    8

/* CAN_TX_* are the error flags from tx_callback and send.*/
/** send successfully */
#define CAN_TX_OK       (0)
/** general send error */
#define CAN_TX_ERR      (-2)
/** bus arbitration lost during sending */
#define CAN_TX_ARB_LOST (-3)
/** controller is in bus off state */
#define CAN_TX_BUS_OFF  (-4)
/** unexpected error */
#define CAN_TX_UNKNOWN  (-5)

/** invalid parameter */
#define CAN_TX_EINVAL   (-22)

/** attach_* failed because there is no unused filter left*/
#define CAN_NO_FREE_FILTER (-1)

/** operation timed out*/
#define CAN_TIMEOUT (-1)

/**
 * @brief Statically define and initialize a can message queue.
 *
 * The message queue's ring buffer contains space for @a size messages.
 *
 * @param name Name of the message queue.
 * @param size Number of can messages.
 */
#define CAN_DEFINE_MSGQ(name, size) \
	K_MSGQ_DEFINE(name, sizeof(struct zcan_frame), size, 4)

/**
 * @brief can_ide enum
 * Define if the message has a standard (11bit) or extended (29bit)
 * identifier
 */
enum can_ide {
	CAN_STANDARD_IDENTIFIER,
	CAN_EXTENDED_IDENTIFIER
};

/**
 * @brief can_rtr enum
 * Define if the message is a data or remote frame
 */
enum can_rtr {
	CAN_DATAFRAME,
	CAN_REMOTEREQUEST
};

/**
 * @brief can_mode enum
 * Defines the mode of the can controller
 */
enum can_mode {
	/*Normal mode*/
	CAN_NORMAL_MODE,
	/*Controller is not allowed to send dominant bits*/
	CAN_SILENT_MODE,
	/*Controller is in loopback mode (receive own messages)*/
	CAN_LOOPBACK_MODE,
	/*Combination of loopback and silent*/
	CAN_SILENT_LOOPBACK_MODE
};

/**
 * @brief can_state enum
 * Defines the possible states of the CAN bus
 */
enum can_state {
	CAN_ERROR_ACTIVE,
	CAN_ERROR_PASSIVE,
	CAN_BUS_OFF,
	CAN_BUS_UNKNOWN
};

/*
 * Controller Area Network Identifier structure for Linux compatibility.
 *
 * The fields in this type are:
 *
 * bit 0-28	: CAN identifier (11/29 bit)
 * bit 29	: error message frame flag (0 = data frame, 1 = error message)
 * bit 30	: remote transmission request flag (1 = rtr frame)
 * bit 31	: frame format flag (0 = standard 11 bit, 1 = extended 29 bit)
 */
typedef uint32_t canid_t;

/**
 * @brief CAN frame structure that is compatible with Linux. This is mainly
 * used by Socket CAN code.
 *
 * @details Used to pass CAN messages from userspace to the socket CAN and vice
 * versa.
 */
struct can_frame {
	/** 32 bit CAN_ID + EFF/RTR/ERR flags */
	canid_t can_id;

	/** The length of the message */
	uint8_t can_dlc;

	/** @cond INTERNAL_HIDDEN */
	uint8_t pad;   /* padding */
	uint8_t res0;  /* reserved / padding */
	uint8_t res1;  /* reserved / padding */
	/** @endcond */

	/** The message data */
	uint8_t data[CAN_MAX_DLEN];
};

/**
 * @brief CAN filter that is compatible with Linux. This is mainly used by
 * Socket CAN code.
 *
 * @details A filter matches, when "received_can_id & mask == can_id & mask"
 */
struct can_filter {
	canid_t can_id;
	canid_t can_mask;
};

