Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | /* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include "test_queue.h" #define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE) #define LIST_LEN 2 /**TESTPOINT: init via K_QUEUE_DEFINE*/ K_QUEUE_DEFINE(kqueue); K_HEAP_DEFINE(mem_pool_fail, 8 + 128); K_HEAP_DEFINE(mem_pool_pass, 64 * 4 + 128); struct k_queue queue; static qdata_t data[LIST_LEN]; static qdata_t data_p[LIST_LEN]; static qdata_t data_l[LIST_LEN]; static qdata_t data_sl[LIST_LEN]; static qdata_t *data_append; static qdata_t *data_prepend; static K_THREAD_STACK_DEFINE(tstack, STACK_SIZE); static struct k_thread tdata; static K_THREAD_STACK_DEFINE(tstack1, STACK_SIZE); static struct k_thread tdata1; static struct k_sem end_sema; static void tqueue_append(struct k_queue *pqueue) { k_queue_insert(pqueue, k_queue_peek_tail(pqueue), (void *)&data[0]); for (int i = 1; i < LIST_LEN; i++) { /**TESTPOINT: queue append */ k_queue_append(pqueue, (void *)&data[i]); } for (int i = LIST_LEN - 1; i >= 0; i--) { /**TESTPOINT: queue prepend */ k_queue_prepend(pqueue, (void *)&data_p[i]); } /**TESTPOINT: queue append list*/ static qdata_t *head = &data_l[0], *tail = &data_l[LIST_LEN - 1]; head->snode.next = (sys_snode_t *)tail; tail->snode.next = NULL; k_queue_append_list(pqueue, (uint32_t *)head, (uint32_t *)tail); /**TESTPOINT: queue merge slist*/ sys_slist_t slist; sys_slist_init(&slist); sys_slist_append(&slist, (sys_snode_t *)&(data_sl[0].snode)); sys_slist_append(&slist, (sys_snode_t *)&(data_sl[1].snode)); k_queue_merge_slist(pqueue, &slist); } static void tqueue_get(struct k_queue *pqueue) { void *rx_data; /*get queue data from "queue_prepend"*/ for (int i = 0; i < LIST_LEN; i++) { /**TESTPOINT: queue get*/ rx_data = k_queue_get(pqueue, K_NO_WAIT); zassert_equal(rx_data, (void *)&data_p[i], NULL); } /*get queue data from "queue_append"*/ for (int i = 0; i < LIST_LEN; i++) { /**TESTPOINT: queue get*/ rx_data = k_queue_get(pqueue, K_NO_WAIT); zassert_equal(rx_data, (void *)&data[i], NULL); } /*get queue data from "queue_append_list"*/ for (int i = 0; i < LIST_LEN; i++) { rx_data = k_queue_get(pqueue, K_NO_WAIT); zassert_equal(rx_data, (void *)&data_l[i], NULL); } /*get queue data from "queue_merge_slist"*/ for (int i = 0; i < LIST_LEN; i++) { rx_data = k_queue_get(pqueue, K_NO_WAIT); zassert_equal(rx_data, (void *)&data_sl[i], NULL); } } /*entry of contexts*/ static void tIsr_entry_append(const void *p) { tqueue_append((struct k_queue *)p); } static void tIsr_entry_get(const void *p) { tqueue_get((struct k_queue *)p); } static void tThread_entry(void *p1, void *p2, void *p3) { tqueue_get((struct k_queue *)p1); k_sem_give(&end_sema); } static void tqueue_thread_thread(struct k_queue *pqueue) { k_sem_init(&end_sema, 0, 1); /**TESTPOINT: thread-thread data passing via queue*/ k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_entry, pqueue, NULL, NULL, K_PRIO_PREEMPT(0), 0, K_NO_WAIT); tqueue_append(pqueue); k_sem_take(&end_sema, K_FOREVER); k_thread_abort(tid); } static void tqueue_thread_isr(struct k_queue *pqueue) { k_sem_init(&end_sema, 0, 1); /**TESTPOINT: thread-isr data passing via queue*/ irq_offload(tIsr_entry_append, (const void *)pqueue); tqueue_get(pqueue); } static void tqueue_isr_thread(struct k_queue *pqueue) { k_sem_init(&end_sema, 0, 1); /**TESTPOINT: isr-thread data passing via queue*/ tqueue_append(pqueue); irq_offload(tIsr_entry_get, (const void *)pqueue); } /*test cases*/ /** * @brief Verify data passing between threads using queue * * @details Static define and Dynamic define queues, * Then initialize them. * Create a new thread to wait for reading data. * Current thread will append item into queue. * Verify if rx_data is equal insert-data address. * Verify queue can be define at compile time. * * @ingroup