Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
 * Copyright (c) 2018 Google LLC.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define DT_DRV_COMPAT atmel_sam0_usb

#define LOG_LEVEL CONFIG_USB_DRIVER_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(usb_dc_sam0);

#include <usb/usb_device.h>
#include <soc.h>
#include <string.h>

#define NVM_USB_PAD_TRANSN_POS 45
#define NVM_USB_PAD_TRANSN_SIZE 5
#define NVM_USB_PAD_TRANSP_POS 50
#define NVM_USB_PAD_TRANSP_SIZE 5
#define NVM_USB_PAD_TRIM_POS 55
#define NVM_USB_PAD_TRIM_SIZE 3

#define USB_SAM0_IN_EP 0x80

#define REGS ((Usb *)DT_INST_REG_ADDR(0))
#define USB_NUM_ENDPOINTS DT_INST_PROP(0, num_bidir_endpoints)

/* The endpoint size stored in USB.PCKSIZE.SIZE */
enum usb_sam0_pcksize_size {
	USB_SAM0_PCKSIZE_SIZE_8 = 0,
	USB_SAM0_PCKSIZE_SIZE_16,
	USB_SAM0_PCKSIZE_SIZE_32,
	USB_SAM0_PCKSIZE_SIZE_64,
	USB_SAM0_PCKSIZE_SIZE_128,
	USB_SAM0_PCKSIZE_SIZE_256,
	USB_SAM0_PCKSIZE_SIZE_512,
	USB_SAM0_PCKSIZE_SIZE_1023,
};

static const uint16_t usb_sam0_pcksize_bytes[] = {
	[USB_SAM0_PCKSIZE_SIZE_8] = 8,
	[USB_SAM0_PCKSIZE_SIZE_16] = 16,
	[USB_SAM0_PCKSIZE_SIZE_32] = 32,
	[USB_SAM0_PCKSIZE_SIZE_64] = 64,
	[USB_SAM0_PCKSIZE_SIZE_128] = 128,
	[USB_SAM0_PCKSIZE_SIZE_256] = 256,
	[USB_SAM0_PCKSIZE_SIZE_512] = 512,
	[USB_SAM0_PCKSIZE_SIZE_1023] = 1023,
};

BUILD_ASSERT(ARRAY_SIZE(usb_sam0_pcksize_bytes) == 8);

struct usb_sam0_data {
	UsbDeviceDescriptor descriptors[USB_NUM_ENDPOINTS];

	usb_dc_status_callback cb;
	usb_dc_ep_callback ep_cb[2][USB_NUM_ENDPOINTS];

	uint8_t addr;
	uint32_t out_at;
};

static struct usb_sam0_data usb_sam0_data_0;

static struct usb_sam0_data *usb_sam0_get_data(void)
{
	return &usb_sam0_data_0;
}

/* Handles interrupts on an endpoint */
static void usb_sam0_ep_isr(uint8_t ep)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	UsbDevice *regs = &REGS->DEVICE;
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep];
	uint32_t intflag = endpoint->EPINTFLAG.reg;

	endpoint->EPINTFLAG.reg = intflag;

	if ((intflag & USB_DEVICE_EPINTFLAG_RXSTP) != 0U) {
		/* Setup */
		data->ep_cb[0][ep](ep, USB_DC_EP_SETUP);
	}

	if ((intflag & USB_DEVICE_EPINTFLAG_TRCPT0) != 0U) {
		/* Out (to device) data received */
		data->ep_cb[0][ep](ep, USB_DC_EP_DATA_OUT);
	}

	if ((intflag & USB_DEVICE_EPINTFLAG_TRCPT1) != 0U) {
		/* In (to host) transmit complete */
		data->ep_cb[1][ep](ep | USB_SAM0_IN_EP, USB_DC_EP_DATA_IN);

		if (data->addr != 0U) {
			/* Commit the pending address update.  This
			 * must be done after the ack to the host
			 * completes else the ack will get dropped.
			 */
			regs->DADD.reg = data->addr;
			data->addr = 0U;
		}
	}
}

/* Top level interrupt handler */
static void usb_sam0_isr(void)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	UsbDevice *regs = &REGS->DEVICE;
	uint32_t intflag = regs->INTFLAG.reg;
	uint32_t epint = regs->EPINTSMRY.reg;
	uint8_t ep;

