Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
/*
 * Copyright (c) 2019 Intel Corporation.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @defgroup arch-interface Architecture Interface
 * @brief Internal kernel APIs with public scope
 *
 * Any public kernel APIs that are implemented as inline functions and need to
 * call architecture-specific API so will have the prototypes for the
 * architecture-specific APIs here. Architecture APIs that aren't used in this
 * way go in kernel/include/kernel_arch_interface.h.
 *
 * The set of architecture-specific APIs used internally by public macros and
 * inline functions in public headers are also specified and documented.
 *
 * For all macros and inline function prototypes described herein, <arch/cpu.h>
 * must eventually pull in full definitions for all of them (the actual macro
 * defines and inline function bodies)
 *
 * include/kernel.h and other public headers depend on definitions in this
 * header.
 */
#ifndef ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_
#define ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_

#ifndef _ASMLANGUAGE
#include <toolchain.h>
#include <stddef.h>
#include <zephyr/types.h>
#include <arch/cpu.h>
#include <irq_offload.h>

#ifdef __cplusplus
extern "C" {
#endif

/* NOTE: We cannot pull in kernel.h here, need some forward declarations  */
struct k_thread;
struct k_mem_domain;

typedef struct z_thread_stack_element k_thread_stack_t;

typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);

/**
 * @defgroup arch-timing Architecture timing APIs
 * @ingroup arch-interface
 * @{
 */

/**
 * Obtain the current cycle count, in units that are hardware-specific
 *
 * @see k_cycle_get_32()
 */
static inline uint32_t arch_k_cycle_get_32(void);

/** @} */


/**
 * @addtogroup arch-threads
 * @{
 */

/**
 * @def ARCH_THREAD_STACK_RESERVED
 *
 * @see K_THREAD_STACK_RESERVED
 */

/**
 * @def ARCH_STACK_PTR_ALIGN
 *
 * Required alignment of the CPU's stack pointer register value, dictated by
 * hardware constraints and the ABI calling convention.
 *
 * @see Z_STACK_PTR_ALIGN
 */

/**
 * @def ARCH_THREAD_STACK_OBJ_ALIGN(size)
 *
 * Required alignment of the lowest address of a stack object.
 *
 * Optional definition.
 *
 * @see Z_THREAD_STACK_OBJ_ALIGN
 */

/**
 * @def ARCH_THREAD_STACK_SIZE_ADJUST(size)
 * @brief Round up a stack buffer size to alignment constraints
 *
 * Adjust a requested stack buffer size to the true size of its underlying
 * buffer, defined as the area usable for thread stack context and thread-
 * local storage.
 *
 * The size value passed here does not include storage reserved for platform
 * data.
 *
 * The returned value is either the same size provided (if already properly
 * aligned), or rounded up to satisfy alignment constraints.  Calculations
 * performed here *must* be idempotent.
 *
 * Optional definition. If undefined, stack buffer sizes are either:
 * - Rounded up to the next power of two if user mode is enabled on an arch
 *   with an MPU that requires such alignment
 * - Rounded up to ARCH_STACK_PTR_ALIGN
 *
 * @see Z_THREAD_STACK_SIZE_ADJUST
 */

/**
 * @def ARCH_KERNEL_STACK_RESERVED
 * @brief MPU guard size for kernel-only stacks
 *
 * If MPU stack guards are used to catch stack overflows, specify the
 * amount of space reserved in kernel stack objects. If guard sizes are
 * context dependent, this should be in the minimum guard size, with
 * remaining space carved out if needed.
 *
 * Optional definition, defaults to 0.
 *
 * @see K_KERNEL_STACK_RESERVED
 */

/**
 * @def ARCH_KERNEL_STACK_OBJ_ALIGN
 * @brief Required alignment of the lowest address of a kernel-only stack.
 */