/**
 * @brief CAN message structure
 *
 * Used to pass can messages from userspace to the driver and
 * from driver to userspace
 *
 */
struct zcan_frame {
	/** Message identifier*/
	uint32_t id      : 29;
	/** Frame is in the CAN-FD frame format */
	uint32_t fd      : 1;
	/** Set the message to a transmission request instead of data frame
	 * use can_rtr enum for assignment
	 */
	uint32_t rtr     : 1;
	/** Indicates the identifier type (standard or extended)
	 * use can_ide enum for assignment
	 */
	uint32_t id_type : 1;
	/** The length of the message (max. 8) in byte */
	uint8_t dlc;
	/** Baud Rate Switch. Frame transfer with different timing during
	 * the data phase. Only valid for CAN-FD
	 */
	uint8_t brs : 1;
	/** Reserved for future flags */
	uint8_t res : 7;
#if defined(CONFIG_CAN_RX_TIMESTAMP)
	/** Timer value of the CAN free-running timer.
	 * The timer is incremented every bit time and captured at the start
	 * of frame bit (SOF).
	 */
	uint16_t timestamp;
#else
	/** @cond INTERNAL_HIDDEN */
	uint8_t res0;  /* reserved / padding */
	uint8_t res1;  /* reserved / padding */
	/** @endcond */
#endif
	/** The frame payload data. */
	union {
		uint8_t data[CAN_MAX_DLEN];
		uint32_t data_32[ceiling_fraction(CAN_MAX_DLEN, sizeof(uint32_t))];
	};
};

/**
 * @brief CAN filter structure
 *
 * Used to pass can identifier filter information to the driver.
 * rtr_mask and *_id_mask are used to mask bits of the rtr and id fields.
 * If the mask bit is 0, the value of the corresponding bit in the id or rtr
 * field don't care for the filter matching.
 *
 */
struct zcan_filter {
	/** target state of the identifier */
	uint32_t id           : 29;
	uint32_t res0         : 1;
	/** target state of the rtr bit */
	uint32_t rtr          : 1;
	/** Indicates the identifier type (standard or extended)
	 * use can_ide enum for assignment
	 */
	uint32_t id_type      : 1;
	/** identifier mask*/
	uint32_t id_mask  : 29;
	uint32_t res1         : 1;
	/** rtr bit mask */
	uint32_t rtr_mask     : 1;
	uint32_t res2         : 1;
};

/**
 * @brief can bus error count structure
 *
 * Used to pass the bus error counters to userspace
 */
struct can_bus_err_cnt {
	uint8_t tx_err_cnt;
	uint8_t rx_err_cnt;
};


/**
 * @brief canbus timings
 *
 * Used to pass bus timing values to the config and bitrate calculator function.
 *
 * The propagation segment represents the time of the signal propagation.
 * Phase segment 1 and phase segment 2 define the sampling point.
 * prop_seg and phase_seg1 affect the sampling-point in the same way and some
 * controllers only have a register for the sum of those two. The sync segment
 * always has a length of 1 tq
 * +---------+----------+------------+------------+
 * |sync_seg | prop_seg | phase_seg1 | phase_seg2 |
 * +---------+----------+------------+------------+
 *                                   ^
 *                             Sampling-Point
 * 1 tq (time quantum) has the length of 1/(core_clock / prescaler)
 * The bitrate is defined by the core clock divided by the prescaler and the
 * sum of the segments.
 * br = (core_clock / prescaler) / (1 + prop_seg + phase_seg1 + phase_seg2)
 * The resynchronization jump width (SJW) defines the amount of time quantum
 * the sample point can be moved.
 * The sample point is moved when resynchronization is needed.
 */
struct can_timing {
	/** Synchronisation jump width*/
	uint16_t sjw;
	/** Propagation Segment */
	uint16_t prop_seg;
	/** Phase Segment 1 */
	uint16_t phase_seg1;
	/** Phase Segment 2 */
	uint16_t phase_seg2;
	/** Prescaler value */
	uint16_t prescaler;
};

/**
 * @typedef can_tx_callback_t
 * @brief Define the application callback handler function signature
 *
 * @param error_flags status of the performed send operation
 * @param arg argument that was passed when the message was sent
 */
typedef void (*can_tx_callback_t)(uint32_t error_flags, void *arg);