	/* Acknowledge all interrupts */
	regs->INTFLAG.reg = intflag;

	if ((intflag & USB_DEVICE_INTFLAG_EORST) != 0U) {
		UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[0];

		/* The device clears some of the configuration of EP0
		 * when it receives the EORST.  Re-enable interrupts.
		 */
		endpoint->EPINTENSET.reg = USB_DEVICE_EPINTENSET_TRCPT0 |
					   USB_DEVICE_EPINTENSET_TRCPT1 |
					   USB_DEVICE_EPINTENSET_RXSTP;

		data->cb(USB_DC_RESET, NULL);
	}

	/* Dispatch the endpoint interrupts */
	for (ep = 0U; epint != 0U; epint >>= 1) {
		/* Scan bit-by-bit as the Cortex-M0 doesn't have ffs */
		if ((epint & 1) != 0U) {
			usb_sam0_ep_isr(ep);
		}
		ep++;
	}
}

/* Wait for the device to process the last config write */
static void usb_sam0_wait_syncbusy(void)
{
	UsbDevice *regs = &REGS->DEVICE;

	while (regs->SYNCBUSY.reg != 0) {
	}
}

/* Load the pad calibration from the built-in fuses */
static void usb_sam0_load_padcal(void)
{
	UsbDevice *regs = &REGS->DEVICE;
	uint32_t pad_transn;
	uint32_t pad_transp;
	uint32_t pad_trim;

#ifdef USB_FUSES_TRANSN_ADDR
	pad_transn = *(uint32_t *)USB_FUSES_TRANSN_ADDR;
#else
	pad_transn = (*((uint32_t *)(NVMCTRL_OTP4) +
			(NVM_USB_PAD_TRANSN_POS / 32)) >>
		      (NVM_USB_PAD_TRANSN_POS % 32)) &
		     ((1 << NVM_USB_PAD_TRANSN_SIZE) - 1);

	if (pad_transn == 0x1F) {
		pad_transn = 5U;
	}
#endif

	regs->PADCAL.bit.TRANSN = pad_transn;

#ifdef USB_FUSES_TRANSP_ADDR
	pad_transp = *(uint32_t *)USB_FUSES_TRANSP_ADDR;
#else
	pad_transp = (*((uint32_t *)(NVMCTRL_OTP4) +
			(NVM_USB_PAD_TRANSP_POS / 32)) >>
		      (NVM_USB_PAD_TRANSP_POS % 32)) &
		     ((1 << NVM_USB_PAD_TRANSP_SIZE) - 1);

	if (pad_transp == 0x1F) {
		pad_transp = 29U;
	}
#endif

	regs->PADCAL.bit.TRANSP = pad_transp;

#ifdef USB_FUSES_TRIM_ADDR
	pad_trim = *(uint32_t *)USB_FUSES_TRIM_ADDR;
#else
	pad_trim = (*((uint32_t *)(NVMCTRL_OTP4) +
		      (NVM_USB_PAD_TRIM_POS / 32)) >>
		    (NVM_USB_PAD_TRIM_POS % 32)) &
		   ((1 << NVM_USB_PAD_TRIM_SIZE) - 1);

	if (pad_trim == 0x7) {
		pad_trim = 3U;
	}
#endif

	regs->PADCAL.bit.TRIM = pad_trim;
}

#define SAM0_USB_IRQ_CONNECT(n) 				\
	do {							\
	IRQ_CONNECT(DT_INST_IRQ_BY_IDX(0, n, irq),		\
		    DT_INST_IRQ_BY_IDX(0, n, priority),		\
		    usb_sam0_isr, 0, 0);			\
	irq_enable(DT_INST_IRQ_BY_IDX(0, n, irq));		\
	} while (0)

/* Attach by initializing the device */
int usb_dc_attach(void)
{
	UsbDevice *regs = &REGS->DEVICE;
	struct usb_sam0_data *data = usb_sam0_get_data();

#ifdef MCLK
	/* Enable the clock in MCLK */
	MCLK->APBBMASK.bit.USB_ = 1;

	/* Enable the GCLK - use 48 MHz source */
	GCLK->PCHCTRL[USB_GCLK_ID].reg = GCLK_PCHCTRL_GEN(2)
				       | GCLK_PCHCTRL_CHEN;

	while (GCLK->SYNCBUSY.reg) {
	}
#else
	/* Enable the clock in PM */
	PM->APBBMASK.bit.USB_ = 1;