/** @} */

/**
 * @addtogroup arch-pm
 * @{
 */

/**
 * @brief Power save idle routine
 *
 * This function will be called by the kernel idle loop or possibly within
 * an implementation of z_pm_save_idle in the kernel when the
 * '_pm_save_flag' variable is non-zero.
 *
 * Architectures that do not implement power management instructions may
 * immediately return, otherwise a power-saving instruction should be
 * issued to wait for an interrupt.
 *
 * @note The function is expected to return after the interrupt that has
 * caused the CPU to exit power-saving mode has been serviced, although
 * this is not a firm requirement.
 *
 * @see k_cpu_idle()
 */
void arch_cpu_idle(void);

/**
 * @brief Atomically re-enable interrupts and enter low power mode
 *
 * The requirements for arch_cpu_atomic_idle() are as follows:
 *
 * -# Enabling interrupts and entering a low-power mode needs to be
 *    atomic, i.e. there should be no period of time where interrupts are
 *    enabled before the processor enters a low-power mode.  See the comments
 *    in k_lifo_get(), for example, of the race condition that
 *    occurs if this requirement is not met.
 *
 * -# After waking up from the low-power mode, the interrupt lockout state
 *    must be restored as indicated in the 'key' input parameter.
 *
 * @see k_cpu_atomic_idle()
 *
 * @param key Lockout key returned by previous invocation of arch_irq_lock()
 */
void arch_cpu_atomic_idle(unsigned int key);

/** @} */


/**
 * @addtogroup arch-smp
 * @{
 */

/**
 * Per-cpu entry function
 *
 * @param data context parameter, implementation specific
 */
typedef FUNC_NORETURN void (*arch_cpustart_t)(void *data);

/**
 * @brief Start a numbered CPU on a MP-capable system
 *
 * This starts and initializes a specific CPU.  The main thread on startup is
 * running on CPU zero, other processors are numbered sequentially.  On return
 * from this function, the CPU is known to have begun operating and will enter
 * the provided function.  Its interrupts will be initialized but disabled such
 * that irq_unlock() with the provided key will work to enable them.
 *
 * Normally, in SMP mode this function will be called by the kernel
 * initialization and should not be used as a user API.  But it is defined here
 * for special-purpose apps which want Zephyr running on one core and to use
 * others for design-specific processing.
 *
 * @param cpu_num Integer number of the CPU
 * @param stack Stack memory for the CPU
 * @param sz Stack buffer size, in bytes
 * @param fn Function to begin running on the CPU.
 * @param arg Untyped argument to be passed to "fn"
 */
void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz,
		    arch_cpustart_t fn, void *arg);
/** @} */


/**
 * @addtogroup arch-irq
 * @{
 */

/**
 * Lock interrupts on the current CPU
 *
 * @see irq_lock()
 */
static inline unsigned int arch_irq_lock(void);

/**
 * Unlock interrupts on the current CPU
 *
 * @see irq_unlock()
 */
static inline void arch_irq_unlock(unsigned int key);

/**
 * Test if calling arch_irq_unlock() with this key would unlock irqs
 *
 * @param key value returned by arch_irq_lock()
 * @return true if interrupts were unlocked prior to the arch_irq_lock()
 * call that produced the key argument.
 */
static inline bool arch_irq_unlocked(unsigned int key);

/**
 * Disable the specified interrupt line
 *
 * @note: The behavior of interrupts that arrive after this call
 * returns and before the corresponding call to arch_irq_enable() is
 * undefined.  The hardware is not required to latch and deliver such
 * an interrupt, though on some architectures that may work.  Other
 * architectures will simply lose such an interrupt and never deliver
 * it.  Many drivers and subsystems are not tolerant of such dropped
 * interrupts and it is the job of the application layer to ensure
 * that behavior remains correct.
 *
 * @see irq_disable()
 */
void arch_irq_disable(unsigned int irq);

/**
 * Enable the specified interrupt line
 *
 * @see irq_enable()
 */
void arch_irq_enable(unsigned int irq);

/**
 * Test if an interrupt line is enabled
 *
 * @see irq_is_enabled()
 */
int arch_irq_is_enabled(unsigned int irq);

