Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | /* * Copyright (c) 2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include <tc_util.h> #include <ztest.h> #include <arch/cpu.h> #include <sys/util.h> #include <irq_offload.h> #include <stdbool.h> #if defined(CONFIG_ASSERT) && defined(CONFIG_DEBUG) #define THREAD_STACK (512 + CONFIG_TEST_EXTRA_STACKSIZE) #else #define THREAD_STACK (384 + CONFIG_TEST_EXTRA_STACKSIZE) #endif #define TEST_THREAD_PRIORITY -4 #define HELPER_THREAD_PRIORITY -10 #define ONE_SECOND (MSEC_PER_SEC) #define ONE_SECOND_ALIGNED \ (uint32_t)(k_ticks_to_ms_floor64(k_ms_to_ticks_ceil32(ONE_SECOND) + _TICK_ALIGN)) #if defined(CONFIG_SOC_XILINX_ZYNQMP) /* * The Xilinx QEMU, used to emulate the Xilinx ZynqMP platform, is particularly * unstable in terms of timing. The tick margin of at least 5 is necessary to * allow this test to pass with a reasonable repeatability. */ #define TICK_MARGIN 5 #else #define TICK_MARGIN 1 #endif static struct k_sem test_thread_sem; static struct k_sem helper_thread_sem; static struct k_sem task_sem; static K_THREAD_STACK_DEFINE(test_thread_stack, THREAD_STACK); static K_THREAD_STACK_DEFINE(helper_thread_stack, THREAD_STACK); static k_tid_t test_thread_id; static k_tid_t helper_thread_id; static struct k_thread test_thread_data; static struct k_thread helper_thread_data; static bool test_failure = true; /* Assume the test will fail */ /** * @brief Test sleep and wakeup APIs * * @defgroup kernel_sleep_tests Sleep Tests * * @ingroup all_tests * * This module tests the following sleep and wakeup scenarios: * 1. k_sleep() without cancellation * 2. k_sleep() cancelled via k_wakeup() * 3. k_sleep() cancelled via k_wakeup() * 4. k_sleep() cancelled via k_wakeup() * 5. k_sleep() - no cancellation exists * * @{ * @} */ static void test_objects_init(void) { k_sem_init(&test_thread_sem, 0, UINT_MAX); k_sem_init(&helper_thread_sem, 0, UINT_MAX); k_sem_init(&task_sem, 0, UINT_MAX); TC_PRINT("Kernel objects initialized\n"); } static void align_to_tick_boundary(void) { uint32_t tick; tick = k_uptime_get_32(); while (k_uptime_get_32() == tick) { /* Busy wait to align to tick boundary */ #if defined(CONFIG_ARCH_POSIX) k_busy_wait(50); #endif } } /* Shouldn't ever sleep for less than requested time, but allow for 1 * tick of "too long" slop for aliasing between wakeup and * measurement. Qemu at least will leak the external world's clock * rate into the simulator when the host is under load. */ static int sleep_time_valid(uint32_t start, uint32_t end, uint32_t dur) { uint32_t dt = end - start; return dt >= dur && dt <= (dur + TICK_MARGIN); } static void test_thread(int arg1, int arg2) { uint32_t start_tick; uint32_t end_tick; k_sem_take(&test_thread_sem, K_FOREVER); TC_PRINT("Testing normal expiration of k_sleep()\n"); align_to_tick_boundary(); start_tick = k_uptime_get_32(); k_sleep(K_SECONDS(1)); end_tick = k_uptime_get_32(); if (!sleep_time_valid(start_tick, end_tick, ONE_SECOND_ALIGNED)) { TC_ERROR(" *** k_sleep() slept for %d ticks not %d.", end_tick - start_tick, ONE_SECOND_ALIGNED); return; } TC_PRINT("Testing: test thread sleep + helper thread wakeup test\n"); k_sem_give(&helper_thread_sem); /* Activate helper thread */ align_to_tick_boundary(); start_tick = k_uptime_get_32(); k_sleep(K_SECONDS(1)); end_tick = k_uptime_get_32(); if (end_tick - start_tick > TICK_MARGIN) { TC_ERROR(" *** k_wakeup() took too long (%d ticks)\n", end_tick - start_tick); return; } TC_PRINT("Testing: