Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 | /* * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <ztest.h> /** * @brief Define and initialize test_pipe at compile time */ K_PIPE_DEFINE(test_pipe, 256, 4); #define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE) #define PIPE_SIZE (256) K_THREAD_STACK_DEFINE(stack_1, STACK_SIZE); K_SEM_DEFINE(get_sem, 0, 1); K_SEM_DEFINE(put_sem, 1, 1); K_SEM_DEFINE(sync_sem, 0, 1); K_SEM_DEFINE(multiple_send_sem, 0, 1); ZTEST_BMEM uint8_t tx_buffer[PIPE_SIZE + 1]; ZTEST_BMEM uint8_t rx_buffer[PIPE_SIZE + 1]; #define TOTAL_ELEMENTS (sizeof(single_elements) / sizeof(struct pipe_sequence)) #define TOTAL_WAIT_ELEMENTS (sizeof(wait_elements) / \ sizeof(struct pipe_sequence)) #define TOTAL_TIMEOUT_ELEMENTS (sizeof(timeout_elements) / \ sizeof(struct pipe_sequence)) /* Minimum tx/rx size*/ /* the pipe will always pass */ #define NO_CONSTRAINT (0U) /* Pipe will atleast put one byte */ #define ATLEAST_1 (1U) /* Pipe must put all data on the buffer */ #define ALL_BYTES (sizeof(tx_buffer)) #define RETURN_SUCCESS (0) #define TIMEOUT_VAL (K_MSEC(10)) #define TIMEOUT_200MSEC (K_MSEC(200)) /* encompasing structs */ struct pipe_sequence { uint32_t size; uint32_t min_size; uint32_t sent_bytes; int return_value; }; static const struct pipe_sequence single_elements[] = { { 0, ALL_BYTES, 0, 0 }, { 1, ALL_BYTES, 1, RETURN_SUCCESS }, { PIPE_SIZE - 1, ALL_BYTES, PIPE_SIZE - 1, RETURN_SUCCESS }, { PIPE_SIZE, ALL_BYTES, PIPE_SIZE, RETURN_SUCCESS }, { PIPE_SIZE + 1, ALL_BYTES, 0, -EIO }, /* minimum 1 byte */ /* {0, ATLEAST_1, 0, -EIO}, */ { 1, ATLEAST_1, 1, RETURN_SUCCESS }, { PIPE_SIZE - 1, ATLEAST_1, PIPE_SIZE - 1, RETURN_SUCCESS }, { PIPE_SIZE, ATLEAST_1, PIPE_SIZE, RETURN_SUCCESS }, { PIPE_SIZE + 1, ATLEAST_1, PIPE_SIZE, RETURN_SUCCESS }, /* /\* any number of bytes *\/ */ { 0, NO_CONSTRAINT, 0, 0 }, { 1, NO_CONSTRAINT, 1, RETURN_SUCCESS }, { PIPE_SIZE - 1, NO_CONSTRAINT, PIPE_SIZE - 1, RETURN_SUCCESS }, { PIPE_SIZE, NO_CONSTRAINT, PIPE_SIZE, RETURN_SUCCESS }, { PIPE_SIZE + 1, NO_CONSTRAINT, PIPE_SIZE, RETURN_SUCCESS } }; static const struct pipe_sequence multiple_elements[] = { { PIPE_SIZE / 3, ALL_BYTES, PIPE_SIZE / 3, RETURN_SUCCESS, }, { PIPE_SIZE / 3, ALL_BYTES, PIPE_SIZE / 3, RETURN_SUCCESS, }, { PIPE_SIZE / 3, ALL_BYTES, PIPE_SIZE / 3, RETURN_SUCCESS, }, { PIPE_SIZE / 3, ALL_BYTES, 0, -EIO }, { PIPE_SIZE / 3, ATLEAST_1, PIPE_SIZE / 3, RETURN_SUCCESS }, { PIPE_SIZE / 3, ATLEAST_1, PIPE_SIZE / 3, RETURN_SUCCESS }, { PIPE_SIZE / 3, ATLEAST_1, PIPE_SIZE / 3, RETURN_SUCCESS }, { PIPE_SIZE / 3, ATLEAST_1, 1, RETURN_SUCCESS }, { PIPE_SIZE / 3, ATLEAST_1, 0, -EIO }, { PIPE_SIZE / 3, NO_CONSTRAINT, PIPE_SIZE / 3, RETURN_SUCCESS }, { PIPE_SIZE / 3, NO_CONSTRAINT, PIPE_SIZE / 3, RETURN_SUCCESS }, { PIPE_SIZE / 3, NO_CONSTRAINT, PIPE_SIZE / 3, RETURN_SUCCESS }, { PIPE_SIZE / 3, NO_CONSTRAINT, 1, RETURN_SUCCESS }, { PIPE_SIZE / 3, NO_CONSTRAINT, 0, RETURN_SUCCESS } }; static const struct pipe_sequence wait_elements[] = { { 1, ALL_BYTES, 1, RETURN_SUCCESS }, { PIPE_SIZE - 1, ALL_BYTES, PIPE_SIZE - 1, RETURN_SUCCESS }, { PIPE_SIZE, ALL_BYTES, PIPE_SIZE, RETURN_SUCCESS }, { PIPE_SIZE + 1, ALL_BYTES, PIPE_SIZE + 1, RETURN_SUCCESS }, { PIPE_SIZE - 1, ATLEAST_1, PIPE_SIZE - 1, RETURN_SUCCESS }, }; static const struct pipe_sequence timeout_elements[] = { { 0, ALL_BYTES, 0, 0 }, { 1, ALL_BYTES, 0, -EAGAIN }, { PIPE_SIZE - 1, ALL_BYTES, 0, -EAGAIN }, { PIPE_SIZE, ALL_BYTES, 0, -EAGAIN }, { PIPE_SIZE + 1, ALL_BYTES, 0, -EAGAIN }, { 1, ATLEAST_1, 0, -EAGAIN }, { PIPE_SIZE - 1, ATLEAST_1, 0, -EAGAIN }, { PIPE_SIZE, ATLEAST_1, 0, -EAGAIN }, { PIPE_SIZE + 1, ATLEAST_1, 0, -EAGAIN } }; struct k_thread get_single_tid; /* Helper