Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 | /* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief IA-32 specific kernel interface header * This header contains the IA-32 specific kernel interface. It is included * by the generic kernel interface header (include/arch/cpu.h) */ #ifndef ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_ #define ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_ #include "sys_io.h" #include <stdbool.h> #include <kernel_structs.h> #include <arch/common/ffs.h> #include <sys/util.h> #include <arch/x86/ia32/gdbstub.h> #include <arch/x86/ia32/thread.h> #include <arch/x86/ia32/syscall.h> #ifndef _ASMLANGUAGE #include <stddef.h> /* for size_t */ #include <arch/common/addr_types.h> #include <arch/x86/ia32/segmentation.h> #include <power/power.h> #endif /* _ASMLANGUAGE */ /* GDT layout */ #define CODE_SEG 0x08 #define DATA_SEG 0x10 #define MAIN_TSS 0x18 #define DF_TSS 0x20 /* * Use for thread local storage. * Match these to gen_gdt.py. * The 0x03 is added to limit privilege. */ #if defined(CONFIG_USERSPACE) #define GS_TLS_SEG (0x38 | 0x03) #elif defined(CONFIG_HW_STACK_PROTECTION) #define GS_TLS_SEG (0x28 | 0x03) #else #define GS_TLS_SEG (0x18 | 0x03) #endif /** * Macro used internally by NANO_CPU_INT_REGISTER and NANO_CPU_INT_REGISTER_ASM. * Not meant to be used explicitly by platform, driver or application code. */ #define MK_ISR_NAME(x) __isr__##x #define Z_DYN_STUB_SIZE 4 #define Z_DYN_STUB_OFFSET 0 #define Z_DYN_STUB_LONG_JMP_EXTRA_SIZE 3 #define Z_DYN_STUB_PER_BLOCK 32 #ifndef _ASMLANGUAGE #ifdef __cplusplus extern "C" { #endif /* interrupt/exception/error related definitions */ typedef struct s_isrList { /** Address of ISR/stub */ void *fnc; /** IRQ associated with the ISR/stub, or -1 if this is not * associated with a real interrupt; in this case vec must * not be -1 */ unsigned int irq; /** Priority associated with the IRQ. Ignored if vec is not -1 */ unsigned int priority; /** Vector number associated with ISR/stub, or -1 to assign based * on priority */ unsigned int vec; /** Privilege level associated with ISR/stub */ unsigned int dpl; /** If nonzero, specifies a TSS segment selector. Will configure * a task gate instead of an interrupt gate. fnc parameter will be * ignored */ unsigned int tss; } ISR_LIST; /** * @brief Connect a routine to an interrupt vector * * This macro "connects" the specified routine, @a r, to the specified interrupt * vector, @a v using the descriptor privilege level @a d. On the IA-32 * architecture, an interrupt vector is a value from 0 to 255. This macro * populates the special intList section with the address of the routine, the * vector number and the descriptor privilege level. The genIdt tool then picks * up this information and generates an actual IDT entry with this information * properly encoded. * * The @a d argument specifies the privilege level for the interrupt-gate * descriptor; (hardware) interrupts and exceptions should specify a level of 0, * whereas handlers for user-mode software generated interrupts should specify 3. * @param r Routine to be connected * @param n IRQ number * @param p IRQ priority * @param v Interrupt Vector * @param d Descriptor Privilege Level * * @return N/A * */ #define NANO_CPU_INT_REGISTER(r, n, p, v, d) \ static ISR_LIST __attribute__((section(".intList"))) \ __attribute__((used)) MK_ISR_NAME(r) = \ { \ .fnc = &(r), \ .irq = (n), \ .priority = (p), \ .vec = (v), \ .dpl = (d), \ .tss = 0 \ } /** * @brief Connect an IA hardware task to an interrupt vector * * This is very similar to NANO_CPU_INT_REGISTER but instead of connecting * a handler function, the interrupt will induce an IA hardware task * switch to another hardware task instead. * * @param tss_p GDT/LDT segment selector for the TSS representing the task * @param irq_p IRQ number * @param priority_p IRQ priority * @param vec_p Interrupt vector * @param dpl_p Descriptor privilege level */ #define _X86_IDT_TSS_REGISTER(tss_p, irq_p, priority_p, vec_p, dpl_p) \ static ISR_LIST __attribute__((section(".intList"))) \ __attribute__((used)) MK_ISR_NAME(r) = \ { \ .fnc = NULL, \ .irq = (irq_p), \ .priority = (priority_p), \ .vec = (vec_p), \ .dpl = (dpl_p), \ .tss = (tss_p) \ } /** * Code snippets for populating the vector ID and priority into the intList * * The 'magic' of static interrupts is accomplished by building up an array * 'intList' at compile time, and the gen_idt tool uses this to create the * actual IDT data structure. * * For