Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*
 * Copyright (c) 2019 Bolt Innovation Management, LLC
 * Copyright (c) 2019 Peter Bigot Consulting, LLC
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <stdio.h>
#include <string.h>
#include <kernel.h>
#include <errno.h>
#include <init.h>
#include <fs/fs.h>
#include <fs/fs_sys.h>

#define LFS_LOG_REGISTER
#include <lfs_util.h>

#include <lfs.h>
#include <fs/littlefs.h>
#include <drivers/flash.h>
#include <storage/flash_map.h>

#include "fs_impl.h"

struct lfs_file_data {
	struct lfs_file file;
	struct lfs_file_config config;
	void *cache_block;
};

#define LFS_FILEP(fp) (&((struct lfs_file_data *)(fp->filep))->file)

/* Global memory pool for open files and dirs */
static K_MEM_SLAB_DEFINE(file_data_pool, sizeof(struct lfs_file_data),
			 CONFIG_FS_LITTLEFS_NUM_FILES, 4);
static K_MEM_SLAB_DEFINE(lfs_dir_pool, sizeof(struct lfs_dir),
			 CONFIG_FS_LITTLEFS_NUM_DIRS, 4);

/* If either filecache memory pool is customized by either the legacy
 * mem_pool or heap Kconfig options then we need to use a heap.
 * Otherwise we can use a fixed region.
 */
#define FC_ON_HEAP defined(CONFIG_FS_LITTLEFS_FC_MEM_POOL)	\
	|| ((CONFIG_FS_LITTLEFS_FC_HEAP_SIZE - 0) > 0)

#if FC_ON_HEAP

/* Inferred overhead, in bytes, for each k_heap_aligned allocation for
 * the filecache heap.  This relates to the CHUNK_UNIT parameter in
 * the heap implementation, but that value is not visible outside the
 * kernel.
 */
#define FC_HEAP_PER_ALLOC_OVERHEAD 24U

/* If not explicitly customizing provide a default that's appropriate
 * based on other configuration options.
 */
#ifndef CONFIG_FS_LITTLEFS_FC_MEM_POOL
#define CONFIG_FS_LITTLEFS_FC_MEM_POOL_MAX_SIZE CONFIG_FS_LITTLEFS_CACHE_SIZE
#define CONFIG_FS_LITTLEFS_FC_MEM_POOL_NUM_BLOCKS CONFIG_FS_LITTLEFS_NUM_FILES
#endif

/* If not explicitly customizing infer a default from the legacy
 * mem-pool configuration options.
 */
#if (CONFIG_FS_LITTLEFS_FC_HEAP_SIZE - 0) <= 0
#undef CONFIG_FS_LITTLEFS_FC_HEAP_SIZE
#define CONFIG_FS_LITTLEFS_FC_HEAP_SIZE					\
	((CONFIG_FS_LITTLEFS_FC_MEM_POOL_MAX_SIZE			\
	  + FC_HEAP_PER_ALLOC_OVERHEAD)					\
	 * CONFIG_FS_LITTLEFS_FC_MEM_POOL_NUM_BLOCKS)
#endif /* CONFIG_FS_LITTLEFS_FC_HEAP_SIZE */

static K_HEAP_DEFINE(file_cache_heap, CONFIG_FS_LITTLEFS_FC_HEAP_SIZE);

#else /* FC_ON_HEAP */

static K_MEM_SLAB_DEFINE(file_cache_slab, CONFIG_FS_LITTLEFS_CACHE_SIZE,
			 CONFIG_FS_LITTLEFS_NUM_FILES, 4);

#endif /* FC_ON_HEAP */

static inline void *fc_allocate(size_t size)
{
	void *ret = NULL;