/**
 * @typedef can_rx_callback_t
 * @brief Define the application callback handler function signature
 *        for receiving.
 *
 * @param msg received message
 * @param arg argument that was passed when the filter was attached
 */
typedef void (*can_rx_callback_t)(struct zcan_frame *msg, void *arg);

/**
 * @typedef can_state_change_isr_t
 * @brief Defines the state change isr handler function signature
 *
 * @param state state of the node
 * @param err_cnt struct with the error counter values
 */
typedef void(*can_state_change_isr_t)(enum can_state state,
					  struct can_bus_err_cnt err_cnt);

typedef int (*can_set_timing_t)(const struct device *dev,
				const struct can_timing *timing,
				const struct can_timing *timing_data);

typedef int (*can_set_mode_t)(const struct device *dev, enum can_mode mode);

typedef int (*can_send_t)(const struct device *dev,
			  const struct zcan_frame *msg,
			  k_timeout_t timeout, can_tx_callback_t callback_isr,
			  void *callback_arg);


typedef int (*can_attach_msgq_t)(const struct device *dev,
				 struct k_msgq *msg_q,
				 const struct zcan_filter *filter);

typedef int (*can_attach_isr_t)(const struct device *dev,
				can_rx_callback_t isr,
				void *callback_arg,
				const struct zcan_filter *filter);

typedef void (*can_detach_t)(const struct device *dev, int filter_id);

typedef int (*can_recover_t)(const struct device *dev, k_timeout_t timeout);

typedef enum can_state (*can_get_state_t)(const struct device *dev,
					  struct can_bus_err_cnt *err_cnt);

typedef void(*can_register_state_change_isr_t)(const struct device *dev,
					       can_state_change_isr_t isr);

typedef int (*can_get_core_clock_t)(const struct device *dev, uint32_t *rate);

#ifndef CONFIG_CAN_WORKQ_FRAMES_BUF_CNT
#define CONFIG_CAN_WORKQ_FRAMES_BUF_CNT 4
#endif
struct can_frame_buffer {
	struct zcan_frame buf[CONFIG_CAN_WORKQ_FRAMES_BUF_CNT];
	uint16_t head;
	uint16_t tail;
};

/**
 * @brief CAN work structure
 *
 * Used to attach a work queue to a filter.
 */
struct zcan_work {
	struct k_work work_item;
	struct k_work_q *work_queue;
	struct can_frame_buffer buf;
	can_rx_callback_t cb;
	void *cb_arg;
};

__subsystem struct can_driver_api {
	can_set_mode_t set_mode;
	can_set_timing_t set_timing;
	can_send_t send;
	can_attach_isr_t attach_isr;
	can_detach_t detach;
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
	can_recover_t recover;
#endif
	can_get_state_t get_state;
	can_register_state_change_isr_t register_state_change_isr;
	can_get_core_clock_t get_core_clock;
	/* Min values for the timing registers */
	struct can_timing timing_min;
	/* Max values for the timing registers */
	struct can_timing timing_max;
#ifdef CONFIG_CAN_FD_MODE
	/* Min values for the timing registers during the data phase */
	struct can_timing timing_min_data;
	/* Max values for the timing registers during the data phase */
	struct can_timing timing_max_data;
#endif
};

/**
 * @brief Perform data transfer to CAN bus.
 *
 * This routine provides a generic interface to perform data transfer
 * to the can bus. Use can_write() for simple write.
 * *
 * @param dev          Pointer to the device structure for the driver instance.
 * @param msg          Message to transfer.
 * @param timeout      Waiting for empty tx mailbox timeout or K_FOREVER.
 * @param callback_isr Is called when message was sent or a transmission error
 *                     occurred. If NULL, this function is blocking until
 *                     message is sent. This must be NULL if called from user
 *                     mode.
 * @param callback_arg This will be passed whenever the isr is called.
 *
 * @retval 0 If successful.
 * @retval CAN_TX_* on failure.
 */
__syscall int can_send(const struct device *dev, const struct zcan_frame *msg,
		       k_timeout_t timeout, can_tx_callback_t callback_isr,
		       void *callback_arg);

static inline int z_impl_can_send(const struct device *dev,
				  const struct zcan_frame *msg,
				  k_timeout_t timeout,
				  can_tx_callback_t callback_isr,
				  void *callback_arg)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->send(dev, msg, timeout, callback_isr, callback_arg);
}