/**
 * Arch-specific hook to install a dynamic interrupt.
 *
 * @param irq IRQ line number
 * @param priority Interrupt priority
 * @param routine Interrupt service routine
 * @param parameter ISR parameter
 * @param flags Arch-specific IRQ configuration flag
 *
 * @return The vector assigned to this interrupt
 */
int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority,
			     void (*routine)(const void *parameter),
			     const void *parameter, uint32_t flags);

/**
 * @def ARCH_IRQ_CONNECT(irq, pri, isr, arg, flags)
 *
 * @see IRQ_CONNECT()
 */

/**
 * @def ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p)
 *
 * @see IRQ_DIRECT_CONNECT()
 */

/**
 * @def ARCH_ISR_DIRECT_PM()
 *
 * @see ISR_DIRECT_PM()
 */

/**
 * @def ARCH_ISR_DIRECT_HEADER()
 *
 * @see ISR_DIRECT_HEADER()
 */

/**
 * @def ARCH_ISR_DIRECT_FOOTER(swap)
 *
 * @see ISR_DIRECT_FOOTER()
 */

/**
 * @def ARCH_ISR_DIRECT_DECLARE(name)
 *
 * @see ISR_DIRECT_DECLARE()
 */

/**
 * @def ARCH_EXCEPT(reason_p)
 *
 * Generate a software induced fatal error.
 *
 * If the caller is running in user mode, only K_ERR_KERNEL_OOPS or
 * K_ERR_STACK_CHK_FAIL may be induced.
 *
 * This should ideally generate a software trap, with exception context
 * indicating state when this was invoked. General purpose register state at
 * the time of trap should not be disturbed from the calling context.
 *
 * @param reason_p K_ERR_ scoped reason code for the fatal error.
 */

#ifdef CONFIG_IRQ_OFFLOAD
/**
 * Run a function in interrupt context.
 *
 * Implementations should invoke an exception such that the kernel goes through
 * its interrupt handling dispatch path, to include switching to the interrupt
 * stack, and runs the provided routine and parameter.
 *
 * The only intended use-case for this function is for test code to simulate
 * the correctness of kernel APIs in interrupt handling context. This API
 * is not intended for real applications.
 *
 * @see irq_offload()
 *
 * @param routine Function to run in interrupt context
 * @param parameter Value to pass to the function when invoked
 */
void arch_irq_offload(irq_offload_routine_t routine, const void *parameter);
#endif /* CONFIG_IRQ_OFFLOAD */

/** @} */


/**
 * @defgroup arch-smp Architecture-specific SMP APIs
 * @ingroup arch-interface
 * @{
 */
#ifdef CONFIG_SMP
/** Return the CPU struct for the currently executing CPU */
static inline struct _cpu *arch_curr_cpu(void);

/**
 * Broadcast an interrupt to all CPUs
 *
 * This will invoke z_sched_ipi() on other CPUs in the system.
 */
void arch_sched_ipi(void);
#endif /* CONFIG_SMP */

/** @} */


/**
 * @defgroup arch-userspace Architecture-specific userspace APIs
 * @ingroup arch-interface
 * @{
 */

#ifdef CONFIG_USERSPACE
/**
 * Invoke a system call with 0 arguments.
 *
 * No general-purpose register state other than return value may be preserved
 * when transitioning from supervisor mode back down to user mode for
 * security reasons.
 *
 * It is required that all arguments be stored in registers when elevating
 * privileges from user to supervisor mode.
 *
 * Processing of the syscall takes place on a separate kernel stack. Interrupts
 * should be enabled when invoking the system call marshallers from the
 * dispatch table. Thread preemption may occur when handling system calls.
 *
 * Call ids are untrusted and must be bounds-checked, as the value is used to
 * index the system call dispatch table, containing function pointers to the
 * specific system call code.
 *
 * @param call_id System call ID
 * @return Return value of the system call. Void system calls return 0 here.
 */
static inline uintptr_t arch_syscall_invoke0(uintptr_t call_id);

