Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
/*
 * Copyright (c) 2014 Wind River Systems, Inc.
 * Copyright (c) 2020 Nordic Semiconductor ASA.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Common fault handler for ARM Cortex-M
 *
 * Common fault handler for ARM Cortex-M processors.
 */

#include <kernel.h>
#include <kernel_internal.h>
#include <inttypes.h>
#include <exc_handle.h>
#include <logging/log.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);

#if defined(CONFIG_PRINTK) || defined(CONFIG_LOG)
#define PR_EXC(...) LOG_ERR(__VA_ARGS__)
#define STORE_xFAR(reg_var, reg) uint32_t reg_var = (uint32_t)reg
#else
#define PR_EXC(...)
#define STORE_xFAR(reg_var, reg)
#endif /* CONFIG_PRINTK || CONFIG_LOG */

#if (CONFIG_FAULT_DUMP == 2)
#define PR_FAULT_INFO(...) PR_EXC(__VA_ARGS__)
#else
#define PR_FAULT_INFO(...)
#endif

#if defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU)
#define EMN(edr)   (((edr) & SYSMPU_EDR_EMN_MASK) >> SYSMPU_EDR_EMN_SHIFT)
#define EACD(edr)  (((edr) & SYSMPU_EDR_EACD_MASK) >> SYSMPU_EDR_EACD_SHIFT)
#endif

/* Exception Return (EXC_RETURN) is provided in LR upon exception entry.
 * It is used to perform an exception return and to detect possible state
 * transition upon exception.
 */

/* Prefix. Indicates that this is an EXC_RETURN value.
 * This field reads as 0b11111111.
 */
#define EXC_RETURN_INDICATOR_PREFIX     (0xFF << 24)
/* bit[0]: Exception Secure. The security domain the exception was taken to. */
#define EXC_RETURN_EXCEPTION_SECURE_Pos 0
#define EXC_RETURN_EXCEPTION_SECURE_Msk \
		BIT(EXC_RETURN_EXCEPTION_SECURE_Pos)
#define EXC_RETURN_EXCEPTION_SECURE_Non_Secure 0
#define EXC_RETURN_EXCEPTION_SECURE_Secure EXC_RETURN_EXCEPTION_SECURE_Msk
/* bit[2]: Stack Pointer selection. */
#define EXC_RETURN_SPSEL_Pos 2
#define EXC_RETURN_SPSEL_Msk BIT(EXC_RETURN_SPSEL_Pos)
#define EXC_RETURN_SPSEL_MAIN 0
#define EXC_RETURN_SPSEL_PROCESS EXC_RETURN_SPSEL_Msk
/* bit[3]: Mode. Indicates the Mode that was stacked from. */
#define EXC_RETURN_MODE_Pos 3
#define EXC_RETURN_MODE_Msk BIT(EXC_RETURN_MODE_Pos)
#define EXC_RETURN_MODE_HANDLER 0
#define EXC_RETURN_MODE_THREAD EXC_RETURN_MODE_Msk
/* bit[4]: Stack frame type. Indicates whether the stack frame is a standard
 * integer only stack frame or an extended floating-point stack frame.
 */
#define EXC_RETURN_STACK_FRAME_TYPE_Pos 4
#define EXC_RETURN_STACK_FRAME_TYPE_Msk BIT(EXC_RETURN_STACK_FRAME_TYPE_Pos)
#define EXC_RETURN_STACK_FRAME_TYPE_EXTENDED 0
#define EXC_RETURN_STACK_FRAME_TYPE_STANDARD EXC_RETURN_STACK_FRAME_TYPE_Msk
/* bit[5]: Default callee register stacking. Indicates whether the default
 * stacking rules apply, or whether the callee registers are already on the
 * stack.
 */
#define EXC_RETURN_CALLEE_STACK_Pos 5
#define EXC_RETURN_CALLEE_STACK_Msk BIT(EXC_RETURN_CALLEE_STACK_Pos)
#define EXC_RETURN_CALLEE_STACK_SKIPPED 0
#define EXC_RETURN_CALLEE_STACK_DEFAULT EXC_RETURN_CALLEE_STACK_Msk
/* bit[6]: Secure or Non-secure stack. Indicates whether a Secure or
 * Non-secure stack is used to restore stack frame on exception return.
 */
#define EXC_RETURN_RETURN_STACK_Pos 6
#define EXC_RETURN_RETURN_STACK_Msk BIT(EXC_RETURN_RETURN_STACK_Pos)
#define EXC_RETURN_RETURN_STACK_Non_Secure 0
#define EXC_RETURN_RETURN_STACK_Secure EXC_RETURN_RETURN_STACK_Msk