kernel_queue_tests * * @see k_queue_init(), k_queue_insert(), k_queue_append() * K_THREAD_STACK_DEFINE() */ void test_queue_thread2thread(void) { /**TESTPOINT: init via k_queue_init*/ k_queue_init(&queue); tqueue_thread_thread(&queue); /**TESTPOINT: test K_QUEUE_DEFINEed queue*/ tqueue_thread_thread(&kqueue); } /** * @brief Verify data passing between thread and ISR * * @details Create a new ISR to insert data * And current thread is used for getting data * Verify if the rx_data is equal insert-data address. * If the received data address is the same as * the created array, prove that the queue data structures * are stored within the provided data items. * * @ingroup kernel_queue_tests * * @see k_queue_init(), k_queue_insert(), k_queue_append() */ void test_queue_thread2isr(void) { /**TESTPOINT: init via k_queue_init*/ k_queue_init(&queue); tqueue_thread_isr(&queue); /**TESTPOINT: test K_QUEUE_DEFINEed queue*/ tqueue_thread_isr(&kqueue); } /** * @brief Verify data passing between ISR and thread * * @details Create a new ISR and ready for getting data * And current thread is used for inserting data * Verify if the rx_data is equal insert-data address. * * @ingroup kernel_queue_tests * * @see k_queue_init(), k_queue_insert(), k_queue_get(), * k_queue_append(), k_queue_remove() */ void test_queue_isr2thread(void) { /**TESTPOINT: test k_queue_init queue*/ k_queue_init(&queue); tqueue_isr_thread(&queue); /**TESTPOINT: test K_QUEUE_DEFINE queue*/ tqueue_isr_thread(&kqueue); } static void tThread_get(void *p1, void *p2, void *p3) { zassert_true(k_queue_get((struct k_queue *)p1, K_FOREVER) != NULL, NULL); k_sem_give(&end_sema); } static void tqueue_get_2threads(struct k_queue *pqueue) { k_sem_init(&end_sema, 0, 1); k_tid_t tid = k_thread_create(&tdata, tstack, STACK_SIZE, tThread_get, pqueue, NULL, NULL, K_PRIO_PREEMPT(0), 0, K_NO_WAIT); k_tid_t tid1 = k_thread_create(&tdata1, tstack1, STACK_SIZE, tThread_get, pqueue, NULL, NULL, K_PRIO_PREEMPT(0), 0, K_NO_WAIT); /* Wait threads to initialize */ k_sleep(K_MSEC(10)); k_queue_append(pqueue, (void *)&data[0]); k_queue_append(pqueue, (void *)&data[1]); /* Wait threads to finalize */ k_sem_take(&end_sema, K_FOREVER); k_sem_take(&end_sema, K_FOREVER); k_thread_abort(tid); k_thread_abort(tid1); } /** * @brief Verify k_queue_get() * @ingroup kernel_queue_tests * @see k_queue_init(), k_queue_get(), * k_queue_append(), k_queue_alloc_prepend() */ void test_queue_get_2threads(void) { /**TESTPOINT: test k_queue_init queue*/ k_queue_init(&queue); tqueue_get_2threads(&queue); } static void tqueue_alloc(struct k_queue *pqueue) { k_thread_heap_assign(k_current_get(), NULL); /* Alloc append without resource pool */ k_queue_alloc_append(pqueue, (void *)&data_append); /* Insertion fails and alloc returns NOMEM */ zassert_false(k_queue_remove(pqueue, &data_append), NULL); /* Assign resource pool of lower size */ k_thread_heap_assign(k_current_get(), &mem_pool_fail); /* Prepend to the queue, but fails because of * insufficient memory */ k_queue_alloc_prepend(pqueue, (void *)&data_prepend); zassert_false(k_queue_remove(pqueue, &data_prepend), NULL); /* No element must be present in the queue, as all * operations failed */ zassert_true(k_queue_is_empty(pqueue), NULL); /* Assign resource pool of sufficient size */ k_thread_heap_assign(k_current_get(), &mem_pool_pass); zassert_false(k_queue_alloc_prepend(pqueue, (void *)&data_prepend), NULL); /* Now queue shouldn't be empty */ zassert_false(k_queue_is_empty(pqueue), NULL); zassert_true(k_queue_get(pqueue, K_FOREVER) != NULL, NULL); } /** * @brief Test queue alloc append and prepend * @ingroup kernel_queue_tests * @see k_queue_alloc_append(), k_queue_alloc_prepend(), * z_thread_resource_pool_assign(), k_queue_is_empty(), * k_queue_get(), k_queue_remove() */ void