functions */ uint32_t rx_buffer_check(char *buffer, uint32_t size) { uint32_t index; for (index = 0U; index < size; index++) { if (buffer[index] != (char) index) { printk("buffer[index] = %d index = %d\n", buffer[index], (char) index); return index; } } return size; } /******************************************************************************/ void pipe_put_single(void) { uint32_t index; size_t written; int return_value; size_t min_xfer; for (index = 0U; index < TOTAL_ELEMENTS; index++) { k_sem_take(&put_sem, K_FOREVER); min_xfer = (single_elements[index].min_size == ALL_BYTES ? single_elements[index].size : single_elements[index].min_size); return_value = k_pipe_put(&test_pipe, &tx_buffer, single_elements[index].size, &written, min_xfer, K_NO_WAIT); zassert_true((return_value == single_elements[index].return_value), " Return value of k_pipe_put missmatch at index = %d expected =%d received = %d\n", index, single_elements[index].return_value, return_value); zassert_true((written == single_elements[index].sent_bytes), "Bytes written missmatch written is %d but expected is %d index = %d\n", written, single_elements[index].sent_bytes, index); k_sem_give(&get_sem); } } void pipe_get_single(void *p1, void *p2, void *p3) { uint32_t index; size_t read; int return_value; size_t min_xfer; for (index = 0U; index < TOTAL_ELEMENTS; index++) { k_sem_take(&get_sem, K_FOREVER); /* reset the rx buffer for the next interation */ (void)memset(rx_buffer, 0, sizeof(rx_buffer)); min_xfer = (single_elements[index].min_size == ALL_BYTES ? single_elements[index].size : single_elements[index].min_size); return_value = k_pipe_get(&test_pipe, &rx_buffer, single_elements[index].size, &read, min_xfer, K_NO_WAIT); zassert_true((return_value == single_elements[index].return_value), "Return value of k_pipe_get missmatch at index = %d expected =%d received = %d\n", index, single_elements[index].return_value, return_value); zassert_true((read == single_elements[index].sent_bytes), "Bytes read missmatch read is %d but expected is %d index = %d\n", read, single_elements[index].sent_bytes, index); zassert_true(rx_buffer_check(rx_buffer, read) == read, "Bytes read are not matching at index= %d\n expected =%d but received= %d", index, read, rx_buffer_check(rx_buffer, read)); k_sem_give(&put_sem); } k_sem_give(&sync_sem); } /******************************************************************************/ void pipe_put_multiple(void) { uint32_t index; size_t written; int return_value; size_t min_xfer; for (index = 0U; index < TOTAL_ELEMENTS; index++) { min_xfer = (multiple_elements[index].min_size == ALL_BYTES ? multiple_elements[index].size : multiple_elements[index].min_size); return_value = k_pipe_put(&test_pipe, &tx_buffer, multiple_elements[index].size, &written, min_xfer, K_NO_WAIT); zassert_true((return_value == multiple_elements[index].return_value), "Return value of k_pipe_put missmatch at index = %d expected =%d received = %d\n", index, multiple_elements[index].return_value, return_value); zassert_true((written == multiple_elements[index].sent_bytes), "Bytes written missmatch written is %d but expected is %d index = %d\n", written, multiple_elements[index].sent_bytes, index); if (return_value != RETURN_SUCCESS) { k_sem_take(&multiple_send_sem, K_FOREVER); } } } void pipe_get_multiple(void *p1, void *p2, void *p3) { uint32_t index; size_t read; int return_value; size_t min_xfer; for (index = 0U; index < TOTAL_ELEMENTS; index++) { /* reset the rx buffer for the next interation */ (void)memset(rx_buffer, 0, sizeof(rx_buffer)); min_xfer = (multiple_elements[index].min_size == ALL_BYTES ? multiple_elements[index].size : multiple_elements[index].min_size); return_value = k_pipe_get(&test_pipe, &rx_buffer, multiple_elements[index].size, &read, min_xfer, K_NO_WAIT); zassert_true((return_value == multiple_elements[index].return_value), "Return value of k_pipe_get missmatch at index = %d expected =%d received = %d\n", index, multiple_elements[index].return_value, return_value); zassert_true((read == multiple_elements[index].sent_bytes), "Bytes read missmatch read is %d but expected is %d index = %d\n", read, multiple_elements[index].sent_bytes, index); zassert_true(rx_buffer_check(rx_buffer, read) == read, "Bytes read are not matching at index= %d\n expected =%d but received= %d", index, read, rx_buffer_check(rx_buffer, read)); if (return_value != RETURN_SUCCESS) { k_sem_give(&multiple_send_sem); } } k_sem_give(&sync_sem); } /******************************************************************************/ void pipe_put_forever_wait(void) { size_t written; int return_value; /* 1. fill the pipe. */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, K_FOREVER); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_put failed expected = 0 received = %d\n", return_value); zassert_true(written == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); /* wake up the get task */ k_sem_give(&get_sem); /* 2. k_pipe_put() will force a context switch to the other thread. */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, K_FOREVER); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_put failed expected = 0 received = %d\n", return_value); zassert_true(written == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); /* 3. k_pipe_put() will force a context switch to the other thread. */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, ATLEAST_1, K_FOREVER); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_put failed expected = 0 received = %d\n", return_value); zassert_true(written == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); } void pipe_get_forever_wait(void *pi, void *p2, void *p3) { size_t read; int return_value; /* get blocked until put forces the execution to come here */ k_sem_take(&get_sem, K_FOREVER); /* k_pipe_get will force a context switch to the put function. */ return_value = k_pipe_get(&test_pipe, &rx_buffer, PIPE_SIZE, &read, PIPE_SIZE, K_FOREVER); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_get failed expected = 0 received = %d\n", return_value); zassert_true(read == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, read); /* k_pipe_get will force a context switch to the other thread. */ return_value = k_pipe_get(&test_pipe, &rx_buffer, PIPE_SIZE, &read, ATLEAST_1, K_FOREVER); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_get failed expected = 0 received = %d\n", return_value); zassert_true(read == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, read); /*3. last read to clear the pipe */ return_value = k_pipe_get(&test_pipe, &rx_buffer, PIPE_SIZE, &read, ATLEAST_1, K_FOREVER); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_get failed expected = 0 received = %d\n", return_value); zassert_true(read == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, read); k_sem_give(&sync_sem); } /******************************************************************************/ void pipe_put_timeout(void) { size_t written; int return_value; /* 1. fill the pipe. */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, TIMEOUT_VAL); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_put failed expected = 0 received = %d\n", return_value); zassert_true(written == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); /* pipe put cant be satisfied and thus timeout */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, TIMEOUT_VAL); zassert_true(return_value == -EAGAIN, "k_pipe_put failed expected = -EAGAIN received = %d\n", return_value); zassert_true(written == 0, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); /* Try once more with 1 byte pipe put cant be satisfied and * thus timeout. */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, ATLEAST_1, TIMEOUT_VAL); zassert_true(return_value == -EAGAIN, "k_pipe_put failed expected = -EAGAIN received = %d\n", return_value); zassert_true(written == 0, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); k_sem_give(&get_sem); /* 2. pipe_get thread will now accept this data */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, TIMEOUT_VAL); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_put failed expected = 0 received = %d\n", return_value); zassert_true(written == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); /* 3. pipe_get thread will now accept this data */ return_value = k_pipe_put(&test_pipe, &tx_buffer, PIPE_SIZE, &written, ATLEAST_1, TIMEOUT_VAL); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_put failed expected = 0 received = %d\n", return_value); zassert_true(written == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, written); } void pipe_get_timeout(void *pi, void *p2, void *p3) { size_t read; int return_value; /* get blocked until put forces the execution to come here */ k_sem_take(&get_sem, K_FOREVER); /* k_pipe_get will do a context switch to the put function. */ return_value = k_pipe_get(&test_pipe, &rx_buffer, PIPE_SIZE, &read, PIPE_SIZE, TIMEOUT_VAL); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_get failed expected = 0 received = %d\n", return_value); zassert_true(read == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, read); /* k_pipe_get will do a context switch to the put function. */ return_value = k_pipe_get(&test_pipe, &rx_buffer, PIPE_SIZE, &read, ATLEAST_1, TIMEOUT_VAL); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_get failed expected = 0 received = %d\n", return_value); zassert_true(read == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, read); /* cleanup the pipe */ return_value = k_pipe_get(&test_pipe, &rx_buffer, PIPE_SIZE, &read, ATLEAST_1, TIMEOUT_VAL); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_get failed expected = 0 received = %d\n", return_value); zassert_true(read == PIPE_SIZE, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, read); k_sem_give(&sync_sem); } /******************************************************************************/ void pipe_get_on_empty_pipe(void) { size_t read; int return_value; uint32_t read_size; uint32_t size_array[] = { 1, PIPE_SIZE - 1, PIPE_SIZE, PIPE_SIZE + 1 }; for (int i = 0; i < 4; i++) { read_size = size_array[i]; return_value = k_pipe_get(&test_pipe, &rx_buffer, read_size, &read, read_size, K_NO_WAIT); zassert_true(return_value == -EIO, "k_pipe_get failed expected = -EIO received = %d\n", return_value); return_value = k_pipe_get(&test_pipe, &rx_buffer, read_size, &read, ATLEAST_1, K_NO_WAIT); zassert_true(return_value == -EIO, "k_pipe_get failed expected = -EIO received = %d\n", return_value); return_value = k_pipe_get(&test_pipe, &rx_buffer, read_size, &read, NO_CONSTRAINT, K_NO_WAIT); zassert_true(return_value == RETURN_SUCCESS, "k_pipe_get failed expected = 0 received = %d\n", return_value); zassert_true(read == 0, "k_pipe_put written failed expected = %d received = %d\n", PIPE_SIZE, read); } } /******************************************************************************/ void pipe_put_forever_timeout(void) { uint32_t index; size_t written; int return_value; size_t min_xfer; /* using this to synchronize the 2 threads */ k_sem_take(&put_sem, K_FOREVER); for (index = 0U; index < TOTAL_WAIT_ELEMENTS; index++) { min_xfer = (wait_elements[index].min_size == ALL_BYTES ? wait_elements[index].size : wait_elements[index].min_size); return_value = k_pipe_put(&test_pipe, &tx_buffer, wait_elements[index].size, &written, min_xfer, K_FOREVER); zassert_true((return_value == wait_elements[index].return_value), "Return value of k_pipe_put missmatch at index = %d expected =%d received = %d\n", index, wait_elements[index].return_value, return_value); zassert_true((written == wait_elements[index].sent_bytes), "Bytes written missmatch written is %d but expected is %d index = %d\n", written, wait_elements[index].sent_bytes, index); } } void pipe_get_forever_timeout(void *p1, void *p2, void *p3) { uint32_t index; size_t read; int return_value; size_t min_xfer; /* using this to synchronize the 2 threads */ k_sem_give(&put_sem); for (index = 0U; index < TOTAL_WAIT_ELEMENTS; index++) { min_xfer = (wait_elements[index].min_size == ALL_BYTES ? wait_elements[index].size : wait_elements[index].min_size); return_value = k_pipe_get(&test_pipe, &rx_buffer, wait_elements[index].size, &read, min_xfer, K_FOREVER); zassert_true((return_value == wait_elements[index].return_value), "Return value of k_pipe_get missmatch at index = %d expected =%d received = %d\n", index, wait_elements[index].return_value, return_value); zassert_true((read == wait_elements[index].sent_bytes), "Bytes read missmatch read is %d but expected is %d index = %d\n", read, wait_elements[index].sent_bytes, index); } k_sem_give(&sync_sem); } /******************************************************************************/ void pipe_put_get_timeout(void) { uint32_t index; size_t read; int return_value; size_t min_xfer; for (index = 0U; index < TOTAL_TIMEOUT_ELEMENTS; index++) { min_xfer = (timeout_elements[index].min_size == ALL_BYTES ? timeout_elements[index].size : timeout_elements[index].min_size); return_value = k_pipe_get(&test_pipe, &rx_buffer, timeout_elements[index].size, &read, min_xfer, TIMEOUT_200MSEC); zassert_true((return_value == timeout_elements[index].return_value), "Return value of k_pipe_get missmatch at index = %d expected =%d received = %d\n", index, timeout_elements[index].return_value, return_value); zassert_true((read == timeout_elements[index].sent_bytes), "Bytes read missmatch read is %d but expected is %d index = %d\n", read, timeout_elements[index].sent_bytes, index); } } /******************************************************************************/ ZTEST_BMEM bool valid_fault; void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *pEsf) { printk("Caught system error -- reason %d\n", reason); if (valid_fault) { valid_fault = false; /* reset back to normal */ ztest_test_pass(); } else { k_fatal_halt(reason); } } /******************************************************************************/ /* Test case entry points */ /** * @brief Verify pipe with 1 element insert. * * @ingroup kernel_pipe_tests * * @details * Test Objective: * - transfer sequences of bytes of data in whole. * * Testing techniques: * - function and block box testing,Interface testing, * Dynamic analysis and testing. * * Prerequisite Conditions: * - CONFIG_TEST_USERSPACE. * * Input Specifications: * - N/A * * Test Procedure: * -# Define and initialize a pipe at compile time. * -# Using a sub thread to get pipe data in whole, * and check if the data is correct with expected. * -# Using main thread to put data in whole, * check if the return is correct with expected. * * Expected Test Result: * - The pipe put/get whole data is correct. * * Pass/Fail Criteria: * - Successful if check points in test procedure are all passed, otherwise failure. * * Assumptions and Constraints: * - N/A * * @see