/* Integrity signature for an ARMv8-M implementation */
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
#define INTEGRITY_SIGNATURE_STD 0xFEFA125BUL
#define INTEGRITY_SIGNATURE_EXT 0xFEFA125AUL
#else
#define INTEGRITY_SIGNATURE 0xFEFA125BUL
#endif /* CONFIG_ARMV7_M_ARMV8_M_FP */
/* Size (in words) of the additional state context that is pushed
 * to the Secure stack during a Non-Secure exception entry.
 */
#define ADDITIONAL_STATE_CONTEXT_WORDS 10

/**
 *
 * Dump information regarding fault (FAULT_DUMP == 1)
 *
 * Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 1
 * (short form).
 *
 * eg. (precise bus error escalated to hard fault):
 *
 * Fault! EXC #3
 * HARD FAULT: Escalation (see below)!
 * MMFSR: 0x00000000, BFSR: 0x00000082, UFSR: 0x00000000
 * BFAR: 0xff001234
 *
 *
 *
 * Dump information regarding fault (FAULT_DUMP == 2)
 *
 * Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 2
 * (long form), and return the error code for the kernel to identify the fatal
 * error reason.
 *
 * eg. (precise bus error escalated to hard fault):
 *
 * ***** HARD FAULT *****
 *    Fault escalation (see below)
 * ***** BUS FAULT *****
 *   Precise data bus error
 *   Address: 0xff001234
 *
 */

#if (CONFIG_FAULT_DUMP == 1)
static void fault_show(const z_arch_esf_t *esf, int fault)
{
	PR_EXC("Fault! EXC #%d", fault);

#if defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	PR_EXC("MMFSR: 0x%x, BFSR: 0x%x, UFSR: 0x%x",
	       SCB_MMFSR, SCB_BFSR, SCB_UFSR);
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
	PR_EXC("SFSR: 0x%x", SAU->SFSR);
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
#endif /* CONFIG_ARMV7_M_ARMV8_M_MAINLINE */
}
#else
/* For Dump level 2, detailed information is generated by the
 * fault handling functions for individual fault conditions, so this
 * function is left empty.
 *
 * For Dump level 0, no information needs to be generated.
 */
static void fault_show(const z_arch_esf_t *esf, int fault)
{
	(void)esf;
	(void)fault;
}
#endif /* FAULT_DUMP == 1 */

#ifdef CONFIG_USERSPACE
Z_EXC_DECLARE(z_arm_user_string_nlen);

static const struct z_exc_handle exceptions[] = {
	Z_EXC_HANDLE(z_arm_user_string_nlen)
};
#endif

/* Perform an assessment whether an MPU fault shall be
 * treated as recoverable.
 *
 * @return true if error is recoverable, otherwise return false.
 */
static bool memory_fault_recoverable(z_arch_esf_t *esf)
{
#ifdef CONFIG_USERSPACE
	for (int i = 0; i < ARRAY_SIZE(exceptions); i++) {
		/* Mask out instruction mode */
		uint32_t start = (uint32_t)exceptions[i].start & ~0x1U;
		uint32_t end = (uint32_t)exceptions[i].end & ~0x1U;

		if (esf->basic.pc >= start && esf->basic.pc < end) {
			esf->basic.pc = (uint32_t)(exceptions[i].fixup);
			return true;
		}
	}
#endif

	return false;
}

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
/* HardFault is used for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)

#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
uint32_t z_check_thread_stack_fail(const uint32_t fault_addr,
	const uint32_t psp);
#endif /* CONFIG_MPU_STACK_GUARD || defined(CONFIG_USERSPACE) */

/**
 *
 * @brief Dump MemManage fault information
 *
 * See z_arm_fault_dump() for example.
 *
 * @return error code to identify the fatal error reason
 */
static uint32_t mem_manage_fault(z_arch_esf_t *esf, int from_hard_fault,
			      bool *recoverable)
{
	uint32_t reason = K_ERR_CPU_EXCEPTION;
	uint32_t mmfar = -EINVAL;

	PR_FAULT_INFO("***** MPU FAULT *****");

	if ((SCB->CFSR & SCB_CFSR_MSTKERR_Msk) != 0) {
		PR_FAULT_INFO("  Stacking error (context area might be"
			" not valid)");
	}
	if ((SCB->CFSR & SCB_CFSR_MUNSTKERR_Msk) != 0) {
		PR_FAULT_INFO("  Unstacking error");
	}
	if ((SCB->CFSR & SCB_CFSR_DACCVIOL_Msk) != 0) {
		PR_FAULT_INFO("  Data Access Violation");
		/* In a fault handler, to determine the true faulting address:
		 * 1. Read and save the MMFAR value.
		 * 2. Read the MMARVALID bit in the MMFSR.
		 * The MMFAR address is valid only if this bit is 1.
		 *
		 * Software must follow this sequence because another higher
		 * priority exception might change the MMFAR value.
		 */
		uint32_t temp = SCB->MMFAR;

