Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief IA-32 specific kernel interface header
 * This header contains the IA-32 specific kernel interface.  It is included
 * by the generic kernel interface header (include/arch/cpu.h)
 */

#ifndef ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_
#define ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_

#include "sys_io.h"
#include <stdbool.h>
#include <kernel_structs.h>
#include <arch/common/ffs.h>
#include <sys/util.h>
#include <arch/x86/ia32/gdbstub.h>
#include <arch/x86/ia32/thread.h>
#include <arch/x86/ia32/syscall.h>

#ifndef _ASMLANGUAGE
#include <stddef.h>	/* for size_t */

#include <arch/common/addr_types.h>
#include <arch/x86/ia32/segmentation.h>
#include <power/power.h>

#endif /* _ASMLANGUAGE */

/* GDT layout */
#define CODE_SEG	0x08
#define DATA_SEG	0x10
#define MAIN_TSS	0x18
#define DF_TSS		0x20

/*
 * Use for thread local storage.
 * Match these to gen_gdt.py.
 * The 0x03 is added to limit privilege.
 */
#if defined(CONFIG_USERSPACE)
#define GS_TLS_SEG	(0x38 | 0x03)
#elif defined(CONFIG_HW_STACK_PROTECTION)
#define GS_TLS_SEG	(0x28 | 0x03)
#else
#define GS_TLS_SEG	(0x18 | 0x03)
#endif

/**
 * Macro used internally by NANO_CPU_INT_REGISTER and NANO_CPU_INT_REGISTER_ASM.
 * Not meant to be used explicitly by platform, driver or application code.
 */
#define MK_ISR_NAME(x) __isr__##x

#define Z_DYN_STUB_SIZE			4
#define Z_DYN_STUB_OFFSET		0
#define Z_DYN_STUB_LONG_JMP_EXTRA_SIZE	3
#define Z_DYN_STUB_PER_BLOCK		32


#ifndef _ASMLANGUAGE

#ifdef __cplusplus
extern "C" {
#endif

/* interrupt/exception/error related definitions */

typedef struct s_isrList {
	/** Address of ISR/stub */
	void		*fnc;
	/** IRQ associated with the ISR/stub, or -1 if this is not
	 * associated with a real interrupt; in this case vec must
	 * not be -1
	 */
	unsigned int    irq;
	/** Priority associated with the IRQ. Ignored if vec is not -1 */
	unsigned int    priority;
	/** Vector number associated with ISR/stub, or -1 to assign based
	 * on priority
	 */
	unsigned int    vec;
	/** Privilege level associated with ISR/stub */
	unsigned int    dpl;

	/** If nonzero, specifies a TSS segment selector. Will configure
	 * a task gate instead of an interrupt gate. fnc parameter will be
	 * ignored
	 */
	unsigned int	tss;
} ISR_LIST;


/**
 * @brief Connect a routine to an interrupt vector
 *
 * This macro "connects" the specified routine, @a r, to the specified interrupt
 * vector, @a v using the descriptor privilege level @a d. On the IA-32
 * architecture, an interrupt vector is a value from 0 to 255. This macro
 * populates the special intList section with the address of the routine, the
 * vector number and the descriptor privilege level. The genIdt tool then picks
 * up this information and generates an actual IDT entry with this information
 * properly encoded.
 *
 * The @a d argument specifies the privilege level for the interrupt-gate
 * descriptor; (hardware) interrupts and exceptions should specify a level of 0,
 * whereas handlers for user-mode software generated interrupts should specify 3.
 * @param r Routine to be connected
 * @param n IRQ number
 * @param p IRQ priority
 * @param v Interrupt Vector
 * @param d Descriptor Privilege Level
 *
 * @return N/A
 *
 */

#define NANO_CPU_INT_REGISTER(r, n, p, v, d) \
	 static ISR_LIST __attribute__((section(".intList"))) \
			 __attribute__((used)) MK_ISR_NAME(r) = \
			{ \
				.fnc = &(r), \
				.irq = (n), \
				.priority = (p), \
				.vec = (v), \
				.dpl = (d), \
				.tss = 0 \
			}