/*
 * Derived can APIs -- all implemented in terms of can_send()
 */

/**
 * @brief Write a set amount of data to the can bus.
 *
 * This routine writes a set amount of data synchronously.
 *
 * @param dev  Pointer to the device structure for the driver instance.
 * @param data Data to send.
 * @param length Number of bytes to write (max. 8).
 * @param id  Identifier of the can message.
 * @param rtr Send remote transmission request or data frame
 * @param timeout Waiting for empty tx mailbox timeout or K_FOREVER
 *
 * @retval 0 If successful.
 * @retval -EIO General input / output error.
 * @retval -EINVAL if length > 8.
 */
static inline int can_write(const struct device *dev, const uint8_t *data,
			    uint8_t length,
			    uint32_t id, enum can_rtr rtr, k_timeout_t timeout)
{
	struct zcan_frame msg;

	if (length > 8) {
		return -EINVAL;
	}

	msg.id = id;

	if (id > CAN_MAX_STD_ID) {
		msg.id_type = CAN_EXTENDED_IDENTIFIER;
	} else {
		msg.id_type = CAN_STANDARD_IDENTIFIER;
	}

	msg.dlc = length;
	msg.rtr = rtr;
	memcpy(msg.data, data, length);

	return can_send(dev, &msg, timeout, NULL, NULL);
}

/**
 * @brief Attach a CAN work queue to a single or group of identifiers.
 *
 * This routine attaches a work queue to identifiers specified by a filter.
 * Whenever the filter matches, the message is pushed to the buffer
 * of the zcan_work structure and the work element is put to the workqueue.
 * If a message passes more than one filter the priority of the match
 * is hardware dependent.
 * A CAN work queue can be attached to more than one filter.
 * The work queue must be initialized before and the caller must have
 * appropriate permissions on it.
 *
 * @param dev          Pointer to the device structure for the driver instance.
 * @param work_q       Pointer to the already initialized work queue.
 * @param work         Pointer to a zcan_work. The work will be initialized.
 * @param callback     This function is called by workq whenever a message arrives.
 * @param callback_arg Is passed to the callback when called.
 * @param filter       Pointer to a zcan_filter structure defining the id
 *                     filtering.
 *
 * @retval filter_id on success.
 * @retval CAN_NO_FREE_FILTER if there is no filter left.
 */
int can_attach_workq(const struct device *dev, struct k_work_q  *work_q,
		     struct zcan_work *work,
		     can_rx_callback_t callback, void *callback_arg,
		     const struct zcan_filter *filter);

/**
 * @brief Attach a message queue to a single or group of identifiers.
 *
 * This routine attaches a message queue to identifiers specified by
 * a filter. Whenever the filter matches, the message is pushed to the queue
 * If a message passes more than one filter the priority of the match
 * is hardware dependent.
 * A message queue can be attached to more than one filter.
 * The message queue must me initialized before, and the caller must have
 * appropriate permissions on it.
 *
 * @param dev    Pointer to the device structure for the driver instance.
 * @param msg_q  Pointer to the already initialized message queue.
 * @param filter Pointer to a zcan_filter structure defining the id
 *               filtering.
 *
 * @retval filter_id on success.
 * @retval CAN_NO_FREE_FILTER if there is no filter left.
 */
__syscall int can_attach_msgq(const struct device *dev, struct k_msgq *msg_q,
			      const struct zcan_filter *filter);