		if ((SCB->CFSR & SCB_CFSR_MMARVALID_Msk) != 0) {
			mmfar = temp;
			PR_EXC("  MMFAR Address: 0x%x", mmfar);
			if (from_hard_fault) {
				/* clear SCB_MMAR[VALID] to reset */
				SCB->CFSR &= ~SCB_CFSR_MMARVALID_Msk;
			}
		}
	}
	if ((SCB->CFSR & SCB_CFSR_IACCVIOL_Msk) != 0) {
		PR_FAULT_INFO("  Instruction Access Violation");
	}
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
	if ((SCB->CFSR & SCB_CFSR_MLSPERR_Msk) != 0) {
		PR_FAULT_INFO(
			"  Floating-point lazy state preservation error");
	}
#endif /* CONFIG_ARMV7_M_ARMV8_M_FP */

	/* When stack protection is enabled, we need to assess
	 * if the memory violation error is a stack corruption.
	 *
	 * By design, being a Stacking MemManage fault is a necessary
	 * and sufficient condition for a thread stack corruption.
	 * [Cortex-M process stack pointer is always descending and
	 * is never modified by code (except for the context-switch
	 * routine), therefore, a stacking error implies the PSP has
	 * crossed into an area beyond the thread stack.]
	 *
	 * Data Access Violation errors may or may not be caused by
	 * thread stack overflows.
	 */
	if ((SCB->CFSR & SCB_CFSR_MSTKERR_Msk) ||
		(SCB->CFSR & SCB_CFSR_DACCVIOL_Msk)) {
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
		/* MemManage Faults are always banked between security
		 * states. Therefore, we can safely assume the fault
		 * originated from the same security state.
		 *
		 * As we only assess thread stack corruption, we only
		 * process the error further if the stack frame is on
		 * PSP. For always-banked MemManage Fault, this is
		 * equivalent to inspecting the RETTOBASE flag.
		 *
		 * Note:
		 * It is possible that MMFAR address is not written by the
		 * Cortex-M core; this occurs when the stacking error is
		 * not accompanied by a data access violation error (i.e.
		 * when stack overflows due to the exception entry frame
		 * stacking): z_check_thread_stack_fail() shall be able to
		 * handle the case of 'mmfar' holding the -EINVAL value.
		 */
		if (SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) {
			uint32_t min_stack_ptr = z_check_thread_stack_fail(mmfar,
				((uint32_t) &esf[0]));

			if (min_stack_ptr) {
				/* When MemManage Stacking Error has occurred,
				 * the stack context frame might be corrupted
				 * but the stack pointer may have actually
				 * descent below the allowed (thread) stack
				 * area. We may face a problem with un-stacking
				 * the frame, upon the exception return, if we
				 * do not have sufficient access permissions to
				 * read the corrupted stack frame. Therefore,
				 * we manually force the stack pointer to the
				 * lowest allowed position, inside the thread's
				 * stack.
				 *
				 * Note:
				 * The PSP will normally be adjusted in a tail-
				 * chained exception performing context switch,
				 * after aborting the corrupted thread. The
				 * adjustment, here, is required as tail-chain
				 * cannot always be guaranteed.
				 *
				 * The manual adjustment of PSP is safe, as we
				 * will not be re-scheduling this thread again
				 * for execution; thread stack corruption is a
				 * fatal error and a thread that corrupted its
				 * stack needs to be aborted.
				 */
				__set_PSP(min_stack_ptr);

				reason = K_ERR_STACK_CHK_FAIL;
			} else {
				__ASSERT(!(SCB->CFSR & SCB_CFSR_MSTKERR_Msk),
					"Stacking error not a stack fail\n");
			}
		}
#else
	(void)mmfar;
	__ASSERT(0,
		"Stacking error without stack guard / User-mode support\n");
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
	}

	/* clear MMFSR sticky bits */
	SCB->CFSR |= SCB_CFSR_MEMFAULTSR_Msk;

	/* Assess whether system shall ignore/recover from this MPU fault. */
	*recoverable = memory_fault_recoverable(esf);

	return reason;
}

/**
 *
 * @brief Dump BusFault information
 *
 * See z_arm_fault_dump() for example.
 *
 * @return N/A
 */
static int bus_fault(z_arch_esf_t *esf, int from_hard_fault, bool *recoverable)
{
	uint32_t reason = K_ERR_CPU_EXCEPTION;

