Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | /*
* Copyright (c) 2020 Nuvoton Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_npcx_adc
#include <assert.h>
#include <drivers/adc.h>
#include <drivers/clock_control.h>
#include <kernel.h>
#include <soc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_npcx, CONFIG_ADC_LOG_LEVEL);
/* ADC speed/delay values during initialization */
#define ADC_REGULAR_DLY_VAL 0x03
#define ADC_REGULAR_ADCCNF2_VAL 0x8B07
#define ADC_REGULAR_GENDLY_VAL 0x0100
#define ADC_REGULAR_MEAST_VAL 0x0001
/* ADC channel number */
#define NPCX_ADC_CH_COUNT 10
/* ADC targeted operating frequency (2MHz) */
#define NPCX_ADC_CLK 2000000
/* ADC internal reference voltage (Unit:mV) */
#define NPCX_ADC_VREF_VOL 2816
/* ADC conversion mode */
#define NPCX_ADC_CHN_CONVERSION_MODE 0
#define NPCX_ADC_SCAN_CONVERSION_MODE 1
/* Device config */
struct adc_npcx_config {
/* adc controller base address */
uintptr_t base;
/* clock configuration */
struct npcx_clk_cfg clk_cfg;
/* pinmux configuration */
const struct npcx_alt *alts_list;
};
/* Driver data */
struct adc_npcx_data {
/* Input clock for ADC converter */
uint32_t input_clk;
/* mutex of ADC channels */
struct adc_context ctx;
/*
* Bit-mask indicating the channels to be included in each sampling
* of this sequence.
*/
uint16_t channels;
/* ADC Device pointer used in api functions */
const struct device *adc_dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
/* end pointer of buffer to ensure enough space for storing ADC data. */
uint16_t *buf_end;
};
/* Driver convenience defines */
#define DRV_CONFIG(dev) ((const struct adc_npcx_config *)(dev)->config)
#define DRV_DATA(dev) ((struct adc_npcx_data *)(dev)->data)
#define HAL_INSTANCE(dev) (struct adc_reg *)(DRV_CONFIG(dev)->base)
/* ADC local functions */
static void adc_npcx_isr(void *arg)
{
struct adc_npcx_data *const data = DRV_DATA((const struct device *)arg);
struct adc_reg *const inst = HAL_INSTANCE((const struct device *)arg);
uint16_t status = inst->ADCSTS;
uint16_t result, channel;
/* Clear status pending bits first */
inst->ADCSTS = status;
LOG_DBG("%s: status is %04X\n", __func__, status);
/* Is end of conversion cycle event? ie. Scan conversion is done. */
if (IS_BIT_SET(status, NPCX_ADCSTS_EOCCEV)) {
/* Stop conversion for scan conversion mode */
inst->ADCCNF |= BIT(NPCX_ADCCNF_STOP);
/* Get result for each ADC selected channel */
while (data->channels) {
channel = find_lsb_set(data->channels) - 1;
result = GET_FIELD(inst->CHNDAT[channel],
NPCX_CHNDAT_CHDAT_FIELD);
/*
* Save ADC result and adc_npcx_validate_buffer_size()
* already ensures that the buffer has enough space for
* storing result.
*/
if (data->buffer < data->buf_end) {
*data->buffer++ = result;
}
data->channels &= ~BIT(channel);
}
/* Turn off ADC and inform sampling is done */
inst->ADCCNF &= ~(BIT(NPCX_ADCCNF_ADCEN));
adc_context_on_sampling_done(&data->ctx, data->adc_dev);
}
}
/*
* Validate the buffer size with adc channels mask. If it is lower than what
* we need return -ENOSPC.
*/
static int adc_npcx_validate_buffer_size(const struct device *dev,
const struct adc_sequence *sequence)
{
uint8_t channels = 0;
uint32_t mask;
size_t needed;
for (mask = BIT(NPCX_ADC_CH_COUNT - 1); mask != 0; mask >>= 1) {
if (mask & sequence->channels) {
channels++;
}
}
needed = channels * sizeof(uint16_t);
if (sequence->options) {
needed *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed) {
return -ENOSPC;
}
return 0;
}
static void adc_npcx_start_scan(const struct device *dev)
{
struct adc_npcx_data *const data = DRV_DATA(dev);
struct adc_reg *const inst = HAL_INSTANCE(dev);
/* Turn on ADC first */
inst->ADCCNF |= BIT(NPCX_ADCCNF_ADCEN);
/* Update selected channels in scan mode by channels mask */
inst->ADCCS = data->channels;
/* Select 'Scan' Conversion mode. */
SET_FIELD(inst->ADCCNF, NPCX_ADCCNF_ADCMD_FIELD,
NPCX_ADC_SCAN_CONVERSION_MODE);
/* Select 'One-Shot' Repetitive mode */
inst->ADCCNF |= BIT(NPCX_ADCCNF_INTECEN);
/* Start conversion */
inst->ADCCNF |= BIT(NPCX_ADCCNF_START);
LOG_DBG("Start ADC scan conversion and ADCCNF,ADCCS are (%04X,%04X)\n",
inst->ADCCNF, inst->ADCCS);
}
static int adc_npcx_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_npcx_data *const data = DRV_DATA(dev);
int error = 0;
if (!sequence->channels ||
(sequence->channels & ~BIT_MASK(NPCX_ADC_CH_COUNT))) {
LOG_ERR("Invalid ADC channels");
return -EINVAL;
}
/* Fixed 10 bit resolution of npcx ADC */
if (sequence->resolution != 10) {
LOG_ERR("Unfixed 10 bit ADC resolution");
return -ENOTSUP;
}
error = adc_npcx_validate_buffer_size(dev, sequence);
if (error) {
LOG_ERR("ADC buffer size too small");
return error;
}