	/* Enable the GCLK */
	GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_USB | GCLK_CLKCTRL_GEN_GCLK0 |
			    GCLK_CLKCTRL_CLKEN;

	while (GCLK->STATUS.bit.SYNCBUSY) {
	}
#endif /* !MCLK */

	/* Configure */
	regs->CTRLA.bit.SWRST = 1;
	usb_sam0_wait_syncbusy();

	/* Change QOS values to have the best performance and correct USB
	 * behaviour
	 */
	regs->QOSCTRL.bit.CQOS = 2;
	regs->QOSCTRL.bit.DQOS = 2;

	usb_sam0_load_padcal();

	regs->CTRLA.reg = USB_CTRLA_MODE_DEVICE | USB_CTRLA_RUNSTDBY;
	regs->CTRLB.reg = USB_DEVICE_CTRLB_SPDCONF_HS;

	(void)memset(data->descriptors, 0, sizeof(data->descriptors));
	regs->DESCADD.reg = (uintptr_t)&data->descriptors[0];

	regs->INTENSET.reg = USB_DEVICE_INTENSET_EORST;

	/* Connect and enable the interrupt */
#if DT_INST_IRQ_HAS_CELL(0, irq)
	SAM0_USB_IRQ_CONNECT(0);
#endif
#if DT_INST_IRQ_HAS_IDX(0, 1)
	SAM0_USB_IRQ_CONNECT(1);
#endif
#if DT_INST_IRQ_HAS_IDX(0, 2)
	SAM0_USB_IRQ_CONNECT(2);
#endif
#if DT_INST_IRQ_HAS_IDX(0, 3)
	SAM0_USB_IRQ_CONNECT(3);
#endif

	/* Enable and attach */
	regs->CTRLA.bit.ENABLE = 1;
	usb_sam0_wait_syncbusy();
	regs->CTRLB.bit.DETACH = 0;

	return 0;
}

/* Detach from the bus */
int usb_dc_detach(void)
{
	UsbDevice *regs = &REGS->DEVICE;

	regs->CTRLB.bit.DETACH = 1;
	usb_sam0_wait_syncbusy();

	return 0;
}

/* Remove the interrupt and reset the device */
int usb_dc_reset(void)
{
	UsbDevice *regs = &REGS->DEVICE;

	irq_disable(DT_INST_IRQN(0));

	regs->CTRLA.bit.SWRST = 1;
	usb_sam0_wait_syncbusy();

	return 0;
}

/* Queue a change in address.  This is processed later when the
 * current transfers are compelete.
 */
int usb_dc_set_address(const uint8_t addr)
{
	struct usb_sam0_data *data = usb_sam0_get_data();

	data->addr = addr | USB_DEVICE_DADD_ADDEN;

	return 0;
}

void usb_dc_set_status_callback(const usb_dc_status_callback cb)
{
	struct usb_sam0_data *data = usb_sam0_get_data();

	data->cb = cb;
}

int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data * const cfg)
{
	uint8_t ep_idx = USB_EP_GET_IDX(cfg->ep_addr);

	if ((cfg->ep_type == USB_DC_EP_CONTROL) && ep_idx) {
		LOG_ERR("invalid endpoint configuration");
		return -1;
	}

	if (ep_idx > USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address too high");
		return -1;
	}

	return 0;
}

int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const cfg)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t ep_idx = USB_EP_GET_IDX(cfg->ep_addr);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];
	UsbDeviceDescriptor *desc = &data->descriptors[ep_idx];
	UsbDeviceDescBank *bank;
	void *buf;
	int type;
	int size = -1;
	int i;

	/* Map the type to native type */
	switch (cfg->ep_type) {
	case USB_DC_EP_CONTROL:
		type = 1;
		break;
	case USB_DC_EP_ISOCHRONOUS:
		type = 2;
		break;
	case USB_DC_EP_BULK:
		type = 3;
		break;
	case USB_DC_EP_INTERRUPT:
		type = 4;
		break;
	default:
		return -EINVAL;
	}