	PR_FAULT_INFO("***** BUS FAULT *****");

	if (SCB->CFSR & SCB_CFSR_STKERR_Msk) {
		PR_FAULT_INFO("  Stacking error");
	}
	if (SCB->CFSR & SCB_CFSR_UNSTKERR_Msk) {
		PR_FAULT_INFO("  Unstacking error");
	}
	if (SCB->CFSR & SCB_CFSR_PRECISERR_Msk) {
		PR_FAULT_INFO("  Precise data bus error");
		/* In a fault handler, to determine the true faulting address:
		 * 1. Read and save the BFAR value.
		 * 2. Read the BFARVALID bit in the BFSR.
		 * The BFAR address is valid only if this bit is 1.
		 *
		 * Software must follow this sequence because another
		 * higher priority exception might change the BFAR value.
		 */
		STORE_xFAR(bfar, SCB->BFAR);

		if ((SCB->CFSR & SCB_CFSR_BFARVALID_Msk) != 0) {
			PR_EXC("  BFAR Address: 0x%x", bfar);
			if (from_hard_fault) {
				/* clear SCB_CFSR_BFAR[VALID] to reset */
				SCB->CFSR &= ~SCB_CFSR_BFARVALID_Msk;
			}
		}
	}
	if (SCB->CFSR & SCB_CFSR_IMPRECISERR_Msk) {
		PR_FAULT_INFO("  Imprecise data bus error");
	}
	if ((SCB->CFSR & SCB_CFSR_IBUSERR_Msk) != 0) {
		PR_FAULT_INFO("  Instruction bus error");
#if !defined(CONFIG_ARMV7_M_ARMV8_M_FP)
	}
#else
	} else if (SCB->CFSR & SCB_CFSR_LSPERR_Msk) {
		PR_FAULT_INFO("  Floating-point lazy state preservation error");
	}
#endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */

#if defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU)
	uint32_t sperr = SYSMPU->CESR & SYSMPU_CESR_SPERR_MASK;
	uint32_t mask = BIT(31);
	int i;
	uint32_t ear = -EINVAL;

	if (sperr) {
		for (i = 0; i < SYSMPU_EAR_COUNT; i++, mask >>= 1) {
			if ((sperr & mask) == 0U) {
				continue;
			}
			STORE_xFAR(edr, SYSMPU->SP[i].EDR);
			ear = SYSMPU->SP[i].EAR;

			PR_FAULT_INFO("  NXP MPU error, port %d", i);
			PR_FAULT_INFO("    Mode: %s, %s Address: 0x%x",
			       edr & BIT(2) ? "Supervisor" : "User",
			       edr & BIT(1) ? "Data" : "Instruction",
			       ear);
			PR_FAULT_INFO(
					"    Type: %s, Master: %d, Regions: 0x%x",
			       edr & BIT(0) ? "Write" : "Read",
			       EMN(edr), EACD(edr));

			/* When stack protection is enabled, we need to assess
			 * if the memory violation error is a stack corruption.
			 *
			 * By design, being a Stacking Bus fault is a necessary
			 * and sufficient condition for a stack corruption.
			 */
			if (SCB->CFSR & SCB_CFSR_STKERR_Msk) {
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
				/* Note: we can assume the fault originated
				 * from the same security state for ARM
				 * platforms implementing the NXP MPU
				 * (CONFIG_CPU_HAS_NXP_MPU=y).
				 *
				 * As we only assess thread stack corruption,
				 * we only process the error further, if the
				 * stack frame is on PSP. For NXP MPU-related
				 * Bus Faults (banked), this is equivalent to
				 * inspecting the RETTOBASE flag.
				 */
				if (SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) {
					uint32_t min_stack_ptr =
						z_check_thread_stack_fail(ear,
							((uint32_t) &esf[0]));

					if (min_stack_ptr) {
						/* When BusFault Stacking Error
						 * has occurred, the stack
						 * context frame might be
						 * corrupted but the stack
						 * pointer may have actually
						 * moved. We may face problems
						 * with un-stacking the frame,
						 * upon exception return, if we
						 * do not have sufficient
						 * permissions to read the
						 * corrupted stack frame.
						 * Therefore, we manually force
						 * the stack pointer to the
						 * lowest allowed position.
						 *
						 * Note:
						 * The PSP will normally be
						 * adjusted in a tail-chained
						 * exception performing context
						 * switch, after aborting the
						 * corrupted thread. Here, the
						 * adjustment is required as
						 * tail-chain cannot always be
						 * guaranteed.
						 */
						__set_PSP(min_stack_ptr);

						reason =
							K_ERR_STACK_CHK_FAIL;
						break;
					}
				}
#else
				(void)ear;
				__ASSERT(0,
					"Stacking error without stack guard"
					"or User-mode support");
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
			}
		}
		SYSMPU->CESR &= ~sperr;
	}
#endif /* defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU) */

	/* clear BFSR sticky bits */
	SCB->CFSR |= SCB_CFSR_BUSFAULTSR_Msk;

	*recoverable = memory_fault_recoverable(esf);

	return reason;
}

/**
 *
 * @brief Dump UsageFault information
 *
 * See z_arm_fault_dump() for example.
 *
 * @return error code to identify the fatal error reason
 */
static uint32_t usage_fault(const z_arch_esf_t *esf)
{
	uint32_t reason = K_ERR_CPU_EXCEPTION;