/**
 * @brief Attach an isr callback function to a single or group of identifiers.
 *
 * This routine attaches an isr callback to identifiers specified by
 * a filter. Whenever the filter matches, the callback function is called
 * with isr context.
 * If a message passes more than one filter the priority of the match
 * is hardware dependent.
 * A callback function can be attached to more than one filter.
 * *
 * @param dev          Pointer to the device structure for the driver instance.
 * @param isr          Callback function pointer.
 * @param callback_arg This will be passed whenever the isr is called.
 * @param filter       Pointer to a zcan_filter structure defining the id
 *                     filtering.
 *
 * @retval filter_id on success.
 * @retval CAN_NO_FREE_FILTER if there is no filter left.
 */
static inline int can_attach_isr(const struct device *dev,
				       can_rx_callback_t isr,
				       void *callback_arg,
				       const struct zcan_filter *filter)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->attach_isr(dev, isr, callback_arg, filter);
}

/**
 * @brief Detach an isr or message queue from the identifier filtering.
 *
 * This routine detaches an isr callback  or message queue from the identifier
 * filtering.
 * *
 * @param dev       Pointer to the device structure for the driver instance.
 * @param filter_id filter id returned by can_attach_isr or can_attach_msgq.
 *
 * @retval none
 */
__syscall void can_detach(const struct device *dev, int filter_id);

static inline void z_impl_can_detach(const struct device *dev, int filter_id)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->detach(dev, filter_id);
}

/**
 * @brief Read the core clock value
 *
 * Returns the core clock value. One time quantum is 1/core clock.
 *
 * @param dev Pointer to the device structure for the driver instance.
 * @param[out] rate controller clock rate
 *
 * @retval 0 on success
 * @retval negative on error
 */
__syscall int can_get_core_clock(const struct device *dev, uint32_t *rate);

static inline int z_impl_can_get_core_clock(const struct device *dev,
					    uint32_t *rate)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->get_core_clock(dev, rate);
}

/**
 * @brief Calculate timing parameters from bitrate and sample point
 *
 * Calculate the timing parameters from a given bitrate in bits/s and the
 * sampling point in permill (1/1000) of the entire bit time.
 * The bitrate must alway match perfectly. If no result can be given for the,
 * give parameters, -EINVAL is returned.
 * The sample_pnt does not always match perfectly. The algorithm tries to find
 * the best match possible.
 *
 * @param dev        Pointer to the device structure for the driver instance.
 * @param res        Result is written into the can_timing struct provided.
 * @param bitrate    Target bitrate in bits/s
 * @param sample_pnt Sampling point in permill of the entire bit time.
 *
 * @retval Positive sample point error on success
 * @retval -EINVAL if there is no solution for the desired values
 * @retval -EIO if core_clock is not available
 */
int can_calc_timing(const struct device *dev, struct can_timing *res,
		    uint32_t bitrate, uint16_t sample_pnt);

#ifdef CONFIG_CAN_FD_MODE
/**
 * @brief Calculate timing parameters for the data phase
 *
 * Same as can_calc_timing but with the max and min values from the data phase.
 *
 * @param dev        Pointer to the device structure for the driver instance.
 * @param res        Result is written into the can_timing struct provided.
 * @param bitrate    Target bitrate for the data phase in bits/s
 * @param sample_pnt Sampling point data phase in permille of the entire bit time.
 *
 * @retval Positive sample point error on success
 * @retval -EINVAL if there is no solution for the desired values
 * @retval -EIO if core_clock is not available
 */
int can_calc_timing_data(const struct device *dev, struct can_timing *res,
			 uint32_t bitrate, uint16_t sample_pnt);
#endif

/**
 * @brief Fill in the prescaler value for a given bitrate and timing
 *
 * Fill the prescaler value in the timing struct.
 * sjw, prop_seg, phase_seg1 and phase_seg2 must be given.
 * The returned bitrate error is reminder of the devision of the clockrate by
 * the bitrate times the timing segments.
 *
 * @param dev     Pointer to the device structure for the driver instance.
 * @param timing  Result is written into the can_timing struct provided.
 * @param bitrate Target bitrate.
 *
 * @retval bitrate error
 * @retval negative on error
 */
int can_calc_prescaler(const struct device *dev, struct can_timing *timing,
		       uint32_t bitrate);