test thread sleep + isr offload wakeup test\n"); k_sem_give(&helper_thread_sem); /* Activate helper thread */ align_to_tick_boundary(); start_tick = k_uptime_get_32(); k_sleep(K_SECONDS(1)); end_tick = k_uptime_get_32(); if (end_tick - start_tick > TICK_MARGIN) { TC_ERROR(" *** k_wakeup() took too long (%d ticks)\n", end_tick - start_tick); return; } TC_PRINT("Testing: test thread sleep + main wakeup test thread\n"); k_sem_give(&task_sem); /* Activate task */ align_to_tick_boundary(); start_tick = k_uptime_get_32(); k_sleep(K_SECONDS(1)); /* Task will execute */ end_tick = k_uptime_get_32(); if (end_tick - start_tick > TICK_MARGIN) { TC_ERROR(" *** k_wakeup() took too long (%d ticks) at LAST\n", end_tick - start_tick); return; } test_failure = false; } static void irq_offload_isr(const void *arg) { k_wakeup((k_tid_t) arg); } static void helper_thread(int arg1, int arg2) { k_sem_take(&helper_thread_sem, K_FOREVER); /* Wake the test thread */ k_wakeup(test_thread_id); k_sem_take(&helper_thread_sem, K_FOREVER); /* Wake the test thread from an ISR */ irq_offload(irq_offload_isr, (const void *)test_thread_id); } /** * @brief Test sleep functionality * * @ingroup kernel_sleep_tests * * @see k_sleep(), k_wakeup(), k_uptime_get_32() */ void test_sleep(void) { int status = TC_FAIL; uint32_t start_tick; uint32_t end_tick; /* * Main thread(test_main) priority is 0 but ztest thread runs at * priority -1. To run the test smoothly make both main and ztest * threads run at same priority level. */ k_thread_priority_set(k_current_get(), 0); test_objects_init(); test_thread_id = k_thread_create(&test_thread_data, test_thread_stack, THREAD_STACK, (k_thread_entry_t) test_thread, 0, 0, NULL, TEST_THREAD_PRIORITY, 0, K_NO_WAIT); TC_PRINT("Test thread started: id = %p\n", test_thread_id); helper_thread_id = k_thread_create(&helper_thread_data, helper_thread_stack, THREAD_STACK, (k_thread_entry_t) helper_thread, 0, 0, NULL, HELPER_THREAD_PRIORITY, 0, K_NO_WAIT); TC_PRINT("Helper thread started: id = %p\n", helper_thread_id); /* Activate test_thread */ k_sem_give(&test_thread_sem); /* Wait for test_thread to activate us */ k_sem_take(&task_sem, K_FOREVER); /* Wake the test thread */ k_wakeup(test_thread_id); zassert_false(test_failure, "test failure"); TC_PRINT("Testing kernel k_sleep()\n"); align_to_tick_boundary(); start_tick = k_uptime_get_32(); k_sleep(K_SECONDS(1)); end_tick = k_uptime_get_32(); zassert_true(sleep_time_valid(start_tick, end_tick, ONE_SECOND_ALIGNED), "k_sleep() slept for %d ticks, not %d\n", end_tick - start_tick, ONE_SECOND_ALIGNED); status = TC_PASS; } extern void test_usleep(void); static void forever_thread_entry(void *p1, void *p2, void *p3) { int32_t ret; ret = k_sleep(K_FOREVER); zassert_equal(ret, K_TICKS_FOREVER, "unexpected return value"); k_sem_give(&test_thread_sem); } void test_sleep_forever(void) { test_objects_init(); test_thread_id = k_thread_create(&test_thread_data, test_thread_stack, THREAD_STACK, forever_thread_entry, 0, 0, NULL, TEST_THREAD_PRIORITY, K_USER | K_INHERIT_PERMS, K_NO_WAIT); /* Allow forever thread to run */ k_yield(); k_wakeup(test_thread_id); k_sem_take(&test_thread_sem, K_FOREVER); } /*test case main entry*/ void test_main(void) { k_thread_access_grant(k_current_get(), &test_thread_sem); ztest_test_suite(sleep, ztest_1cpu_unit_test(test_sleep), ztest_1cpu_user_unit_test(test_usleep), ztest_1cpu_unit_test(test_sleep_forever)); ztest_run_test_suite(sleep); } |