#if FC_ON_HEAP
	ret = k_heap_alloc(&file_cache_heap, size, K_NO_WAIT);
#else
	__ASSERT(size <= CONFIG_FS_LITTLEFS_CACHE_SIZE,
		 "size %zu exceeds slab reservation", size);

	if (k_mem_slab_alloc(&file_cache_slab, &ret, K_NO_WAIT) != 0) {
		ret = NULL;
	}
#endif

	return ret;
}

static inline void fc_release(void *buf)
{
#if FC_ON_HEAP
	k_heap_free(&file_cache_heap, buf);
#else /* FC_ON_HEAP */
	k_mem_slab_free(&file_cache_slab, &buf);
#endif /* FC_ON_HEAP */
}

static inline void fs_lock(struct fs_littlefs *fs)
{
	k_mutex_lock(&fs->mutex, K_FOREVER);
}

static inline void fs_unlock(struct fs_littlefs *fs)
{
	k_mutex_unlock(&fs->mutex);
}

static int lfs_to_errno(int error)
{
	if (error >= 0) {
		return error;
	}

	switch (error) {
	default:
	case LFS_ERR_IO:        /* Error during device operation */
		return -EIO;
	case LFS_ERR_CORRUPT:   /* Corrupted */
		return -EFAULT;
	case LFS_ERR_NOENT:     /* No directory entry */
		return -ENOENT;
	case LFS_ERR_EXIST:     /* Entry already exists */
		return -EEXIST;
	case LFS_ERR_NOTDIR:    /* Entry is not a dir */
		return -ENOTDIR;
	case LFS_ERR_ISDIR:     /* Entry is a dir */
		return -EISDIR;
	case LFS_ERR_NOTEMPTY:  /* Dir is not empty */
		return -ENOTEMPTY;
	case LFS_ERR_BADF:      /* Bad file number */
		return -EBADF;
	case LFS_ERR_FBIG:      /* File too large */
		return -EFBIG;
	case LFS_ERR_INVAL:     /* Invalid parameter */
		return -EINVAL;
	case LFS_ERR_NOSPC:     /* No space left on device */
		return -ENOSPC;
	case LFS_ERR_NOMEM:     /* No more memory available */
		return -ENOMEM;
	}
}

static int errno_to_lfs(int error)
{
	if (error >= 0) {
		return LFS_ERR_OK;
	}

	switch (error) {
	default:
	case -EIO:              /* Error during device operation */
		return LFS_ERR_IO;
	case -EFAULT:		/* Corrupted */
		return LFS_ERR_CORRUPT;
	case -ENOENT:           /* No directory entry */
		return LFS_ERR_NOENT;
	case -EEXIST:           /* Entry already exists */
		return LFS_ERR_EXIST;
	case -ENOTDIR:          /* Entry is not a dir */
		return LFS_ERR_NOTDIR;
	case -EISDIR:           /* Entry is a dir */
		return LFS_ERR_ISDIR;
	case -ENOTEMPTY:        /* Dir is not empty */
		return LFS_ERR_NOTEMPTY;
	case -EBADF:            /* Bad file number */
		return LFS_ERR_BADF;
	case -EFBIG:            /* File too large */
		return LFS_ERR_FBIG;
	case -EINVAL:           /* Invalid parameter */
		return LFS_ERR_INVAL;
	case -ENOSPC:           /* No space left on device */
		return LFS_ERR_NOSPC;
	case -ENOMEM:           /* No more memory available */
		return LFS_ERR_NOMEM;
	}
}


static int lfs_api_read(const struct lfs_config *c, lfs_block_t block,
			lfs_off_t off, void *buffer, lfs_size_t size)
{
	const struct flash_area *fa = c->context;
	size_t offset = block * c->block_size + off;

	int rc = flash_area_read(fa, offset, buffer, size);

	return errno_to_lfs(rc);
}

static int lfs_api_prog(const struct lfs_config *c, lfs_block_t block,
			lfs_off_t off, const void *buffer, lfs_size_t size)
{
	const struct flash_area *fa = c->context;
	size_t offset = block * c->block_size + off;

	int rc = flash_area_write(fa, offset, buffer, size);

	return errno_to_lfs(rc);
}

static int lfs_api_erase(const struct lfs_config *c, lfs_block_t block)
{
	const struct flash_area *fa = c->context;
	size_t offset = block * c->block_size;

	int rc = flash_area_erase(fa, offset, c->block_size);

	return errno_to_lfs(rc);
}

static int lfs_api_sync(const struct lfs_config *c)
{
	return LFS_ERR_OK;
}

static void release_file_data(struct fs_file_t *fp)
{
	struct lfs_file_data *fdp = fp->filep;

	if (fdp->config.buffer) {
		fc_release(fdp->cache_block);
	}

	k_mem_slab_free(&file_data_pool, &fp->filep);
	fp->filep = NULL;
}

static int lfs_flags_from_zephyr(unsigned int zflags)
{
	int flags = (zflags & FS_O_CREATE) ? LFS_O_CREAT : 0;