/**
 * @brief Set the controller to the given mode
 *
 * @param dev Pointer to the device structure for the driver instance.
 * @param mode   Operation mode
 *
 * @retval 0 If successful.
 * @retval -EIO General input / output error, failed to configure device.
 */
__syscall int can_set_mode(const struct device *dev, enum can_mode mode);

static inline int z_impl_can_set_mode(const struct device *dev,
				      enum can_mode mode)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->set_mode(dev, mode);
}

/**
 * @brief Configure timing of a host controller.
 *
 * The second parameter timing_data is only relevant for CAN-FD.
 * If the controller does not support CAN-FD or the FD mode is not enabled,
 * this parameter is ignored.
 *
 * @param dev         Pointer to the device structure for the driver instance.
 * @param timing      Bus timings
 * @param timing_data Bus timings for data phase (CAN-FD only)
 *
 * @retval 0 If successful.
 * @retval -EIO General input / output error, failed to configure device.
 */
__syscall int can_set_timing(const struct device *dev,
			     const struct can_timing *timing,
			     const struct can_timing *timing_data);

static inline int z_impl_can_set_timing(const struct device *dev,
					const struct can_timing *timing,
					const struct can_timing *timing_data)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->set_timing(dev, timing, timing_data);
}

/**
 * @brief Set the bitrate of the CAN controller
 *
 * The second parameter bitrate_data is only relevant for CAN-FD.
 * If the controller does not support CAN-FD or the FD mode is not enabled,
 * this parameter is ignored.
 * The sample point is set to the CiA DS 301 reccommended value of 87.5%
 *
 * @param dev          Pointer to the device structure for the driver instance.
 * @param bitrate      Desired arbitration phase bitrate
 * @param bitrate_data Desired data phase bitrate
 *
 * @retval 0 If successful.
 * @retval -EINVAL bitrate cannot be reached.
 * @retval -EIO General input / output error, failed to set bitrate.
 */
static inline int can_set_bitrate(const struct device *dev,
				  uint32_t bitrate,
				  uint32_t bitrate_data)
{
	struct can_timing timing;
#ifdef CONFIG_CAN_FD_MODE
	struct can_timing timing_data;
#endif
	int ret;

	ret = can_calc_timing(dev, &timing, bitrate, 875);
	if (ret < 0) {
		return -EINVAL;
	}

#ifdef CONFIG_CAN_FD_MODE
	ret = can_calc_timing_data(dev, &timing_data, bitrate_data, 875);
	if (ret < 0) {
		return -EINVAL;
	}

	return can_set_timing(dev, &timing, &timing_data);
#else
	return can_set_timing(dev, &timing, NULL);
#endif /* CONFIG_CAN_FD_MODE */
}

/**
 * @brief Configure operation of a host controller.
 *
 * @param dev Pointer to the device structure for the driver instance.
 * @param mode Operation mode
 * @param bitrate bus-speed in Baud/s
 *
 * @retval 0 If successful.
 * @retval -EIO General input / output error, failed to configure device.
 */
static inline int can_configure(const struct device *dev, enum can_mode mode,
				uint32_t bitrate)
{
	if (bitrate > 0) {
		int err = can_set_bitrate(dev, bitrate, 0);
		if (err != 0) {
			return err;
		}
	}

	return can_set_mode(dev, mode);
}


/**
 * @brief Get current state
 *
 * Returns the actual state of the CAN controller.
 *
 * @param dev     Pointer to the device structure for the driver instance.
 * @param err_cnt Pointer to the err_cnt destination structure or NULL.
 *
 * @retval  state
 */
__syscall enum can_state can_get_state(const struct device *dev,
				       struct can_bus_err_cnt *err_cnt);

static inline
enum can_state z_impl_can_get_state(const struct device *dev,
				    struct can_bus_err_cnt *err_cnt)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->get_state(dev, err_cnt);
}