/**
 * @brief Connect an IA hardware task to an interrupt vector
 *
 * This is very similar to NANO_CPU_INT_REGISTER but instead of connecting
 * a handler function, the interrupt will induce an IA hardware task
 * switch to another hardware task instead.
 *
 * @param tss_p GDT/LDT segment selector for the TSS representing the task
 * @param irq_p IRQ number
 * @param priority_p IRQ priority
 * @param vec_p Interrupt vector
 * @param dpl_p Descriptor privilege level
 */
#define _X86_IDT_TSS_REGISTER(tss_p, irq_p, priority_p, vec_p, dpl_p) \
	static ISR_LIST __attribute__((section(".intList"))) \
			__attribute__((used)) MK_ISR_NAME(r) = \
			{ \
				.fnc = NULL, \
				.irq = (irq_p), \
				.priority = (priority_p), \
				.vec = (vec_p), \
				.dpl = (dpl_p), \
				.tss = (tss_p) \
			}

/**
 * Code snippets for populating the vector ID and priority into the intList
 *
 * The 'magic' of static interrupts is accomplished by building up an array
 * 'intList' at compile time, and the gen_idt tool uses this to create the
 * actual IDT data structure.
 *
 * For controllers like APIC, the vectors in the IDT are not normally assigned
 * at build time; instead the sentinel value -1 is saved, and gen_idt figures
 * out the right vector to use based on our priority scheme. Groups of 16
 * vectors starting at 32 correspond to each priority level.
 *
 * These macros are only intended to be used by IRQ_CONNECT() macro.
 */
#define _VECTOR_ARG(irq_p)	(-1)

/* Internally this function does a few things:
 *
 * 1. There is a declaration of the interrupt parameters in the .intList
 * section, used by gen_idt to create the IDT. This does the same thing
 * as the NANO_CPU_INT_REGISTER() macro, but is done in assembly as we
 * need to populate the .fnc member with the address of the assembly
 * IRQ stub that we generate immediately afterwards.
 *
 * 2. The IRQ stub itself is declared. The code will go in its own named
 * section .text.irqstubs section (which eventually gets linked into 'text')
 * and the stub shall be named (isr_name)_irq(irq_line)_stub
 *
 * 3. The IRQ stub pushes the ISR routine and its argument onto the stack
 * and then jumps to the common interrupt handling code in _interrupt_enter().
 *
 * 4. z_irq_controller_irq_config() is called at runtime to set the mapping
 * between the vector and the IRQ line as well as triggering flags
 */
#define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \
{ \
	__asm__ __volatile__(							\
		".pushsection .intList\n\t" \
		".long %c[isr]_irq%c[irq]_stub\n\t"	/* ISR_LIST.fnc */ \
		".long %c[irq]\n\t"		/* ISR_LIST.irq */ \
		".long %c[priority]\n\t"	/* ISR_LIST.priority */ \
		".long %c[vector]\n\t"		/* ISR_LIST.vec */ \
		".long 0\n\t"			/* ISR_LIST.dpl */ \
		".long 0\n\t"			/* ISR_LIST.tss */ \
		".popsection\n\t" \
		".pushsection .text.irqstubs\n\t" \
		".global %c[isr]_irq%c[irq]_stub\n\t" \
		"%c[isr]_irq%c[irq]_stub:\n\t" \
		"pushl %[isr_param]\n\t" \
		"pushl %[isr]\n\t" \
		"jmp _interrupt_enter\n\t" \
		".popsection\n\t" \
		: \
		: [isr] "i" (isr_p), \
		  [isr_param] "i" (isr_param_p), \
		  [priority] "i" (priority_p), \
		  [vector] "i" _VECTOR_ARG(irq_p), \
		  [irq] "i" (irq_p)); \
	z_irq_controller_irq_config(Z_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \
				   (flags_p)); \
}