	PR_FAULT_INFO("***** USAGE FAULT *****");

	/* bits are sticky: they stack and must be reset */
	if ((SCB->CFSR & SCB_CFSR_DIVBYZERO_Msk) != 0) {
		PR_FAULT_INFO("  Division by zero");
	}
	if ((SCB->CFSR & SCB_CFSR_UNALIGNED_Msk) != 0) {
		PR_FAULT_INFO("  Unaligned memory access");
	}
#if defined(CONFIG_ARMV8_M_MAINLINE)
	if ((SCB->CFSR & SCB_CFSR_STKOF_Msk) != 0) {
		PR_FAULT_INFO("  Stack overflow (context area not valid)");
#if defined(CONFIG_BUILTIN_STACK_GUARD)
		/* Stack Overflows are always reported as stack corruption
		 * errors. Note that the built-in stack overflow mechanism
		 * prevents the context area to be loaded on the stack upon
		 * UsageFault exception entry. As a result, we cannot rely
		 * on the reported faulty instruction address, to determine
		 * the instruction that triggered the stack overflow.
		 */
		reason = K_ERR_STACK_CHK_FAIL;
#endif /* CONFIG_BUILTIN_STACK_GUARD */
	}
#endif /* CONFIG_ARMV8_M_MAINLINE */
	if ((SCB->CFSR & SCB_CFSR_NOCP_Msk) != 0) {
		PR_FAULT_INFO("  No coprocessor instructions");
	}
	if ((SCB->CFSR & SCB_CFSR_INVPC_Msk) != 0) {
		PR_FAULT_INFO("  Illegal load of EXC_RETURN into PC");
	}
	if ((SCB->CFSR & SCB_CFSR_INVSTATE_Msk) != 0) {
		PR_FAULT_INFO("  Illegal use of the EPSR");
	}
	if ((SCB->CFSR & SCB_CFSR_UNDEFINSTR_Msk) != 0) {
		PR_FAULT_INFO("  Attempt to execute undefined instruction");
	}

	/* clear UFSR sticky bits */
	SCB->CFSR |= SCB_CFSR_USGFAULTSR_Msk;

	return reason;
}

#if defined(CONFIG_ARM_SECURE_FIRMWARE)
/**
 *
 * @brief Dump SecureFault information
 *
 * See z_arm_fault_dump() for example.
 *
 * @return N/A
 */
static void secure_fault(const z_arch_esf_t *esf)
{
	PR_FAULT_INFO("***** SECURE FAULT *****");

	STORE_xFAR(sfar, SAU->SFAR);
	if ((SAU->SFSR & SAU_SFSR_SFARVALID_Msk) != 0) {
		PR_EXC("  Address: 0x%x", sfar);
	}

	/* bits are sticky: they stack and must be reset */
	if ((SAU->SFSR & SAU_SFSR_INVEP_Msk) != 0) {
		PR_FAULT_INFO("  Invalid entry point");
	} else if ((SAU->SFSR & SAU_SFSR_INVIS_Msk) != 0) {
		PR_FAULT_INFO("  Invalid integrity signature");
	} else if ((SAU->SFSR & SAU_SFSR_INVER_Msk) != 0) {
		PR_FAULT_INFO("  Invalid exception return");
	} else if ((SAU->SFSR & SAU_SFSR_AUVIOL_Msk) != 0) {
		PR_FAULT_INFO("  Attribution unit violation");
	} else if ((SAU->SFSR & SAU_SFSR_INVTRAN_Msk) != 0) {
		PR_FAULT_INFO("  Invalid transition");
	} else if ((SAU->SFSR & SAU_SFSR_LSPERR_Msk) != 0) {
		PR_FAULT_INFO("  Lazy state preservation");
	} else if ((SAU->SFSR & SAU_SFSR_LSERR_Msk) != 0) {
		PR_FAULT_INFO("  Lazy state error");
	}

	/* clear SFSR sticky bits */
	SAU->SFSR |= 0xFF;
}
#endif /* defined(CONFIG_ARM_SECURE_FIRMWARE) */

/**
 *
 * @brief Dump debug monitor exception information
 *
 * See z_arm_fault_dump() for example.
 *
 * @return N/A
 */
static void debug_monitor(const z_arch_esf_t *esf)
{
	ARG_UNUSED(esf);

	PR_FAULT_INFO(
		"***** Debug monitor exception (not implemented) *****");
}

#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */

/**
 *
 * @brief Dump hard fault information
 *
 * See z_arm_fault_dump() for example.
 *
 * @return error code to identify the fatal error reason
 */
static uint32_t hard_fault(z_arch_esf_t *esf, bool *recoverable)
{
	uint32_t reason = K_ERR_CPU_EXCEPTION;

	PR_FAULT_INFO("***** HARD FAULT *****");