/**
 * Invoke a system call with 1 argument.
 *
 * @see arch_syscall_invoke0()
 *
 * @param arg1 First argument to the system call.
 * @param call_id System call ID, will be bounds-checked and used to reference
 *	          kernel-side dispatch table
 * @return Return value of the system call. Void system calls return 0 here.
 */
static inline uintptr_t arch_syscall_invoke1(uintptr_t arg1,
					     uintptr_t call_id);

/**
 * Invoke a system call with 2 arguments.
 *
 * @see arch_syscall_invoke0()
 *
 * @param arg1 First argument to the system call.
 * @param arg2 Second argument to the system call.
 * @param call_id System call ID, will be bounds-checked and used to reference
 *	          kernel-side dispatch table
 * @return Return value of the system call. Void system calls return 0 here.
 */
static inline uintptr_t arch_syscall_invoke2(uintptr_t arg1, uintptr_t arg2,
					     uintptr_t call_id);

/**
 * Invoke a system call with 3 arguments.
 *
 * @see arch_syscall_invoke0()
 *
 * @param arg1 First argument to the system call.
 * @param arg2 Second argument to the system call.
 * @param arg3 Third argument to the system call.
 * @param call_id System call ID, will be bounds-checked and used to reference
 *	          kernel-side dispatch table
 * @return Return value of the system call. Void system calls return 0 here.
 */
static inline uintptr_t arch_syscall_invoke3(uintptr_t arg1, uintptr_t arg2,
					     uintptr_t arg3,
					     uintptr_t call_id);

/**
 * Invoke a system call with 4 arguments.
 *
 * @see arch_syscall_invoke0()
 *
 * @param arg1 First argument to the system call.
 * @param arg2 Second argument to the system call.
 * @param arg3 Third argument to the system call.
 * @param arg4 Fourth argument to the system call.
 * @param call_id System call ID, will be bounds-checked and used to reference
 *	          kernel-side dispatch table
 * @return Return value of the system call. Void system calls return 0 here.
 */
static inline uintptr_t arch_syscall_invoke4(uintptr_t arg1, uintptr_t arg2,
					     uintptr_t arg3, uintptr_t arg4,
					     uintptr_t call_id);

/**
 * Invoke a system call with 5 arguments.
 *
 * @see arch_syscall_invoke0()
 *
 * @param arg1 First argument to the system call.
 * @param arg2 Second argument to the system call.
 * @param arg3 Third argument to the system call.
 * @param arg4 Fourth argument to the system call.
 * @param arg5 Fifth argument to the system call.
 * @param call_id System call ID, will be bounds-checked and used to reference
 *	          kernel-side dispatch table
 * @return Return value of the system call. Void system calls return 0 here.
 */
static inline uintptr_t arch_syscall_invoke5(uintptr_t arg1, uintptr_t arg2,
					     uintptr_t arg3, uintptr_t arg4,
					     uintptr_t arg5,
					     uintptr_t call_id);

/**
 * Invoke a system call with 6 arguments.
 *
 * @see arch_syscall_invoke0()
 *
 * @param arg1 First argument to the system call.
 * @param arg2 Second argument to the system call.
 * @param arg3 Third argument to the system call.
 * @param arg4 Fourth argument to the system call.
 * @param arg5 Fifth argument to the system call.
 * @param arg6 Sixth argument to the system call.
 * @param call_id System call ID, will be bounds-checked and used to reference
 *	          kernel-side dispatch table
 * @return Return value of the system call. Void system calls return 0 here.
 */
static inline uintptr_t arch_syscall_invoke6(uintptr_t arg1, uintptr_t arg2,
					     uintptr_t arg3, uintptr_t arg4,
					     uintptr_t arg5, uintptr_t arg6,
					     uintptr_t call_id);

/**
 * Indicate whether we are currently running in user mode
 *
 * @return true if the CPU is currently running with user permissions
 */
static inline bool arch_is_user_context(void);