	/* LFS_O_READONLY and LFS_O_WRONLY can be selected at the same time,
	 * this is not a mistake, together they create RDWR access.
	 */
	flags |= (zflags & FS_O_READ) ? LFS_O_RDONLY : 0;
	flags |= (zflags & FS_O_WRITE) ? LFS_O_WRONLY : 0;

	flags |= (zflags & FS_O_APPEND) ? LFS_O_APPEND : 0;

	return flags;
}

static int littlefs_open(struct fs_file_t *fp, const char *path,
			 fs_mode_t zflags)
{
	struct fs_littlefs *fs = fp->mp->fs_data;
	struct lfs *lfs = &fs->lfs;
	int flags = lfs_flags_from_zephyr(zflags);
	int ret = k_mem_slab_alloc(&file_data_pool, &fp->filep, K_NO_WAIT);

	if (ret != 0) {
		return ret;
	}

	struct lfs_file_data *fdp = fp->filep;

	memset(fdp, 0, sizeof(*fdp));

	fdp->cache_block = fc_allocate(lfs->cfg->cache_size);
	if (fdp->cache_block == NULL) {
		ret = -ENOMEM;
		goto out;
	}

	fdp->config.buffer = fdp->cache_block;
	path = fs_impl_strip_prefix(path, fp->mp);

	fs_lock(fs);

	ret = lfs_file_opencfg(&fs->lfs, &fdp->file,
			       path, flags, &fdp->config);

	fs_unlock(fs);
out:
	if (ret < 0) {
		release_file_data(fp);
	}

	return lfs_to_errno(ret);
}

static int littlefs_close(struct fs_file_t *fp)
{
	struct fs_littlefs *fs = fp->mp->fs_data;

	fs_lock(fs);

	int ret = lfs_file_close(&fs->lfs, LFS_FILEP(fp));

	fs_unlock(fs);

	release_file_data(fp);

	return lfs_to_errno(ret);
}

static int littlefs_unlink(struct fs_mount_t *mountp, const char *path)
{
	struct fs_littlefs *fs = mountp->fs_data;

	path = fs_impl_strip_prefix(path, mountp);

	fs_lock(fs);

	int ret = lfs_remove(&fs->lfs, path);

	fs_unlock(fs);
	return lfs_to_errno(ret);
}

static int littlefs_rename(struct fs_mount_t *mountp, const char *from,
			   const char *to)
{
	struct fs_littlefs *fs = mountp->fs_data;

	from = fs_impl_strip_prefix(from, mountp);
	to = fs_impl_strip_prefix(to, mountp);

	fs_lock(fs);

	int ret = lfs_rename(&fs->lfs, from, to);

	fs_unlock(fs);
	return lfs_to_errno(ret);
}

static ssize_t littlefs_read(struct fs_file_t *fp, void *ptr, size_t len)
{
	struct fs_littlefs *fs = fp->mp->fs_data;

	fs_lock(fs);

	ssize_t ret = lfs_file_read(&fs->lfs, LFS_FILEP(fp), ptr, len);

	fs_unlock(fs);
	return lfs_to_errno(ret);
}

static ssize_t littlefs_write(struct fs_file_t *fp, const void *ptr, size_t len)
{
	struct fs_littlefs *fs = fp->mp->fs_data;

	fs_lock(fs);

	ssize_t ret = lfs_file_write(&fs->lfs, LFS_FILEP(fp), ptr, len);

	fs_unlock(fs);
	return lfs_to_errno(ret);
}

BUILD_ASSERT((FS_SEEK_SET == LFS_SEEK_SET)
	     && (FS_SEEK_CUR == LFS_SEEK_CUR)
	     && (FS_SEEK_END == LFS_SEEK_END));

static int littlefs_seek(struct fs_file_t *fp, off_t off, int whence)
{
	struct fs_littlefs *fs = fp->mp->fs_data;

	fs_lock(fs);

	off_t ret = lfs_file_seek(&fs->lfs, LFS_FILEP(fp), off, whence);

	fs_unlock(fs);

	if (ret >= 0) {
		ret = 0;
	}

	return lfs_to_errno(ret);
}

static off_t littlefs_tell(struct fs_file_t *fp)
{
	struct fs_littlefs *fs = fp->mp->fs_data;