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	/* Workaround for #18712:
	 * HardFault may be due to escalation, as a result of
	 * an SVC instruction that could not be executed; this
	 * can occur if ARCH_EXCEPT() is called by an ISR,
	 * which executes at priority equal to the SVC handler
	 * priority. We handle the case of Kernel OOPS and Stack
	 * Fail here.
	 */
	uint16_t *ret_addr = (uint16_t *)esf->basic.pc;
	/* SVC is a 16-bit instruction. On a synchronous SVC
	 * escalated to Hard Fault, the return address is the
	 * next instruction, i.e. after the SVC.
	 */
#define _SVC_OPCODE 0xDF00

	uint16_t fault_insn = *(ret_addr - 1);
	if (((fault_insn & 0xff00) == _SVC_OPCODE) &&
		((fault_insn & 0x00ff) == _SVC_CALL_RUNTIME_EXCEPT)) {

		PR_EXC("ARCH_EXCEPT with reason %x\n", esf->basic.r0);
		reason = esf->basic.r0;
	}
#undef _SVC_OPCODE

	*recoverable = memory_fault_recoverable(esf);
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	*recoverable = false;

	if ((SCB->HFSR & SCB_HFSR_VECTTBL_Msk) != 0) {
		PR_EXC("  Bus fault on vector table read");
	} else if ((SCB->HFSR & SCB_HFSR_FORCED_Msk) != 0) {
		PR_EXC("  Fault escalation (see below)");
		if (SCB_MMFSR != 0) {
			reason = mem_manage_fault(esf, 1, recoverable);
		} else if (SCB_BFSR != 0) {
			reason = bus_fault(esf, 1, recoverable);
		} else if (SCB_UFSR != 0) {
			reason = usage_fault(esf);
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
		} else if (SAU->SFSR != 0) {
			secure_fault(esf);
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
		}
	}
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */

	return reason;
}

/**
 *
 * @brief Dump reserved exception information
 *
 * See z_arm_fault_dump() for example.
 *
 * @return N/A
 */
static void reserved_exception(const z_arch_esf_t *esf, int fault)
{
	ARG_UNUSED(esf);

	PR_FAULT_INFO("***** %s %d) *****",
	       fault < 16 ? "Reserved Exception (" : "Spurious interrupt (IRQ ",
	       fault - 16);
}

/* Handler function for ARM fault conditions. */
static uint32_t fault_handle(z_arch_esf_t *esf, int fault, bool *recoverable)
{
	uint32_t reason = K_ERR_CPU_EXCEPTION;

	*recoverable = false;

	switch (fault) {
	case 3:
		reason = hard_fault(esf, recoverable);
		break;
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	/* HardFault is raised for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	case 4:
		reason = mem_manage_fault(esf, 0, recoverable);
		break;
	case 5:
		reason = bus_fault(esf, 0, recoverable);
		break;
	case 6:
		reason = usage_fault(esf);
		break;
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
	case 7:
		secure_fault(esf);
		break;
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
	case 12:
		debug_monitor(esf);
		break;
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
	default:
		reserved_exception(esf, fault);
		break;
	}

	if ((*recoverable) == false) {
		/* Dump generic information about the fault. */
		fault_show(esf, fault);
	}

	return reason;
}

#if defined(CONFIG_ARM_SECURE_FIRMWARE)
#if (CONFIG_FAULT_DUMP == 2)
/**
 * @brief Dump the Secure Stack information for an exception that
 * has occurred in Non-Secure state.
 *
 * @param secure_esf Pointer to the secure stack frame.
 */
static void secure_stack_dump(const z_arch_esf_t *secure_esf)
{
	/*
	 * In case a Non-Secure exception interrupted the Secure
	 * execution, the Secure state has stacked the additional
	 * state context and the top of the stack contains the
	 * integrity signature.
	 *
	 * In case of a Non-Secure function call the top of the
	 * stack contains the return address to Secure state.
	 */
	uint32_t *top_of_sec_stack = (uint32_t *)secure_esf;
	uint32_t sec_ret_addr;
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
	if ((*top_of_sec_stack == INTEGRITY_SIGNATURE_STD) ||
		(*top_of_sec_stack == INTEGRITY_SIGNATURE_EXT)) {
#else
	if (*top_of_sec_stack == INTEGRITY_SIGNATURE) {
#endif /* CONFIG_ARMV7_M_ARMV8_M_FP */
		/* Secure state interrupted by a Non-Secure exception.
		 * The return address after the additional state
		 * context, stacked by the Secure code upon
		 * Non-Secure exception entry.
		 */
		top_of_sec_stack += ADDITIONAL_STATE_CONTEXT_WORDS;
		secure_esf = (const z_arch_esf_t *)top_of_sec_stack;
		sec_ret_addr = secure_esf->basic.pc;
	} else {
		/* Exception during Non-Secure function call.
		 * The return address is located on top of stack.
		 */
		sec_ret_addr = *top_of_sec_stack;
	}
	PR_FAULT_INFO("  S instruction address:  0x%x", sec_ret_addr);