controllers like APIC, the vectors in the IDT are not normally assigned * at build time; instead the sentinel value -1 is saved, and gen_idt figures * out the right vector to use based on our priority scheme. Groups of 16 * vectors starting at 32 correspond to each priority level. * * These macros are only intended to be used by IRQ_CONNECT() macro. */ #define _VECTOR_ARG(irq_p) (-1) /* Internally this function does a few things: * * 1. There is a declaration of the interrupt parameters in the .intList * section, used by gen_idt to create the IDT. This does the same thing * as the NANO_CPU_INT_REGISTER() macro, but is done in assembly as we * need to populate the .fnc member with the address of the assembly * IRQ stub that we generate immediately afterwards. * * 2. The IRQ stub itself is declared. The code will go in its own named * section .text.irqstubs section (which eventually gets linked into 'text') * and the stub shall be named (isr_name)_irq(irq_line)_stub * * 3. The IRQ stub pushes the ISR routine and its argument onto the stack * and then jumps to the common interrupt handling code in _interrupt_enter(). * * 4. z_irq_controller_irq_config() is called at runtime to set the mapping * between the vector and the IRQ line as well as triggering flags */ #define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \ { \ __asm__ __volatile__( \ ".pushsection .intList\n\t" \ ".long %c[isr]_irq%c[irq]_stub\n\t" /* ISR_LIST.fnc */ \ ".long %c[irq]\n\t" /* ISR_LIST.irq */ \ ".long %c[priority]\n\t" /* ISR_LIST.priority */ \ ".long %c[vector]\n\t" /* ISR_LIST.vec */ \ ".long 0\n\t" /* ISR_LIST.dpl */ \ ".long 0\n\t" /* ISR_LIST.tss */ \ ".popsection\n\t" \ ".pushsection .text.irqstubs\n\t" \ ".global %c[isr]_irq%c[irq]_stub\n\t" \ "%c[isr]_irq%c[irq]_stub:\n\t" \ "pushl %[isr_param]\n\t" \ "pushl %[isr]\n\t" \ "jmp _interrupt_enter\n\t" \ ".popsection\n\t" \ : \ : [isr] "i" (isr_p), \ [isr_param] "i" (isr_param_p), \ [priority] "i" (priority_p), \ [vector] "i" _VECTOR_ARG(irq_p), \ [irq] "i" (irq_p)); \ z_irq_controller_irq_config(Z_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \ (flags_p)); \ } /* Direct interrupts won't work as expected with KPTI turned on, because * all non-user accessible pages in the page table are marked non-present. * It's likely possible to add logic to ARCH_ISR_DIRECT_HEADER/FOOTER to do * the necessary trampolining to switch page tables / stacks, but this * probably loses all the latency benefits that direct interrupts provide * and one might as well use a regular interrupt anyway. */ #ifndef CONFIG_X86_KPTI #define ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \ { \ NANO_CPU_INT_REGISTER(isr_p, irq_p, priority_p, -1, 0); \ z_irq_controller_irq_config(Z_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \ (flags_p)); \ } #ifdef CONFIG_PM static inline void arch_irq_direct_pm(void) { if (_kernel.idle) { int32_t idle_val = _kernel.idle; _kernel.idle = 0; z_pm_save_idle_exit(idle_val); } } #define ARCH_ISR_DIRECT_PM() arch_irq_direct_pm() #else #define ARCH_ISR_DIRECT_PM() do { } while (false) #endif #define ARCH_ISR_DIRECT_HEADER() arch_isr_direct_header() #define ARCH_ISR_DIRECT_FOOTER(swap) arch_isr_direct_footer(swap) /* FIXME: * tracing/tracing.h cannot be included here due to circular dependency */ #if defined(CONFIG_TRACING) extern void sys_trace_isr_enter(void); extern void sys_trace_isr_exit(void); #endif static inline void arch_isr_direct_header(void) { #if defined(CONFIG_TRACING) sys_trace_isr_enter(); #endif /* We're not going to unlock IRQs, but we still need to increment this * so that arch_is_in_isr() works */ ++_kernel.cpus[0].nested; } /* * FIXME: z_swap_irqlock is an inline function declared in a private header and * cannot be referenced from a public header, so we move it to an * external function. */ extern void arch_isr_direct_footer_swap(unsigned int key); static inline void arch_isr_direct_footer(int swap) { z_irq_controller_eoi(); #if defined(CONFIG_TRACING) sys_trace_isr_exit(); #endif --_kernel.cpus[0].nested; /* Call swap if all the following is true: * * 1) swap argument was enabled to this function * 2) We are not in a nested interrupt * 3) Next thread to run in the ready queue is not this thread */ if (swap != 0 && _kernel.cpus[0].nested == 0 && _kernel.ready_q.cache != _current) { unsigned int flags; /* Fetch EFLAGS argument to z_swap() */ __asm__ volatile ( "pushfl\n\t" "popl %0\n\t" : "=g" (flags) : : "memory" ); arch_isr_direct_footer_swap(flags); } } #define