	fs_lock(fs);

	off_t ret = lfs_file_tell(&fs->lfs, LFS_FILEP(fp));

	fs_unlock(fs);
	return ret;
}

static int littlefs_truncate(struct fs_file_t *fp, off_t length)
{
	struct fs_littlefs *fs = fp->mp->fs_data;

	fs_lock(fs);

	int ret = lfs_file_truncate(&fs->lfs, LFS_FILEP(fp), length);

	fs_unlock(fs);
	return lfs_to_errno(ret);
}

static int littlefs_sync(struct fs_file_t *fp)
{
	struct fs_littlefs *fs = fp->mp->fs_data;

	fs_lock(fs);

	int ret = lfs_file_sync(&fs->lfs, LFS_FILEP(fp));

	fs_unlock(fs);
	return lfs_to_errno(ret);
}

static int littlefs_mkdir(struct fs_mount_t *mountp, const char *path)
{
	struct fs_littlefs *fs = mountp->fs_data;

	path = fs_impl_strip_prefix(path, mountp);
	fs_lock(fs);

	int ret = lfs_mkdir(&fs->lfs, path);

	fs_unlock(fs);
	return lfs_to_errno(ret);
}

static int littlefs_opendir(struct fs_dir_t *dp, const char *path)
{
	struct fs_littlefs *fs = dp->mp->fs_data;

	if (k_mem_slab_alloc(&lfs_dir_pool, &dp->dirp, K_NO_WAIT) != 0) {
		return -ENOMEM;
	}

	memset(dp->dirp, 0, sizeof(struct lfs_dir));

	path = fs_impl_strip_prefix(path, dp->mp);

	fs_lock(fs);

	int ret = lfs_dir_open(&fs->lfs, dp->dirp, path);

	fs_unlock(fs);

	if (ret < 0) {
		k_mem_slab_free(&lfs_dir_pool, &dp->dirp);
	}

	return lfs_to_errno(ret);
}

static void info_to_dirent(const struct lfs_info *info, struct fs_dirent *entry)
{
	entry->type = ((info->type == LFS_TYPE_DIR) ?
		       FS_DIR_ENTRY_DIR : FS_DIR_ENTRY_FILE);
	entry->size = info->size;
	strncpy(entry->name, info->name, sizeof(entry->name));
	entry->name[sizeof(entry->name) - 1] = '\0';
}

static int littlefs_readdir(struct fs_dir_t *dp, struct fs_dirent *entry)
{
	struct fs_littlefs *fs = dp->mp->fs_data;

	fs_lock(fs);

	struct lfs_info info;
	int ret = lfs_dir_read(&fs->lfs, dp->dirp, &info);

	fs_unlock(fs);

	if (ret > 0) {
		info_to_dirent(&info, entry);
		ret = 0;
	} else if (ret == 0) {
		entry->name[0] = 0;
	}

	return lfs_to_errno(ret);
}

static int littlefs_closedir(struct fs_dir_t *dp)
{
	struct fs_littlefs *fs = dp->mp->fs_data;

	fs_lock(fs);

	int ret = lfs_dir_close(&fs->lfs, dp->dirp);

	fs_unlock(fs);

	k_mem_slab_free(&lfs_dir_pool, &dp->dirp);

	return lfs_to_errno(ret);
}

static int littlefs_stat(struct fs_mount_t *mountp,
			 const char *path, struct fs_dirent *entry)
{
	struct fs_littlefs *fs = mountp->fs_data;

	path = fs_impl_strip_prefix(path, mountp);

	fs_lock(fs);

	struct lfs_info info;
	int ret = lfs_stat(&fs->lfs, path, &info);

	fs_unlock(fs);

	if (ret >= 0) {
		info_to_dirent(&info, entry);
		ret = 0;
	}

	return lfs_to_errno(ret);
}

static int littlefs_statvfs(struct fs_mount_t *mountp,
			    const char *path, struct fs_statvfs *stat)
{
	struct fs_littlefs *fs = mountp->fs_data;
	struct lfs *lfs = &fs->lfs;

	stat->f_bsize = lfs->cfg->prog_size;
	stat->f_frsize = lfs->cfg->block_size;
	stat->f_blocks = lfs->cfg->block_count;

	path = fs_impl_strip_prefix(path, mountp);