	/* Map the endpoint size to native size */
	for (i = 0; i < ARRAY_SIZE(usb_sam0_pcksize_bytes); i++) {
		if (usb_sam0_pcksize_bytes[i] == cfg->ep_mps) {
			size = i;
			break;
		}
	}

	if (size < 0) {
		return -EINVAL;
	}

	if (USB_EP_DIR_IS_IN(cfg->ep_addr)) {
		bank = &desc->DeviceDescBank[1];
	} else {
		bank = &desc->DeviceDescBank[0];
	}

	buf = (void *)bank->ADDR.reg;

	if (bank->PCKSIZE.bit.SIZE != size || buf == NULL) {
		/* Release the previous buffer, if any */
		k_free(buf);

		buf = k_malloc(cfg->ep_mps);
		if (buf == NULL) {
			return -ENOMEM;
		}
		bank->PCKSIZE.bit.SIZE = size;
		bank->ADDR.reg = (uintptr_t)buf;
	}

	if (USB_EP_DIR_IS_IN(cfg->ep_addr)) {
		endpoint->EPCFG.bit.EPTYPE1 = type;
		endpoint->EPSTATUSCLR.bit.BK1RDY = 1;
	} else {
		endpoint->EPCFG.bit.EPTYPE0 = type;
		endpoint->EPSTATUSCLR.bit.BK0RDY = 1;
	}

	return 0;
}

int usb_dc_ep_set_stall(const uint8_t ep)
{
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t for_in = USB_EP_GET_DIR(ep);
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	if (for_in) {
		endpoint->EPSTATUSSET.bit.STALLRQ1 = 1;
	} else {
		endpoint->EPSTATUSSET.bit.STALLRQ0 = 1;
	}

	return 0;
}

int usb_dc_ep_clear_stall(const uint8_t ep)
{
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t for_in = USB_EP_GET_DIR(ep);
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	if (for_in) {
		endpoint->EPSTATUSCLR.bit.STALLRQ1 = 1;
	} else {
		endpoint->EPSTATUSCLR.bit.STALLRQ0 = 1;
	}

	return 0;
}

int usb_dc_ep_is_stalled(const uint8_t ep, uint8_t *stalled)
{
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t for_in = USB_EP_GET_DIR(ep);
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	if (stalled == NULL) {
		LOG_ERR("parameter must not be NULL");
		return -1;
	}

	if (for_in) {
		*stalled = endpoint->EPSTATUS.bit.STALLRQ1;
	} else {
		*stalled = endpoint->EPSTATUS.bit.STALLRQ0;
	}

	return 0;
}

/* Halt the selected endpoint */
int usb_dc_ep_halt(uint8_t ep)
{
	return usb_dc_ep_set_stall(ep);
}

/* Flush the selected endpoint */
int usb_dc_ep_flush(uint8_t ep)
{
	uint8_t ep_idx = USB_EP_GET_IDX(ep);

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	/* TODO */
	LOG_WRN("flush not implemented");

	return 0;
}

/* Enable an endpoint and the endpoint interrupts */
int usb_dc_ep_enable(const uint8_t ep)
{
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t for_in = USB_EP_GET_DIR(ep);
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -EINVAL;
	}

	if (for_in) {
		endpoint->EPSTATUSCLR.bit.BK1RDY = 1;
	} else {
		endpoint->EPSTATUSCLR.bit.BK0RDY = 1;
	}

	endpoint->EPINTENSET.reg = USB_DEVICE_EPINTENSET_TRCPT0 |
				   USB_DEVICE_EPINTENSET_TRCPT1 |
				   USB_DEVICE_EPINTENSET_RXSTP;

	return 0;
}

/* Disable the selected endpoint */
int usb_dc_ep_disable(uint8_t ep)
{
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -EINVAL;
	}

	endpoint->EPINTENCLR.reg = USB_DEVICE_EPINTENCLR_TRCPT0
				 | USB_DEVICE_EPINTENCLR_TRCPT1
				 | USB_DEVICE_EPINTENCLR_RXSTP;

	return 0;
}

/* Write a single payload to the IN buffer on the endpoint */
int usb_dc_ep_write(uint8_t ep, const uint8_t *buf, uint32_t len, uint32_t *ret_bytes)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];
	UsbDeviceDescriptor *desc = &data->descriptors[ep_idx];
	uint32_t addr = desc->DeviceDescBank[1].ADDR.reg;
	uint32_t capacity = usb_sam0_pcksize_bytes[
			desc->DeviceDescBank[1].PCKSIZE.bit.SIZE];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	if (endpoint->EPSTATUS.bit.BK1RDY) {
		/* Write in progress, drop */
		return -EAGAIN;
	}

	len = Z_MIN(len, capacity);