/* Save ADC sequence sampling buffer and its end pointer address */
data->buffer = sequence->buffer;
data->buf_end = data->buffer + sequence->buffer_size / sizeof(uint16_t);
/* Start ADC conversion */
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
return error;
}
/* ADC api functions */
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_npcx_data *const data =
CONTAINER_OF(ctx, struct adc_npcx_data, ctx);
data->repeat_buffer = data->buffer;
data->channels = ctx->sequence.channels;
/* Start ADC scan conversion */
adc_npcx_start_scan(data->adc_dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_npcx_data *const data =
CONTAINER_OF(ctx, struct adc_npcx_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int adc_npcx_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_npcx_config *const config = DRV_CONFIG(dev);
uint8_t channel_id = channel_cfg->channel_id;
if (channel_id >= NPCX_ADC_CH_COUNT) {
LOG_ERR("Invalid channel %d", channel_id);
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Unsupported channel acquisition time");
return -ENOTSUP;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -ENOTSUP;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Unsupported channel gain %d", channel_cfg->gain);
return -ENOTSUP;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Unsupported channel reference");
return -ENOTSUP;
}
/* Configure pin-mux for ADC channel */
npcx_pinctrl_mux_configure(config->alts_list + channel_cfg->channel_id,
1, 1);
LOG_DBG("ADC channel %d, alts(%d,%d)", channel_cfg->channel_id,
config->alts_list[channel_cfg->channel_id].group,
config->alts_list[channel_cfg->channel_id].bit);
return 0;
}
static int adc_npcx_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_npcx_data *const data = DRV_DATA(dev);
int error;
adc_context_lock(&data->ctx, false, NULL);
error = adc_npcx_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#if defined(CONFIG_ADC_ASYNC)
static int adc_npcx_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_npcx_data *const data = DRV_DATA(dev);
int error;
adc_context_lock(&data->ctx, true, async);
error = adc_npcx_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif /* CONFIG_ADC_ASYNC */
/* ADC driver registration */
static const struct adc_driver_api adc_npcx_driver_api = {
.channel_setup = adc_npcx_channel_setup,
.read = adc_npcx_read,
#if defined(CONFIG_ADC_ASYNC)
.read_async = adc_npcx_read_async,
#endif
.ref_internal = NPCX_ADC_VREF_VOL,
};
static int adc_npcx_init(const struct device *dev);
static const struct npcx_alt adc_alts[] = NPCX_DT_ALT_ITEMS_LIST(0);
static const struct adc_npcx_config adc_npcx_cfg_0 = {
.base = DT_INST_REG_ADDR(0),
.clk_cfg = NPCX_DT_CLK_CFG_ITEM(0),
.alts_list = adc_alts,
};
static struct adc_npcx_data adc_npcx_data_0 = {
ADC_CONTEXT_INIT_TIMER(adc_npcx_data_0, ctx),
ADC_CONTEXT_INIT_LOCK(adc_npcx_data_0, ctx),
ADC_CONTEXT_INIT_SYNC(adc_npcx_data_0, ctx),
};
DEVICE_DT_INST_DEFINE(0,
adc_npcx_init, device_pm_control_nop,
&adc_npcx_data_0, &adc_npcx_cfg_0,
PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&adc_npcx_driver_api);
static int adc_npcx_init(const struct device *dev)
{
const struct adc_npcx_config *const config = DRV_CONFIG(dev);
struct adc_npcx_data *const data = DRV_DATA(dev);
struct adc_reg *const inst = HAL_INSTANCE(dev);
const struct device *const clk_dev =
device_get_binding(NPCX_CLK_CTRL_NAME);
int prescaler = 0, ret;
/* Save ADC device in data */
data->adc_dev = dev;
/* Turn on device clock first and get source clock freq. */
ret = clock_control_on(clk_dev, (clock_control_subsys_t *)
&config->clk_cfg);
if (ret < 0) {
LOG_ERR("Turn on ADC clock fail %d", ret);
return ret;
}
ret = clock_control_get_rate(clk_dev, (clock_control_subsys_t *)
&config->clk_cfg, &data->input_clk);
if (ret < 0) {
LOG_ERR("Get ADC clock rate error %d", ret);
return ret;
}
/* Configure the ADC clock */
prescaler = ceiling_fraction(data->input_clk, NPCX_ADC_CLK);
if (prescaler > 0x40)
prescaler = 0x40;
/* Set Core Clock Division Factor in order to obtain the ADC clock */
SET_FIELD(inst->ATCTL, NPCX_ATCTL_SCLKDIV_FIELD, prescaler - 1);
/* Set regular ADC delay */
SET_FIELD(inst->ATCTL, NPCX_ATCTL_DLY_FIELD, ADC_REGULAR_DLY_VAL);
/* Set ADC speed sequentially */
inst->ADCCNF2 = ADC_REGULAR_ADCCNF2_VAL;
inst->GENDLY = ADC_REGULAR_GENDLY_VAL;
inst->MEAST = ADC_REGULAR_MEAST_VAL;
/* Configure ADC interrupt and enable it */
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), adc_npcx_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
/* Initialize mutex of ADC channels */
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
BUILD_ASSERT(ARRAY_SIZE(adc_alts) == NPCX_ADC_CH_COUNT,
"The number of ADC channels and pin-mux configurations don't match!");
|