/**
 * @brief Get the maximum number of partitions for a memory domain
 *
 * @return Max number of partitions, or -1 if there is no limit
 */
int arch_mem_domain_max_partitions_get(void);

#ifdef CONFIG_ARCH_MEM_DOMAIN_DATA
/**
 *
 * @brief Architecture-specific hook for memory domain initialization
 *
 * Perform any tasks needed to initialize architecture-specific data within
 * the memory domain, such as reserving memory for page tables. All members
 * of the provided memory domain aside from `arch` will be initialized when
 * this is called, but no threads will be a assigned yet.
 *
 * This function may fail if initializing the memory domain requires allocation,
 * such as for page tables.
 *
 * The associated function k_mem_domain_init() documents that making
 * multiple init calls to the same memory domain is undefined behavior,
 * but has no assertions in place to check this. If this matters, it may be
 * desirable to add checks for this in the implementation of this function.
 *
 * @param domain The memory domain to initialize
 * @retval 0 Success
 * @retval -ENOMEM Insufficient memory
 */
int arch_mem_domain_init(struct k_mem_domain *domain);
#endif /* CONFIG_ARCH_MEM_DOMAIN_DATA */

#ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
/**
 * @brief Add a thread to a memory domain (arch-specific)
 *
 * Architecture-specific hook to manage internal data structures or hardware
 * state when the provided thread has been added to a memory domain.
 *
 * The thread->mem_domain_info.mem_domain pointer will be set to the domain to
 * be added to before this is called. Implementations may assume that the
 * thread is not already a member of this domain.
 *
 * @param thread Thread which needs to be configured.
 */
void arch_mem_domain_thread_add(struct k_thread *thread);

/**
 * @brief Remove a thread from a memory domain (arch-specific)
 *
 * Architecture-specific hook to manage internal data structures or hardware
 * state when the provided thread has been removed from a memory domain.
 *
 * The thread's memory domain pointer will be the domain that the thread
 * is being removed from.
 *
 * @param thread Thread being removed from its memory domain
 */
void arch_mem_domain_thread_remove(struct k_thread *thread);

/**
 * @brief Remove a partition from the memory domain (arch-specific)
 *
 * Architecture-specific hook to manage internal data structures or hardware
 * state when a memory domain has had a partition removed.
 *
 * The partition index data, and the number of partitions configured, are not
 * respectively cleared and decremented in the domain until after this function
 * runs.
 *
 * @param domain The memory domain structure
 * @param partition_id The partition index that needs to be deleted
 */
void arch_mem_domain_partition_remove(struct k_mem_domain *domain,
				      uint32_t partition_id);

/**
 * @brief Add a partition to the memory domain
 *
 * Architecture-specific hook to manage internal data structures or hardware
 * state when a memory domain has a partition added.
 *
 * @param domain The memory domain structure
 * @param partition_id The partition that needs to be added
 */
void arch_mem_domain_partition_add(struct k_mem_domain *domain,
				   uint32_t partition_id);

/**
 * @brief Remove the memory domain
 *
 * Architecture-specific hook to manage internal data structures or hardware
 * state when a memory domain has been destroyed.
 *
 * Thread assignments to the memory domain are only cleared after this function
 * runs.
 *
 * @param domain The memory domain structure which needs to be deleted.
 */
void arch_mem_domain_destroy(struct k_mem_domain *domain);
#endif /* CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API */

/**
 * @brief Check memory region permissions
 *
 * Given a memory region, return whether the current memory management hardware
 * configuration would allow a user thread to read/write that region. Used by
 * system calls to validate buffers coming in from userspace.
 *
 * Notes:
 * The function is guaranteed to never return validation success, if the entire
 * buffer area is not user accessible.
 *
 * The function is guaranteed to correctly validate the permissions of the
 * supplied buffer, if the user access permissions of the entire buffer are
 * enforced by a single, enabled memory management region.
 *
 * In some architectures the validation will always return failure
 * if the supplied memory buffer spans multiple enabled memory management
 * regions (even if all such regions permit user access).
 *
 * @warning 0 size buffer has undefined behavior.
 *
 * @param addr start address of the buffer
 * @param size the size of the buffer
 * @param write If nonzero, additionally check if the area is writable.
 *	  Otherwise, just check if the memory can be read.
 *
 * @return nonzero if the permissions don't match.
 */
int arch_buffer_validate(void *addr, size_t size, int write);