ARCH_ISR_DIRECT_DECLARE(name) \ static inline int name##_body(void); \ __attribute__ ((interrupt)) void name(void *stack_frame) \ { \ ARG_UNUSED(stack_frame); \ int check_reschedule; \ ISR_DIRECT_HEADER(); \ check_reschedule = name##_body(); \ ISR_DIRECT_FOOTER(check_reschedule); \ } \ static inline int name##_body(void) #endif /* !CONFIG_X86_KPTI */ /** * @brief Exception Stack Frame * * A pointer to an "exception stack frame" (ESF) is passed as an argument * to exception handlers registered via nanoCpuExcConnect(). As the system * always operates at ring 0, only the EIP, CS and EFLAGS registers are pushed * onto the stack when an exception occurs. * * The exception stack frame includes the volatile registers (EAX, ECX, and * EDX) as well as the 5 non-volatile registers (EDI, ESI, EBX, EBP and ESP). * Those registers are pushed onto the stack by _ExcEnt(). */ typedef struct nanoEsf { #ifdef CONFIG_GDBSTUB unsigned int ss; unsigned int gs; unsigned int fs; unsigned int es; unsigned int ds; #endif unsigned int esp; unsigned int ebp; unsigned int ebx; unsigned int esi; unsigned int edi; unsigned int edx; unsigned int eax; unsigned int ecx; unsigned int errorCode; unsigned int eip; unsigned int cs; unsigned int eflags; } z_arch_esf_t; extern unsigned int z_x86_exception_vector; struct _x86_syscall_stack_frame { uint32_t eip; uint32_t cs; uint32_t eflags; /* These are only present if cs = USER_CODE_SEG */ uint32_t esp; uint32_t ss; }; static ALWAYS_INLINE unsigned int arch_irq_lock(void) { unsigned int key; __asm__ volatile ("pushfl; cli; popl %0" : "=g" (key) :: "memory"); return key; } /** * The NANO_SOFT_IRQ macro must be used as the value for the @a irq parameter * to NANO_CPU_INT_REGISTER when connecting to an interrupt that does not * correspond to any IRQ line (such as spurious vector or SW IRQ) */ #define NANO_SOFT_IRQ ((unsigned int) (-1)) /** * @defgroup float_apis Floating Point APIs * @ingroup kernel_apis * @{ */ struct k_thread; /** * @brief Enable preservation of floating point context information. * * This routine informs the kernel that the specified thread (which may be * the current thread) will be using the floating point registers. * The @a options parameter indicates which floating point register sets * will be used by the specified thread: * * - K_FP_REGS indicates x87 FPU and MMX registers only * - K_SSE_REGS indicates SSE registers (and also x87 FPU and MMX registers) * * Invoking this routine initializes the thread's floating point context info * to that of an FPU that has been reset. The next time the thread is scheduled * by z_swap() it will either inherit an FPU that is guaranteed to be in a "sane" * state (if the most recent user of the FPU was cooperatively swapped out) * or the thread's own floating point context will be loaded (if the most * recent user of the FPU was preempted, or if this thread is the first user * of the FPU). Thereafter, the kernel will protect the thread's FP context * so that it is not altered during a preemptive context switch. * * @warning * This routine should only be used to enable floating point support for a * thread that does not currently have such support enabled already. * * @param thread ID of thread. * @param options Registers to be preserved (K_FP_REGS or K_SSE_REGS). * * @return N/A */ extern void k_float_enable(struct k_thread *thread, unsigned int options); /** * @} */ #ifdef CONFIG_X86_ENABLE_TSS extern struct task_state_segment _main_tss; #endif #define ARCH_EXCEPT(reason_p) do { \ __asm__ volatile( \ "push %[reason]\n\t" \ "int %[vector]\n\t" \ : \ : [vector] "i" (Z_X86_OOPS_VECTOR), \ [reason] "i" (reason_p)); \ CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ \ } while (false) /* * Dynamic thread object memory alignment. * * If support for SSEx extensions is enabled a 16 byte boundary is required, * since the 'fxsave' and 'fxrstor' instructions require this. In all other * cases a 4 byte boundary is sufficient. */ #if defined(CONFIG_EAGER_FPU_SHARING) || defined(CONFIG_LAZY_FPU_SHARING) #ifdef CONFIG_SSE #define ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT 16 #else #define ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT (sizeof(void *)) #endif #else /* No special alignment requirements, simply align on pointer size. */ #define ARCH_DYMANIC_OBJ_K_THREAD_ALIGNMENT (sizeof(void *)) #endif /* CONFIG_*_FP_SHARING */ #ifdef __cplusplus } #endif #endif /* !_ASMLANGUAGE */ #endif /* ZEPHYR_INCLUDE_ARCH_X86_IA32_ARCH_H_ */ |