}
#define SECURE_STACK_DUMP(esf) secure_stack_dump(esf)
#else
/* We do not dump the Secure stack information for lower dump levels. */
#define SECURE_STACK_DUMP(esf)
#endif /* CONFIG_FAULT_DUMP== 2 */
#endif /* CONFIG_ARM_SECURE_FIRMWARE */

/*
 * This internal function does the following:
 *
 * - Retrieves the exception stack frame
 * - Evaluates whether to report being in a nested exception
 *
 * If the ESF is not successfully retrieved, the function signals
 * an error by returning NULL.
 *
 * @return ESF pointer on success, otherwise return NULL
 */
static inline z_arch_esf_t *get_esf(uint32_t msp, uint32_t psp, uint32_t exc_return,
	bool *nested_exc)
{
	bool alternative_state_exc = false;
	z_arch_esf_t *ptr_esf;

	*nested_exc = false;

	if ((exc_return & EXC_RETURN_INDICATOR_PREFIX) !=
			EXC_RETURN_INDICATOR_PREFIX) {
		/* Invalid EXC_RETURN value. This is a fatal error. */
		return NULL;
	}

#if defined(CONFIG_ARM_SECURE_FIRMWARE)
	if ((exc_return & EXC_RETURN_EXCEPTION_SECURE_Secure) == 0U) {
		/* Secure Firmware shall only handle Secure Exceptions.
		 * This is a fatal error.
		 */
		return NULL;
	}

	if (exc_return & EXC_RETURN_RETURN_STACK_Secure) {
		/* Exception entry occurred in Secure stack. */
	} else {
		/* Exception entry occurred in Non-Secure stack. Therefore,
		 * msp/psp point to the Secure stack, however, the actual
		 * exception stack frame is located in the Non-Secure stack.
		 */
		alternative_state_exc = true;

		/* Dump the Secure stack before handling the actual fault. */
		z_arch_esf_t *secure_esf;

		if (exc_return & EXC_RETURN_SPSEL_PROCESS) {
			/* Secure stack pointed by PSP */
			secure_esf = (z_arch_esf_t *)psp;
		} else {
			/* Secure stack pointed by MSP */
			secure_esf = (z_arch_esf_t *)msp;
			*nested_exc = true;
		}

		SECURE_STACK_DUMP(secure_esf);

		/* Handle the actual fault.
		 * Extract the correct stack frame from the Non-Secure state
		 * and supply it to the fault handing function.
		 */
		if (exc_return & EXC_RETURN_MODE_THREAD) {
			ptr_esf = (z_arch_esf_t *)__TZ_get_PSP_NS();
		} else {
			ptr_esf = (z_arch_esf_t *)__TZ_get_MSP_NS();
		}
	}
#elif defined(CONFIG_ARM_NONSECURE_FIRMWARE)
	if (exc_return & EXC_RETURN_EXCEPTION_SECURE_Secure) {
		/* Non-Secure Firmware shall only handle Non-Secure Exceptions.
		 * This is a fatal error.
		 */
		return NULL;
	}

	if (exc_return & EXC_RETURN_RETURN_STACK_Secure) {
		/* Exception entry occurred in Secure stack.
		 *
		 * Note that Non-Secure firmware cannot inspect the Secure
		 * stack to determine the root cause of the fault. Fault
		 * inspection will indicate the Non-Secure instruction
		 * that performed the branch to the Secure domain.
		 */
		alternative_state_exc = true;

		PR_FAULT_INFO("Exception occurred in Secure State");

		if (exc_return & EXC_RETURN_SPSEL_PROCESS) {
			/* Non-Secure stack frame on PSP */
			ptr_esf = (z_arch_esf_t *)psp;
		} else {
			/* Non-Secure stack frame on MSP */
			ptr_esf = (z_arch_esf_t *)msp;
		}
	} else {
		/* Exception entry occurred in Non-Secure stack. */
	}
#else
	/* The processor has a single execution state.
	 * We verify that the Thread mode is using PSP.
	 */
	if ((exc_return & EXC_RETURN_MODE_THREAD) &&
		(!(exc_return & EXC_RETURN_SPSEL_PROCESS))) {
		PR_EXC("SPSEL in thread mode does not indicate PSP");
		return NULL;
	}
#endif /* CONFIG_ARM_SECURE_FIRMWARE */

	if (!alternative_state_exc) {
		if (exc_return & EXC_RETURN_MODE_THREAD) {
			/* Returning to thread mode */
			ptr_esf =  (z_arch_esf_t *)psp;