/**
 * Perform a one-way transition from supervisor to kernel mode.
 *
 * Implementations of this function must do the following:
 *
 * - Reset the thread's stack pointer to a suitable initial value. We do not
 *   need any prior context since this is a one-way operation.
 * - Set up any kernel stack region for the CPU to use during privilege
 *   elevation
 * - Put the CPU in whatever its equivalent of user mode is
 * - Transfer execution to arch_new_thread() passing along all the supplied
 *   arguments, in user mode.
 *
 * @param user_entry Entry point to start executing as a user thread
 * @param p1 1st parameter to user thread
 * @param p2 2nd parameter to user thread
 * @param p3 3rd parameter to user thread
 */
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
					void *p1, void *p2, void *p3);

/**
 * @brief Induce a kernel oops that appears to come from a specific location
 *
 * Normally, k_oops() generates an exception that appears to come from the
 * call site of the k_oops() itself.
 *
 * However, when validating arguments to a system call, if there are problems
 * we want the oops to appear to come from where the system call was invoked
 * and not inside the validation function.
 *
 * @param ssf System call stack frame pointer. This gets passed as an argument
 *            to _k_syscall_handler_t functions and its contents are completely
 *            architecture specific.
 */
FUNC_NORETURN void arch_syscall_oops(void *ssf);

/**
 * @brief Safely take the length of a potentially bad string
 *
 * This must not fault, instead the err parameter must have -1 written to it.
 * This function otherwise should work exactly like libc strnlen(). On success
 * *err should be set to 0.
 *
 * @param s String to measure
 * @param maxsize Max length of the string
 * @param err Error value to write
 * @return Length of the string, not counting NULL byte, up to maxsize
 */
size_t arch_user_string_nlen(const char *s, size_t maxsize, int *err);
#endif /* CONFIG_USERSPACE */

/**
 * @brief Detect memory coherence type
 *
 * Required when ARCH_HAS_COHERENCE is true.  This function returns
 * true if the byte pointed to lies within an architecture-defined
 * "coherence region" (typically implemented with uncached memory) and
 * can safely be used in multiprocessor code without explicit flush or
 * invalidate operations.
 *
 * @note The result is for only the single byte at the specified
 * address, this API is not required to check region boundaries or to
 * expect aligned pointers.  The expectation is that the code above
 * will have queried the appropriate address(es).
 */
#ifndef CONFIG_ARCH_HAS_COHERENCE
static inline bool arch_mem_coherent(void *ptr)
{
	ARG_UNUSED(ptr);
	return true;
}
#endif

/**
 * @brief Ensure cache coherence prior to context switch
 *
 * Required when ARCH_HAS_COHERENCE is true.  On cache-incoherent
 * multiprocessor architectures, thread stacks are cached by default
 * for performance reasons.  They must therefore be flushed
 * appropriately on context switch.  The rules are:
 *
 * 1. The region containing live data in the old stack (generally the
 *    bytes between the current stack pointer and the top of the stack
 *    memory) must be flushed to underlying storage so a new CPU that
 *    runs the same thread sees the correct data.  This must happen
 *    before the assignment of the switch_handle field in the thread
 *    struct which signals the completion of context switch.
 *
 * 2. Any data areas to be read from the new stack (generally the same
 *    as the live region when it was saved) should be invalidated (and
 *    NOT flushed!) in the data cache.  This is because another CPU
 *    may have run or re-initialized the thread since this CPU
 *    suspended it, and any data present in cache will be stale.
 *
 * @note The kernel will call this function during interrupt exit when
 * a new thread has been chosen to run, and also immediately before
 * entering arch_switch() to effect a code-driven context switch.  In
 * the latter case, it is very likely that more data will be written
 * to the old_thread stack region after this function returns but
 * before the completion of the switch.  Simply flushing naively here
 * is not sufficient on many architectures and coordination with the
 * arch_switch() implementation is likely required.
 *
 * @arg old_thread The old thread to be flushed before being allowed
 *                 to run on other CPUs.
 * @arg old_switch_handle The switch handle to be stored into
 *                        old_thread (it will not be valid until the
 *                        cache is flushed so is not present yet).
 *                        This will be NULL if inside z_swap()
 *                        (because the arch_switch() has not saved it
 *                        yet).
 * @arg new_thread The new thread to be invalidated before it runs locally.
 */
#ifndef CONFIG_KERNEL_COHERENCE
static inline void arch_cohere_stacks(struct k_thread *old_thread,
				      void *old_switch_handle,
				      struct k_thread *new_thread)
{
	ARG_UNUSED(old_thread);
	ARG_UNUSED(old_switch_handle);
	ARG_UNUSED(new_thread);
}
#endif