	/* Note that this code does not use the hardware's
	 * multi-packet and automatic zero-length packet features as
	 * the upper layers in Zephyr implement these in code.
	 */
	memcpy((void *)addr, buf, len);
	desc->DeviceDescBank[1].PCKSIZE.bit.MULTI_PACKET_SIZE = 0;
	desc->DeviceDescBank[1].PCKSIZE.bit.BYTE_COUNT = len;
	endpoint->EPINTFLAG.reg =
		USB_DEVICE_EPINTFLAG_TRCPT1 | USB_DEVICE_EPINTFLAG_TRFAIL1;
	endpoint->EPSTATUSSET.bit.BK1RDY = 1;

	if (ret_bytes != NULL) {
		*ret_bytes = len;
	}

	return 0;
}

/* Read data from an OUT endpoint */
int usb_dc_ep_read_ex(uint8_t ep, uint8_t *buf, uint32_t max_data_len,
		      uint32_t *read_bytes, bool wait)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];
	UsbDeviceDescriptor *desc = &data->descriptors[ep_idx];
	uint32_t addr = desc->DeviceDescBank[0].ADDR.reg;
	uint32_t bytes = desc->DeviceDescBank[0].PCKSIZE.bit.BYTE_COUNT;
	uint32_t take;
	int remain;

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	if (!endpoint->EPSTATUS.bit.BK0RDY) {
		return -EAGAIN;
	}

	/* The code below emulates the Quark FIFO which the Zephyr USB
	 * API is based on.  Reading with buf == NULL returns the
	 * number of bytes available and starts the read.  The caller
	 * then keeps calling until all bytes are consumed which
	 * also marks the OUT buffer as freed.
	 */
	if (buf == NULL) {
		data->out_at = 0U;

		if (read_bytes != NULL) {
			*read_bytes = bytes;
		}

		return 0;
	}

	remain = bytes - data->out_at;
	take = MIN(max_data_len, remain);
	memcpy(buf, (uint8_t *)addr + data->out_at, take);

	if (read_bytes != NULL) {
		*read_bytes = take;
	}

	if (take == remain) {
		if (!wait) {
			endpoint->EPSTATUSCLR.bit.BK0RDY = 1;
			data->out_at = 0U;
		}
	} else {
		data->out_at += take;
	}

	return 0;
}

int usb_dc_ep_read(uint8_t ep, uint8_t *buf, uint32_t max_data_len, uint32_t *read_bytes)
{
	return usb_dc_ep_read_ex(ep, buf, max_data_len, read_bytes, false);
}

int usb_dc_ep_read_wait(uint8_t ep, uint8_t *buf, uint32_t max_data_len,
			uint32_t *read_bytes)
{
	return usb_dc_ep_read_ex(ep, buf, max_data_len, read_bytes, true);
}

int usb_dc_ep_read_continue(uint8_t ep)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	endpoint->EPSTATUSCLR.bit.BK0RDY = 1;
	data->out_at = 0U;

	return 0;
}

int usb_dc_ep_set_callback(const uint8_t ep, const usb_dc_ep_callback cb)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	uint8_t for_in = USB_EP_GET_DIR(ep);
	uint8_t ep_idx = USB_EP_GET_IDX(ep);

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	data->ep_cb[for_in ? 1 : 0][ep_idx] = cb;

	return 0;
}

int usb_dc_ep_mps(const uint8_t ep)
{
	struct usb_sam0_data *data = usb_sam0_get_data();
	UsbDevice *regs = &REGS->DEVICE;
	uint8_t for_in = USB_EP_GET_DIR(ep);
	uint8_t ep_idx = USB_EP_GET_IDX(ep);
	UsbDeviceDescriptor *desc = &data->descriptors[ep_idx];
	UsbDeviceEndpoint *endpoint = &regs->DeviceEndpoint[ep_idx];

	if (ep_idx >= USB_NUM_ENDPOINTS) {
		LOG_ERR("endpoint index/address out of range");
		return -1;
	}

	if (for_in) {
		/* if endpoint is not configured, this should return 0 */
		if (endpoint->EPCFG.bit.EPTYPE1 == 0) {
			return 0;
		}

		return usb_sam0_pcksize_bytes[
			desc->DeviceDescBank[1].PCKSIZE.bit.SIZE];
	} else {
		/* if endpoint is not configured, this should return 0 */
		if (endpoint->EPCFG.bit.EPTYPE0 == 0) {
			return 0;
		}

		return usb_sam0_pcksize_bytes[
			desc->DeviceDescBank[0].PCKSIZE.bit.SIZE];
	}
}