		} else {
			/* Returning to handler mode */
			ptr_esf = (z_arch_esf_t *)msp;
			*nested_exc = true;
		}
	}

	return ptr_esf;
}

/**
 *
 * @brief ARM Fault handler
 *
 * This routine is called when fatal error conditions are detected by hardware
 * and is responsible for:
 * - resetting the processor fault status registers (for the case when the
 *   error handling policy allows the system to recover from the error),
 * - reporting the error information,
 * - determining the error reason to be provided as input to the user-
 *   provided routine, k_sys_fatal_error_handler().
 * The k_sys_fatal_error_handler() is invoked once the above operations are
 * completed, and is responsible for implementing the error handling policy.
 *
 * The function needs, first, to determine the exception stack frame.
 * Note that the current security state might not be the actual
 * state in which the processor was executing, when the exception occurred.
 * The actual state may need to be determined by inspecting the EXC_RETURN
 * value, which is provided as argument to the Fault handler.
 *
 * If the exception occurred in the same security state, the stack frame
 * will be pointed to by either MSP or PSP depending on the processor
 * execution state when the exception occurred. MSP and PSP values are
 * provided as arguments to the Fault handler.
 *
 * @param msp MSP value immediately after the exception occurred
 * @param psp PSP value immediately after the exception occurred
 * @param exc_return EXC_RETURN value present in LR after exception entry.
 * @param callee_regs Callee-saved registers (R4-R11, PSP)
 *
 */
void z_arm_fault(uint32_t msp, uint32_t psp, uint32_t exc_return,
	_callee_saved_t *callee_regs)
{
	uint32_t reason = K_ERR_CPU_EXCEPTION;
	int fault = SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk;
	bool recoverable, nested_exc;
	z_arch_esf_t *esf;

	/* Create a stack-ed copy of the ESF to be used during
	 * the fault handling process.
	 */
	z_arch_esf_t esf_copy;

	/* Force unlock interrupts */
	arch_irq_unlock(0);

	/* Retrieve the Exception Stack Frame (ESF) to be supplied
	 * as argument to the remainder of the fault handling process.
	 */
	 esf = get_esf(msp, psp, exc_return, &nested_exc);
	__ASSERT(esf != NULL,
		"ESF could not be retrieved successfully. Shall never occur.");

#ifdef CONFIG_DEBUG_COREDUMP
	z_arm_coredump_fault_sp = POINTER_TO_UINT(esf);
#endif

	reason = fault_handle(esf, fault, &recoverable);
	if (recoverable) {
		return;
	}

	/* Copy ESF */
#if !defined(CONFIG_EXTRA_EXCEPTION_INFO)
	memcpy(&esf_copy, esf, sizeof(z_arch_esf_t));
	ARG_UNUSED(callee_regs);
#else
	/* the extra exception info is not present in the original esf
	 * so we only copy the fields before those.
	 */
	memcpy(&esf_copy, esf, offsetof(z_arch_esf_t, extra_info));
	esf_copy.extra_info = (struct __extra_esf_info) {
		.callee = callee_regs,
		.exc_return = exc_return,
		.msp = msp
	};
#endif /* CONFIG_EXTRA_EXCEPTION_INFO */

	/* Overwrite stacked IPSR to mark a nested exception,
	 * or a return to Thread mode. Note that this may be
	 * required, if the retrieved ESF contents are invalid
	 * due to, for instance, a stacking error.
	 */
	if (nested_exc) {
		if ((esf_copy.basic.xpsr & IPSR_ISR_Msk) == 0) {
			esf_copy.basic.xpsr |= IPSR_ISR_Msk;
		}
	} else {
		esf_copy.basic.xpsr &= ~(IPSR_ISR_Msk);
	}

	z_arm_fatal_error(reason, &esf_copy);
}

/**
 *
 * @brief Initialization of fault handling
 *
 * Turns on the desired hardware faults.
 *
 * @return N/A
 */
void z_arm_fault_init(void)
{
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	SCB->CCR |= SCB_CCR_DIV_0_TRP_Msk;
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
#if defined(CONFIG_BUILTIN_STACK_GUARD)
	/* If Stack guarding via SP limit checking is enabled, disable
	 * SP limit checking inside HardFault and NMI. This is done
	 * in order to allow for the desired fault logging to execute
	 * properly in all cases.
	 *
	 * Note that this could allow a Secure Firmware Main Stack
	 * to descend into non-secure region during HardFault and
	 * NMI exception entry. To prevent from this, non-secure
	 * memory regions must be located higher than secure memory
	 * regions.
	 *
	 * For Non-Secure Firmware this could allow the Non-Secure Main
	 * Stack to attempt to descend into secure region, in which case a
	 * Secure Hard Fault will occur and we can track the fault from there.
	 */
	SCB->CCR |= SCB_CCR_STKOFHFNMIGN_Msk;
#endif /* CONFIG_BUILTIN_STACK_GUARD */
}