	fs_lock(fs);

	ssize_t ret = lfs_fs_size(lfs);

	fs_unlock(fs);

	if (ret >= 0) {
		stat->f_bfree = stat->f_blocks - ret;
		ret = 0;
	}

	return lfs_to_errno(ret);
}

/* Return maximum page size in a flash area.  There's no flash_area
 * API to implement this, so we have to make one here.
 */
struct get_page_ctx {
	const struct flash_area *area;
	lfs_size_t max_size;
};

static bool get_page_cb(const struct flash_pages_info *info, void *ctxp)
{
	struct get_page_ctx *ctx = ctxp;

	size_t info_start = info->start_offset;
	size_t info_end = info_start + info->size - 1U;
	size_t area_start = ctx->area->fa_off;
	size_t area_end = area_start + ctx->area->fa_size - 1U;

	/* Ignore pages outside the area */
	if (info_end < area_start) {
		return true;
	}
	if (info_start > area_end) {
		return false;
	}

	if (info->size > ctx->max_size) {
		ctx->max_size = info->size;
	}

	return true;
}

/* Iterate over all page groups in the flash area and return the
 * largest page size we see.  This works as long as the partition is
 * aligned so that erasing with this size is supported throughout the
 * partition.
 */
static lfs_size_t get_block_size(const struct flash_area *fa)
{
	struct get_page_ctx ctx = {
		.area = fa,
		.max_size = 0,
	};
	const struct device *dev = flash_area_get_device(fa);

	flash_page_foreach(dev, get_page_cb, &ctx);

	return ctx.max_size;
}

static int littlefs_mount(struct fs_mount_t *mountp)
{
	int ret;
	struct fs_littlefs *fs = mountp->fs_data;
	unsigned int area_id = (uintptr_t)mountp->storage_dev;
	const struct device *dev;

	LOG_INF("LittleFS version %u.%u, disk version %u.%u",
		LFS_VERSION_MAJOR, LFS_VERSION_MINOR,
		LFS_DISK_VERSION_MAJOR, LFS_DISK_VERSION_MINOR);

	if (fs->area) {
		return -EBUSY;
	}

	/* Create and take mutex. */
	k_mutex_init(&fs->mutex);
	fs_lock(fs);

	/* Open flash area */
	ret = flash_area_open(area_id, &fs->area);
	if ((ret < 0) || (fs->area == NULL)) {
		LOG_ERR("can't open flash area %d", area_id);
		ret = -ENODEV;
		goto out;
	}
	LOG_DBG("FS area %u at 0x%x for %u bytes",
		area_id, (uint32_t)fs->area->fa_off,
		(uint32_t)fs->area->fa_size);

	dev = flash_area_get_device(fs->area);
	if (dev == NULL) {
		LOG_ERR("can't get flash device: %s", log_strdup(fs->area->fa_dev_name));
		ret = -ENODEV;
		goto out;
	}

	BUILD_ASSERT(CONFIG_FS_LITTLEFS_READ_SIZE > 0);
	BUILD_ASSERT(CONFIG_FS_LITTLEFS_PROG_SIZE > 0);
	BUILD_ASSERT(CONFIG_FS_LITTLEFS_CACHE_SIZE > 0);
	BUILD_ASSERT(CONFIG_FS_LITTLEFS_LOOKAHEAD_SIZE > 0);
	BUILD_ASSERT((CONFIG_FS_LITTLEFS_LOOKAHEAD_SIZE % 8) == 0);
	BUILD_ASSERT((CONFIG_FS_LITTLEFS_CACHE_SIZE
		      % CONFIG_FS_LITTLEFS_READ_SIZE) == 0);
	BUILD_ASSERT((CONFIG_FS_LITTLEFS_CACHE_SIZE
		      % CONFIG_FS_LITTLEFS_PROG_SIZE) == 0);

	struct lfs_config *lcp = &fs->cfg;

	lfs_size_t read_size = lcp->read_size;

	if (read_size == 0) {
		read_size = CONFIG_FS_LITTLEFS_READ_SIZE;
	}

	lfs_size_t prog_size = lcp->prog_size;

	if (prog_size == 0) {
		prog_size = CONFIG_FS_LITTLEFS_PROG_SIZE;
	}

	/* Yes, you can override block size. */
	lfs_size_t block_size = lcp->block_size;