test_queue_alloc(void) { /* The mem_pool_fail pool is supposed to be too small to * succeed any allocations, but in fact with the heap backend * there's some base minimal memory in there that can be used. * Make sure it's really truly full. */ while (k_heap_alloc(&mem_pool_fail, 1, K_NO_WAIT) != NULL) { } k_queue_init(&queue); tqueue_alloc(&queue); } /* Does nothing but read items out of the queue and verify that they * are non-null. Two such threads will be created. */ static void queue_poll_race_consume(void *p1, void *p2, void *p3) { struct k_queue *q = p1; int *count = p2; while (true) { zassert_true(k_queue_get(q, K_FOREVER) != NULL, NULL); *count += 1; } } /* There was a historical race in the queue internals when CONFIG_POLL * was enabled -- it was possible to wake up a lower priority thread * with an insert but then steal it with a higher priority thread * before it got a chance to run, and the lower priority thread would * then return NULL before its timeout expired. */ void test_queue_poll_race(void) { int prio = k_thread_priority_get(k_current_get()); int mid_count = 0, low_count = 0; k_queue_init(&queue); k_thread_create(&tdata, tstack, STACK_SIZE, queue_poll_race_consume, &queue, &mid_count, NULL, prio + 1, 0, K_NO_WAIT); k_thread_create(&tdata1, tstack1, STACK_SIZE, queue_poll_race_consume, &queue, &low_count, NULL, prio + 2, 0, K_NO_WAIT); /* Let them initialize and block */ k_sleep(K_TICKS(2)); /* Insert two items. This will wake up both threads, but the * higher priority thread (tdata1) might (if CONFIG_POLL) * consume both. The lower priority thread should stay * asleep. */ k_queue_append(&queue, &data[0]); k_queue_append(&queue, &data[1]); zassert_true(low_count == 0, NULL); zassert_true(mid_count == 0, NULL); k_sleep(K_TICKS(2)); zassert_true(low_count + mid_count == 2, NULL); k_thread_abort(&tdata); k_thread_abort(&tdata1); } /** * @brief Verify that multiple queues can be defined * simultaneously * * @details define multiple queues to verify * they can work. * * @ingroup kernel_queue_tests * * @see k_queue_init() */ #define QUEUE_NUM 10 void test_multiple_queues(void) { /*define multiple queues*/ struct k_queue queues[QUEUE_NUM]; for (int i = 0; i < QUEUE_NUM; i++) { k_queue_init(&queues[i]); /*Indicating that they are working*/ tqueue_append(&queues[i]); tqueue_get(&queues[i]); } } void user_access_queue_private_data(void *p1, void *p2, void *p3) { ztest_set_fault_valid(true); /* try to access to private kernel data, will happen kernel oops */ k_queue_is_empty(&queue); } /** * @brief Test access kernel object with private data using system call * * @details * - When defining system calls, it is very important to ensure that * access to the API’s private data is done exclusively through system call * interfaces. Private kernel data should never be made available to user mode * threads directly. For example, the k_queue APIs were intentionally not made * available as they store bookkeeping information about the queue directly * in the queue buffers which are visible from user mode. * - Current test makes user thread try to access private kernel data within * their associated data structures. Kernel will track that system call * access to these object with the kernel object permission system. * Current user thread doesn't have permission on it, trying to access * &pqueue kernel object will happen kernel oops, because current user * thread doesn't have permission on k_queue object with private kernel data. * * @ingroup kernel_memprotect_tests */ void test_access_kernel_obj_with_priv_data(void) { k_queue_init(&queue); k_queue_insert(&queue, k_queue_peek_tail(&queue), (void *)&data[0]); k_thread_create(&tdata, tstack, STACK_SIZE, user_access_queue_private_data, NULL, NULL, NULL, 0, K_USER, K_NO_WAIT); k_thread_join(&tdata, K_FOREVER); } |