/** @} */

/**
 * @defgroup arch-gdbstub Architecture-specific gdbstub APIs
 * @ingroup arch-interface
 * @{
 */

/**
 * @def ARCH_GDB_NUM_REGISTERS
 *
 * ARCH_GDB_NUM_REGISTERS is architecure specific and
 * this symbol must be defined in architecure specific header
 */

#ifdef CONFIG_GDBSTUB
/**
 * @brief Architecture layer debug start
 *
 * This function is called by @c gdb_init()
 */
void arch_gdb_init(void);

/**
 * @brief Continue running program
 *
 * Continue software execution.
 */
void arch_gdb_continue(void);

/**
 * @brief Continue with one step
 *
 * Continue software execution until reaches the next statement.
 */
void arch_gdb_step(void);

#endif
/** @} */

/**
 * @defgroup arch_cache Architecture-specific cache functions
 * @ingroup arch-interface
 * @{
 */

#ifdef CONFIG_CACHE_MANAGEMENT
/**
 *
 * @brief Enable d-cache
 *
 * @see arch_dcache_enable
 */
void arch_dcache_enable(void);

/**
 *
 * @brief Disable d-cache
 *
 * @see arch_dcache_disable
 */
void arch_dcache_disable(void);

/**
 *
 * @brief Enable i-cache
 *
 * @see arch_icache_enable
 */
void arch_icache_enable(void);

/**
 *
 * @brief Enable i-cache
 *
 * @see arch_dcache_disable
 */
void arch_dcache_disable(void);

/**
 *
 * @brief Write-back / Invalidate / Write-back + Invalidate all d-cache
 *
 * @see arch_dcache_all
 */
int arch_dcache_all(int op);

/**
 *
 * @brief Write-back / Invalidate / Write-back + Invalidate d-cache lines
 *
 * @see arch_dcache_range
 */
int arch_dcache_range(void *addr, size_t size, int op);

/**
 *
 * @brief Write-back / Invalidate / Write-back + Invalidate all i-cache
 *
 * @see arch_icache_all
 */
int arch_icache_all(int op);

/**
 *
 * @brief Write-back / Invalidate / Write-back + Invalidate i-cache lines
 *
 * @see arch_icache_range
 */
int arch_icache_range(void *addr, size_t size, int op);

#ifdef CONFIG_DCACHE_LINE_SIZE_DETECT
/**
 *
 * @brief Get d-cache line size
 *
 * @see sys_dcache_line_size_get
 */
size_t arch_dcache_line_size_get(void);
#endif /* CONFIG_DCACHE_LINE_SIZE_DETECT */

#ifdef CONFIG_ICACHE_LINE_SIZE_DETECT
/**
 *
 * @brief Get i-cache line size
 *
 * @see sys_icache_line_size_get
 */
size_t arch_icache_line_size_get(void);
#endif /* CONFIG_ICACHE_LINE_SIZE_DETECT */