k_pipe_put(), k_pipe_get() */ void test_pipe_on_single_elements(void) { /* initialize the tx buffer */ for (int i = 0; i < sizeof(tx_buffer); i++) { tx_buffer[i] = i; } k_thread_create(&get_single_tid, stack_1, STACK_SIZE, pipe_get_single, NULL, NULL, NULL, K_PRIO_PREEMPT(0), K_INHERIT_PERMS | K_USER, K_NO_WAIT); pipe_put_single(); k_sem_take(&sync_sem, K_FOREVER); k_thread_abort(&get_single_tid); ztest_test_pass(); } /** * @brief Test when multiple items are present in the pipe * @details transfer sequences of bytes of data in part. * - Using a sub thread to get data part. * - Using main thread to put data part by part * @ingroup kernel_pipe_tests * @see k_pipe_put() */ void test_pipe_on_multiple_elements(void) { k_thread_create(&get_single_tid, stack_1, STACK_SIZE, pipe_get_multiple, NULL, NULL, NULL, K_PRIO_PREEMPT(0), K_INHERIT_PERMS | K_USER, K_NO_WAIT); pipe_put_multiple(); k_sem_take(&sync_sem, K_FOREVER); k_thread_abort(&get_single_tid); ztest_test_pass(); } /** * @brief Test when multiple items are present with wait * @ingroup kernel_pipe_tests * @see k_pipe_put() */ void test_pipe_forever_wait(void) { k_thread_create(&get_single_tid, stack_1, STACK_SIZE, pipe_get_forever_wait, NULL, NULL, NULL, K_PRIO_PREEMPT(0), K_INHERIT_PERMS | K_USER, K_NO_WAIT); pipe_put_forever_wait(); k_sem_take(&sync_sem, K_FOREVER); k_thread_abort(&get_single_tid); ztest_test_pass(); } /** * @brief Test pipes with timeout * * @ingroup kernel_pipe_tests * * @details * Test Objective: * - Check if the kernel support supplying a timeout parameter * indicating the maximum amount of time a process will wait. * * Testing techniques: * - function and block box testing,Interface testing, * Dynamic analysis and testing. * * Prerequisite Conditions: * - CONFIG_TEST_USERSPACE. * * Input Specifications: * - N/A * * Test Procedure: * -# Create a sub thread to get data from a pipe. * -# In the sub thread, Set K_MSEC(10) as timeout for k_pipe_get(). * and check the data which get from pipe if correct. * -# In main thread, use k_pipe_put to put data. * and check the return of k_pipe_put. * * Expected Test Result: * - The pipe can set timeout and works well. * * Pass/Fail Criteria: * - Successful if check points in test procedure are all passed, otherwise failure. * * Assumptions and Constraints: * - N/A * * @see k_pipe_put() */ void test_pipe_timeout(void) { k_thread_create(&get_single_tid, stack_1, STACK_SIZE, pipe_get_timeout, NULL, NULL, NULL, K_PRIO_PREEMPT(0), K_INHERIT_PERMS | K_USER, K_NO_WAIT); pipe_put_timeout(); k_sem_take(&sync_sem, K_FOREVER); k_thread_abort(&get_single_tid); ztest_test_pass(); } /** * @brief Test pipe get from a empty pipe * @ingroup kernel_pipe_tests * @see k_pipe_get() */ void test_pipe_get_on_empty_pipe(void) { pipe_get_on_empty_pipe(); ztest_test_pass(); } /** * @brief Test the pipe_get with K_FOREVER as timeout. * @details Testcase is similar to test_pipe_on_single_elements() * but with K_FOREVER as timeout. * @ingroup kernel_pipe_tests * @see k_pipe_put() */ void test_pipe_forever_timeout(void) { k_thread_priority_set(k_current_get(), K_PRIO_PREEMPT(0)); k_thread_create(&get_single_tid, stack_1, STACK_SIZE, pipe_get_forever_timeout, NULL, NULL, NULL, K_PRIO_PREEMPT(0), K_INHERIT_PERMS | K_USER, K_NO_WAIT); pipe_put_forever_timeout(); k_sem_take(&sync_sem, K_FOREVER); ztest_test_pass(); } /** * @brief k_pipe_get timeout test * @ingroup kernel_pipe_tests * @see k_pipe_get() */ void test_pipe_get_timeout(void) { pipe_put_get_timeout(); ztest_test_pass(); } /** * @brief Test pipe get of invalid size * @ingroup kernel_pipe_tests * @see k_pipe_get() */ void test_pipe_get_invalid_size(void) { size_t read; int ret; valid_fault = true; ret = k_pipe_get(&test_pipe, &rx_buffer, 0, &read, 1, TIMEOUT_200MSEC); zassert_equal(ret, -EINVAL, "fault didn't occur for min_xfer <= bytes_to_read"); } /** * @brief Test pipe get returns immediately if >= min_xfer is available * @ingroup kernel_pipe_tests * @see k_pipe_get() */ void test_pipe_get_min_xfer(void) { int res; size_t bytes_written = 0; size_t bytes_read = 0; char buf[8] = {}; res = k_pipe_put(&test_pipe, "Hi!", 3, &bytes_written, 3 /* min_xfer */, K_FOREVER); zassert_equal(res, 0, "did not write entire message"); zassert_equal(bytes_written, 3, "did not write entire message"); res = k_pipe_get(&test_pipe, buf, sizeof(buf), &bytes_read, 1 /* min_xfer */, K_FOREVER); zassert_equal(res, 0, "did not read at least one byte"); zassert_equal(bytes_read, 3, "did not read all bytes available"); } /** * @brief Test pipe put returns immediately if >= min_xfer is available * @ingroup kernel_pipe_tests * @see k_pipe_put() */ void test_pipe_put_min_xfer(void) { int res; size_t bytes_written = 0; /* write 6 bytes into the pipe, so that 2 bytes are still free */ for (size_t i = 0; i < 2; ++i) { bytes_written = 0; res = k_pipe_put(&test_pipe, "Hi!", 3, &bytes_written, 3 /* min_xfer */, K_FOREVER); zassert_equal(res, 0, "did not write entire message"); zassert_equal(bytes_written, 3, "did not write entire message"); } /* attempt to write 3 bytes, but allow success if >= 1 byte */ bytes_written = 0; res = k_pipe_put(&test_pipe, "Hi!", 3, &bytes_written, 1 /* min_xfer */, K_FOREVER); zassert_equal(res, 0, "did not write min_xfer"); zassert_true(bytes_written >= 1, "did not write min_xfer"); } /** * @brief Test defining and initializing pipes at run time * * @ingroup kernel_pipe_tests * * @details * Test Objective: * - Check if the kernel provided a mechanism for defining and * initializing pipes at run time. * * Testing techniques: * - function and block box testing,Interface testing, * Dynamic analysis and testing. * * Prerequisite Conditions: * - CONFIG_TEST_USERSPACE. * * Input Specifications: * - N/A * * Test Procedure: * -# Define and initialize a pipe at run time * -# Using this pipe to transfer data. * -# Check the pipe get/put operation. * * Expected Test Result: * - Pipe can be defined and initialized at run time. * * Pass/Fail Criteria: * - Successful if check points in test procedure are all passed, otherwise failure. * * Assumptions and Constraints: * - N/A * * @see k_pipe_init() */ void test_pipe_define_at_runtime(void) { unsigned char ring_buffer[PIPE_SIZE]; struct k_pipe pipe; size_t written, read; /*Define and initialize pipe at run time*/ k_pipe_init(&pipe, ring_buffer, sizeof(ring_buffer)); /* initialize the tx buffer */ for (int i = 0; i < sizeof(tx_buffer); i++) { tx_buffer[i] = i; } /*Using test_pipe which define and initialize at run time*/ zassert_equal(k_pipe_put(&pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, K_NO_WAIT), RETURN_SUCCESS, NULL); /* Returned without waiting; zero data bytes were written. */ zassert_equal(k_pipe_put(&pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, K_NO_WAIT), -EIO, NULL); /* Waiting period timed out. */ zassert_equal(k_pipe_put(&pipe, &tx_buffer, PIPE_SIZE, &written, PIPE_SIZE, TIMEOUT_VAL), -EAGAIN, NULL); zassert_equal(k_pipe_get(&pipe, &rx_buffer, PIPE_SIZE, &read, PIPE_SIZE, K_NO_WAIT), RETURN_SUCCESS, NULL); zassert_true(rx_buffer_check(rx_buffer, read) == read, "Bytes read are not match."); /* Returned without waiting; zero data bytes were read. */ zassert_equal(k_pipe_get(&pipe, &rx_buffer, PIPE_SIZE, &read, PIPE_SIZE, K_NO_WAIT), -EIO, NULL); /* Waiting period timed out. */ zassert_equal(k_pipe_get(&pipe, &rx_buffer, PIPE_SIZE, &read, PIPE_SIZE, TIMEOUT_VAL), -EAGAIN, NULL); } |