/* Direct interrupts won't work as expected with KPTI turned on, because
 * all non-user accessible pages in the page table are marked non-present.
 * It's likely possible to add logic to ARCH_ISR_DIRECT_HEADER/FOOTER to do
 * the necessary trampolining to switch page tables / stacks, but this
 * probably loses all the latency benefits that direct interrupts provide
 * and one might as well use a regular interrupt anyway.
 */
#ifndef CONFIG_X86_KPTI
#define ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \
{ \
	NANO_CPU_INT_REGISTER(isr_p, irq_p, priority_p, -1, 0); \
	z_irq_controller_irq_config(Z_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \
				   (flags_p)); \
}

#ifdef CONFIG_PM
static inline void arch_irq_direct_pm(void)
{
	if (_kernel.idle) {
		int32_t idle_val = _kernel.idle;

		_kernel.idle = 0;
		z_pm_save_idle_exit(idle_val);
	}
}

#define ARCH_ISR_DIRECT_PM() arch_irq_direct_pm()
#else
#define ARCH_ISR_DIRECT_PM() do { } while (false)
#endif

#define ARCH_ISR_DIRECT_HEADER() arch_isr_direct_header()
#define ARCH_ISR_DIRECT_FOOTER(swap) arch_isr_direct_footer(swap)

/* FIXME:
 * tracing/tracing.h cannot be included here due to circular dependency
 */
#if defined(CONFIG_TRACING)
extern void sys_trace_isr_enter(void);
extern void sys_trace_isr_exit(void);
#endif

static inline void arch_isr_direct_header(void)
{
#if defined(CONFIG_TRACING)
	sys_trace_isr_enter();
#endif

	/* We're not going to unlock IRQs, but we still need to increment this
	 * so that arch_is_in_isr() works
	 */
	++_kernel.cpus[0].nested;
}

/*
 * FIXME: z_swap_irqlock is an inline function declared in a private header and
 *	  cannot be referenced from a public header, so we move it to an
 *	  external function.
 */
extern void arch_isr_direct_footer_swap(unsigned int key);

static inline void arch_isr_direct_footer(int swap)
{
	z_irq_controller_eoi();
#if defined(CONFIG_TRACING)
	sys_trace_isr_exit();
#endif
	--_kernel.cpus[0].nested;

	/* Call swap if all the following is true:
	 *
	 * 1) swap argument was enabled to this function
	 * 2) We are not in a nested interrupt
	 * 3) Next thread to run in the ready queue is not this thread
	 */
	if (swap != 0 && _kernel.cpus[0].nested == 0 &&
	    _kernel.ready_q.cache != _current) {
		unsigned int flags;

		/* Fetch EFLAGS argument to z_swap() */
		__asm__ volatile (
			"pushfl\n\t"
			"popl %0\n\t"
			: "=g" (flags)
			:
			: "memory"
			);

		arch_isr_direct_footer_swap(flags);
	}
}

#define ARCH_ISR_DIRECT_DECLARE(name) \
	static inline int name##_body(void); \
	__attribute__ ((interrupt)) void name(void *stack_frame) \
	{ \
		ARG_UNUSED(stack_frame); \
		int check_reschedule; \
		ISR_DIRECT_HEADER(); \
		check_reschedule = name##_body(); \
		ISR_DIRECT_FOOTER(check_reschedule); \
	} \
	static inline int name##_body(void)
#endif /* !CONFIG_X86_KPTI */

/**
 * @brief Exception Stack Frame
 *
 * A pointer to an "exception stack frame" (ESF) is passed as an argument
 * to exception handlers registered via nanoCpuExcConnect().  As the system
 * always operates at ring 0, only the EIP, CS and EFLAGS registers are pushed
 * onto the stack when an exception occurs.
 *
 * The exception stack frame includes the volatile registers (EAX, ECX, and
 * EDX) as well as the 5 non-volatile registers (EDI, ESI, EBX, EBP and ESP).
 * Those registers are pushed onto the stack by _ExcEnt().
 */