#endif /* CONFIG_CACHE_MANAGEMENT */

/** @} */

#ifdef CONFIG_TIMING_FUNCTIONS
#include <timing/types.h>

/**
 * @ingroup arch-interface timing_api
 */

/**
 * @brief Initialize the timing subsystem.
 *
 * Perform the necessary steps to initialize the timing subsystem.
 *
 * @see timing_init()
 */
void arch_timing_init(void);

/**
 * @brief Signal the start of the timing information gathering.
 *
 * Signal to the timing subsystem that timing information
 * will be gathered from this point forward.
 *
 * @see timing_start()
 */
void arch_timing_start(void);

/**
 * @brief Signal the end of the timing information gathering.
 *
 * Signal to the timing subsystem that timing information
 * is no longer being gathered from this point forward.
 *
 * @see timing_stop()
 */
void arch_timing_stop(void);

/**
 * @brief Return timing counter.
 *
 * @return Timing counter.
 *
 * @see timing_counter_get()
 */
timing_t arch_timing_counter_get(void);

/**
 * @brief Get number of cycles between @p start and @p end.
 *
 * For some architectures or SoCs, the raw numbers from counter
 * need to be scaled to obtain actual number of cycles.
 *
 * @param start Pointer to counter at start of a measured execution.
 * @param end Pointer to counter at stop of a measured execution.
 * @return Number of cycles between start and end.
 *
 * @see timing_cycles_get()
 */
uint64_t arch_timing_cycles_get(volatile timing_t *const start,
				volatile timing_t *const end);

/**
 * @brief Get frequency of counter used (in Hz).
 *
 * @return Frequency of counter used for timing in Hz.
 *
 * @see timing_freq_get()
 */
uint64_t arch_timing_freq_get(void);

/**
 * @brief Convert number of @p cycles into nanoseconds.
 *
 * @param cycles Number of cycles
 * @return Converted time value
 *
 * @see timing_cycles_to_ns()
 */
uint64_t arch_timing_cycles_to_ns(uint64_t cycles);

/**
 * @brief Convert number of @p cycles into nanoseconds with averaging.
 *
 * @param cycles Number of cycles
 * @param count Times of accumulated cycles to average over
 * @return Converted time value
 *
 * @see timing_cycles_to_ns_avg()
 */
uint64_t arch_timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count);

/**
 * @brief Get frequency of counter used (in MHz).
 *
 * @return Frequency of counter used for timing in MHz.
 *
 * @see timing_freq_get_mhz()
 */
uint32_t arch_timing_freq_get_mhz(void);

/* @} */

#endif /* CONFIG_TIMING_FUNCTIONS */

#ifdef CONFIG_PCIE_MSI_MULTI_VECTOR

struct msi_vector;
typedef struct msi_vector msi_vector_t;

/**
 * @brief Allocate vector(s) for the endpoint MSI message(s).
 *
 * @param priority the MSI vectors base interrupt priority
 * @param vectors an array to fill with allocated MSI vectors
 * @param n_vector the size of MSI vectors array
 *
 * @return The number of allocated MSI vectors
 */
uint8_t arch_pcie_msi_vectors_allocate(unsigned int priority,
				       msi_vector_t *vectors,
				       uint8_t n_vector);

/**
 * @brief Connect an MSI vector to the given routine
 *
 * @param vector The MSI vector to connect to
 * @param routine Interrupt service routine
 * @param parameter ISR parameter
 * @param flags Arch-specific IRQ configuration flag
 *
 * @return True on success, false otherwise
 */
bool arch_pcie_msi_vector_connect(msi_vector_t *vector,
				  void (*routine)(const void *parameter),
				  const void *parameter,
				  uint32_t flags);

#endif /* CONFIG_PCIE_MSI_MULTI_VECTOR */

#ifdef __cplusplus
}
#endif /* __cplusplus */

#include <arch/arch_inlines.h>

#endif /* _ASMLANGUAGE */

#endif /* ZEPHYR_INCLUDE_SYS_ARCH_INTERFACE_H_ */