	if (block_size == 0) {
		block_size = get_block_size(fs->area);
	}
	if (block_size == 0) {
		__ASSERT_NO_MSG(block_size != 0);
		ret = -EINVAL;
		goto out;
	}

	int32_t block_cycles = lcp->block_cycles;

	if (block_cycles == 0) {
		block_cycles = CONFIG_FS_LITTLEFS_BLOCK_CYCLES;
	}
	if (block_cycles <= 0) {
		/* Disable leveling (littlefs v2.1+ semantics) */
		block_cycles = -1;
	}

	lfs_size_t cache_size = lcp->cache_size;

	if (cache_size == 0) {
		cache_size = CONFIG_FS_LITTLEFS_CACHE_SIZE;
	}

	lfs_size_t lookahead_size = lcp->lookahead_size;

	if (lookahead_size == 0) {
		lookahead_size = CONFIG_FS_LITTLEFS_LOOKAHEAD_SIZE;
	}


	/* No, you don't get to override this. */
	lfs_size_t block_count = fs->area->fa_size / block_size;

	LOG_INF("FS at %s:0x%x is %u 0x%x-byte blocks with %u cycle",
		log_strdup(dev->name), (uint32_t)fs->area->fa_off,
		block_count, block_size, block_cycles);
	LOG_INF("sizes: rd %u ; pr %u ; ca %u ; la %u",
		read_size, prog_size, cache_size, lookahead_size);

	__ASSERT_NO_MSG(prog_size != 0);
	__ASSERT_NO_MSG(read_size != 0);
	__ASSERT_NO_MSG(cache_size != 0);
	__ASSERT_NO_MSG(block_size != 0);

	__ASSERT((fs->area->fa_size % block_size) == 0,
		 "partition size must be multiple of block size");
	__ASSERT((block_size % prog_size) == 0,
		 "erase size must be multiple of write size");
	__ASSERT((block_size % cache_size) == 0,
		 "cache size incompatible with block size");

	/* Set the validated/defaulted values. */
	lcp->context = (void *)fs->area;
	lcp->read = lfs_api_read;
	lcp->prog = lfs_api_prog;
	lcp->erase = lfs_api_erase;
	lcp->sync = lfs_api_sync;
	lcp->read_size = read_size;
	lcp->prog_size = prog_size;
	lcp->block_size = block_size;
	lcp->block_count = block_count;
	lcp->block_cycles = block_cycles;
	lcp->cache_size = cache_size;
	lcp->lookahead_size = lookahead_size;

	/* Mount it, formatting if needed. */
	ret = lfs_mount(&fs->lfs, &fs->cfg);
	if (ret < 0 &&
	    (mountp->flags & FS_MOUNT_FLAG_NO_FORMAT) == 0) {
		LOG_WRN("can't mount (LFS %d); formatting", ret);
		if ((mountp->flags & FS_MOUNT_FLAG_READ_ONLY) == 0) {
			ret = lfs_format(&fs->lfs, &fs->cfg);
			if (ret < 0) {
				LOG_ERR("format failed (LFS %d)", ret);
				ret = lfs_to_errno(ret);
				goto out;
			}
		} else {
			LOG_ERR("can not format read-only system");
			ret = -EROFS;
			goto out;
		}

		ret = lfs_mount(&fs->lfs, &fs->cfg);
		if (ret < 0) {
			LOG_ERR("remount after format failed (LFS %d)", ret);
			ret = lfs_to_errno(ret);
			goto out;
		}
	}

	LOG_INF("%s mounted", log_strdup(mountp->mnt_point));

out:
	if (ret < 0) {
		fs->area = NULL;
	}

	fs_unlock(fs);

	return ret;
}

static int littlefs_unmount(struct fs_mount_t *mountp)
{
	struct fs_littlefs *fs = mountp->fs_data;

	fs_lock(fs);

	lfs_unmount(&fs->lfs);
	flash_area_close(fs->area);
	fs->area = NULL;

	fs_unlock(fs);