typedef struct nanoEsf {
#ifdef CONFIG_GDBSTUB
	unsigned int ss;
	unsigned int gs;
	unsigned int fs;
	unsigned int es;
	unsigned int ds;
#endif
	unsigned int esp;
	unsigned int ebp;
	unsigned int ebx;
	unsigned int esi;
	unsigned int edi;
	unsigned int edx;
	unsigned int eax;
	unsigned int ecx;
	unsigned int errorCode;
	unsigned int eip;
	unsigned int cs;
	unsigned int eflags;
} z_arch_esf_t;

extern unsigned int z_x86_exception_vector;

struct _x86_syscall_stack_frame {
	uint32_t eip;
	uint32_t cs;
	uint32_t eflags;

	/* These are only present if cs = USER_CODE_SEG */
	uint32_t esp;
	uint32_t ss;
};

static ALWAYS_INLINE unsigned int arch_irq_lock(void)
{
	unsigned int key;

	__asm__ volatile ("pushfl; cli; popl %0" : "=g" (key) :: "memory");

	return key;
}


/**
 * The NANO_SOFT_IRQ macro must be used as the value for the @a irq parameter
 * to NANO_CPU_INT_REGISTER when connecting to an interrupt that does not
 * correspond to any IRQ line (such as spurious vector or SW IRQ)
 */
#define NANO_SOFT_IRQ	((unsigned int) (-1))

/**
 * @defgroup float_apis Floating Point APIs
 * @ingroup kernel_apis
 * @{
 */

struct k_thread;

/**
 * @brief Enable preservation of floating point context information.
 *
 * This routine informs the kernel that the specified thread (which may be
 * the current thread) will be using the floating point registers.
 * The @a options parameter indicates which floating point register sets
 * will be used by the specified thread:
 *
 * - K_FP_REGS  indicates x87 FPU and MMX registers only
 * - K_SSE_REGS indicates SSE registers (and also x87 FPU and MMX registers)
 *
 * Invoking this routine initializes the thread's floating point context info
 * to that of an FPU that has been reset. The next time the thread is scheduled
 * by z_swap() it will either inherit an FPU that is guaranteed to be in a "sane"
 * state (if the most recent user of the FPU was cooperatively swapped out)
 * or the thread's own floating point context will be loaded (if the most
 * recent user of the FPU was preempted, or if this thread is the first user
 * of the FPU). Thereafter, the kernel will protect the thread's FP context
 * so that it is not altered during a preemptive context switch.
 *
 * @warning
 * This routine should only be used to enable floating point support for a
 * thread that does not currently have such support enabled already.
 *
 * @param thread ID of thread.
 * @param options Registers to be preserved (K_FP_REGS or K_SSE_REGS).
 *
 * @return N/A
 */
extern void k_float_enable(struct k_thread *thread, unsigned int options);

/**
 * @}
 */

#ifdef CONFIG_X86_ENABLE_TSS
extern struct task_state_segment _main_tss;
#endif

#define ARCH_EXCEPT(reason_p) do { \
	__asm__ volatile( \
		"push %[reason]\n\t" \
		"int %[vector]\n\t" \
		: \
		: [vector] "i" (Z_X86_OOPS_VECTOR), \
		  [reason] "i" (reason_p)); \
	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ \
} while (false)

/*
 * Dynamic thread object memory alignment.
 *
 * If support for SSEx extensions is enabled a 16 byte boundary is required,
 * since the 'fxsave' and 'fxrstor' instructions require this. In all other
 * cases a 4 byte boundary is sufficient.
 */
#if defined(CONFIG_EAGER_FPU_SHARING) || defined(CONFIG_LAZY_FPU_SHARING)
#ifdef CONFIG_SSE
#define ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT	16
#else
#define ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT	(sizeof(void *))
#endif
#else
/* No special alignment requirements, simply align on pointer size. */
#define ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT	(sizeof(void *))
#endif /* CONFIG_*_FP_SHARING */


#ifdef __cplusplus
}
#endif

#endif /* !_ASMLANGUAGE */

#endif /* ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_ */