/**
 * @brief Recover from bus-off state
 *
 * Recover the CAN controller from bus-off state to error-active state.
 *
 * @param dev     Pointer to the device structure for the driver instance.
 * @param timeout Timeout for waiting for the recovery or K_FOREVER.
 *
 * @retval 0 on success.
 * @retval CAN_TIMEOUT on timeout.
 */
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
__syscall int can_recover(const struct device *dev, k_timeout_t timeout);

static inline int z_impl_can_recover(const struct device *dev,
				     k_timeout_t timeout)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->recover(dev, timeout);
}
#else
/* This implementation prevents inking errors for auto recovery */
static inline int z_impl_can_recover(const struct device *dev,
				     k_timeout_t timeout)
{
	return 0;
}
#endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */

/**
 * @brief Register an ISR callback for state change interrupt
 *
 * Only one callback can be registered per controller.
 * Calling this function again, overrides the previous call.
 *
 * @param dev Pointer to the device structure for the driver instance.
 * @param isr Pointer to ISR
 */
static inline
void can_register_state_change_isr(const struct device *dev,
				   can_state_change_isr_t isr)
{
	const struct can_driver_api *api =
		(const struct can_driver_api *)dev->api;

	return api->register_state_change_isr(dev, isr);
}

/**
 * @brief Converter that translates between can_frame and zcan_frame structs.
 *
 * @param frame Pointer to can_frame struct.
 * @param zframe Pointer to zcan_frame struct.
 */
static inline void can_copy_frame_to_zframe(const struct can_frame *frame,
					    struct zcan_frame *zframe)
{
	zframe->id_type = (frame->can_id & BIT(31)) >> 31;
	zframe->rtr = (frame->can_id & BIT(30)) >> 30;
	zframe->id = frame->can_id & BIT_MASK(29);
	zframe->dlc = frame->can_dlc;
	memcpy(zframe->data, frame->data, sizeof(zframe->data));
}

/**
 * @brief Converter that translates between zcan_frame and can_frame structs.
 *
 * @param zframe Pointer to zcan_frame struct.
 * @param frame Pointer to can_frame struct.
 */
static inline void can_copy_zframe_to_frame(const struct zcan_frame *zframe,
					    struct can_frame *frame)
{
	frame->can_id = (zframe->id_type << 31) | (zframe->rtr << 30) |
		zframe->id;
	frame->can_dlc = zframe->dlc;
	memcpy(frame->data, zframe->data, sizeof(frame->data));
}

/**
 * @brief Converter that translates between can_filter and zcan_frame_filter
 * structs.
 *
 * @param filter Pointer to can_filter struct.
 * @param zfilter Pointer to zcan_frame_filter struct.
 */
static inline
void can_copy_filter_to_zfilter(const struct can_filter *filter,
				struct zcan_filter *zfilter)
{
	zfilter->id_type = (filter->can_id & BIT(31)) >> 31;
	zfilter->rtr = (filter->can_id & BIT(30)) >> 30;
	zfilter->id = filter->can_id & BIT_MASK(29);
	zfilter->rtr_mask = (filter->can_mask & BIT(30)) >> 30;
	zfilter->id_mask = filter->can_mask & BIT_MASK(29);
}

/**
 * @brief Converter that translates between zcan_filter and can_filter
 * structs.
 *
 * @param zfilter Pointer to zcan_filter struct.
 * @param filter Pointer to can_filter struct.
 */
static inline
void can_copy_zfilter_to_filter(const struct zcan_filter *zfilter,
				struct can_filter *filter)
{
	filter->can_id = (zfilter->id_type << 31) |
		(zfilter->rtr << 30) | zfilter->id;
	filter->can_mask = (zfilter->rtr_mask << 30) |
		(zfilter->id_type << 31) | zfilter->id_mask;
}

#ifdef __cplusplus
}
#endif
/**
 * @}
 */
#include <syscalls/can.h>

#endif /* ZEPHYR_INCLUDE_DRIVERS_CAN_H_ */