	LOG_INF("%s unmounted", log_strdup(mountp->mnt_point));

	return 0;
}

/* File system interface */
static const struct fs_file_system_t littlefs_fs = {
	.open = littlefs_open,
	.close = littlefs_close,
	.read = littlefs_read,
	.write = littlefs_write,
	.lseek = littlefs_seek,
	.tell = littlefs_tell,
	.truncate = littlefs_truncate,
	.sync = littlefs_sync,
	.opendir = littlefs_opendir,
	.readdir = littlefs_readdir,
	.closedir = littlefs_closedir,
	.mount = littlefs_mount,
	.unmount = littlefs_unmount,
	.unlink = littlefs_unlink,
	.rename = littlefs_rename,
	.mkdir = littlefs_mkdir,
	.stat = littlefs_stat,
	.statvfs = littlefs_statvfs,
};

#define DT_DRV_COMPAT zephyr_fstab_littlefs
#define FS_PARTITION(inst) DT_PHANDLE_BY_IDX(DT_DRV_INST(inst), partition, 0)

#define DEFINE_FS(inst) \
static uint8_t __aligned(4) \
	read_buffer_##inst[DT_INST_PROP(inst, cache_size)]; \
static uint8_t __aligned(4) \
	prog_buffer_##inst[DT_INST_PROP(inst, cache_size)]; \
static uint32_t lookahead_buffer_##inst[DT_INST_PROP(inst, lookahead_size) \
					/ sizeof(uint32_t)]; \
BUILD_ASSERT(DT_INST_PROP(inst, read_size) > 0); \
BUILD_ASSERT(DT_INST_PROP(inst, prog_size) > 0); \
BUILD_ASSERT(DT_INST_PROP(inst, cache_size) > 0); \
BUILD_ASSERT(DT_INST_PROP(inst, lookahead_size) > 0); \
BUILD_ASSERT((DT_INST_PROP(inst, lookahead_size) % 8) == 0); \
BUILD_ASSERT((DT_INST_PROP(inst, cache_size) \
	      % DT_INST_PROP(inst, read_size)) == 0); \
BUILD_ASSERT((DT_INST_PROP(inst, cache_size) \
	      % DT_INST_PROP(inst, prog_size)) == 0); \
static struct fs_littlefs fs_data_##inst = { \
	.cfg = { \
		.read_size = DT_INST_PROP(inst, read_size), \
		.prog_size = DT_INST_PROP(inst, prog_size), \
		.cache_size = DT_INST_PROP(inst, cache_size), \
		.lookahead_size = DT_INST_PROP(inst, lookahead_size), \
		.read_buffer = read_buffer_##inst, \
		.prog_buffer = prog_buffer_##inst, \
		.lookahead_buffer = lookahead_buffer_##inst, \
	}, \
}; \
struct fs_mount_t FS_FSTAB_ENTRY(DT_DRV_INST(inst)) = { \
	.type = FS_LITTLEFS, \
	.mnt_point = DT_INST_PROP(inst, mount_point), \
	.fs_data = &fs_data_##inst, \
	.storage_dev = (void *)DT_FIXED_PARTITION_ID(FS_PARTITION(inst)), \
	.flags = FSTAB_ENTRY_DT_MOUNT_FLAGS(DT_DRV_INST(inst)), \
};

DT_INST_FOREACH_STATUS_OKAY(DEFINE_FS)

#define REFERENCE_MOUNT(inst) (&FS_FSTAB_ENTRY(DT_DRV_INST(inst))),

static void mount_init(struct fs_mount_t *mp)
{

	LOG_INF("littlefs partition at %s", mp->mnt_point);
	if ((mp->flags & FS_MOUNT_FLAG_AUTOMOUNT) != 0) {
		int rc = fs_mount(mp);

		if (rc < 0) {
			LOG_ERR("Automount %s failed: %d\n",
				mp->mnt_point, rc);
		} else {
			LOG_INF("Automount %s succeeded\n",
				mp->mnt_point);
		}
	}
}

static int littlefs_init(const struct device *dev)
{
	ARG_UNUSED(dev);
	static struct fs_mount_t *partitions[] = {
		DT_INST_FOREACH_STATUS_OKAY(REFERENCE_MOUNT)
	};

	int rc = fs_register(FS_LITTLEFS, &littlefs_fs);

	if (rc == 0) {
		struct fs_mount_t **mpi = partitions;

		while (mpi < (partitions + ARRAY_SIZE(partitions))) {
			mount_init(*mpi++);
		}
	}

	return rc;
}

SYS_INIT(littlefs_init, POST_KERNEL, 99);