Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
/*
 * Copyright (c) 2011-2014 Wind River Systems, Inc.
 * Copyright (c) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <kernel.h>
#include <arch/x86/mmustructs.h>
#include <sys/mem_manage.h>
#include <sys/__assert.h>
#include <logging/log.h>
#include <errno.h>
#include <ctype.h>
#include <spinlock.h>
#include <kernel_arch_func.h>
#include <x86_mmu.h>
#include <init.h>
#include <kernel_internal.h>
#include <mmu.h>
#include <drivers/interrupt_controller/loapic.h>
#include <mmu.h>

LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);

/* We will use some ignored bits in the PTE to backup permission settings
 * when the mapping was made. This is used to un-apply memory domain memory
 * partitions to page tables when the partitions are removed.
 */
#define MMU_RW_ORIG	MMU_IGNORED0
#define MMU_US_ORIG	MMU_IGNORED1
#define MMU_XD_ORIG	MMU_IGNORED2

/* Bits in the PTE that form the set of permission bits, when resetting */
#define MASK_PERM	(MMU_RW | MMU_US | MMU_XD)

/* When we want to set up a new mapping, discarding any previous state */
#define MASK_ALL	(~((pentry_t)0U))

/* Bits to set at mapping time for particular permissions. We set the actual
 * page table bit effecting the policy and also the backup bit.
 */
#define ENTRY_RW	(MMU_RW | MMU_RW_ORIG)
#define ENTRY_US	(MMU_US | MMU_US_ORIG)
#define ENTRY_XD	(MMU_XD | MMU_XD_ORIG)

/* Bit position which is always zero in a PTE. We'll use the PAT bit.
 * This helps disambiguate PTEs that do not have the Present bit set (MMU_P):
 * - If the entire entry is zero, it's an un-mapped virtual page
 * - If PTE_ZERO is set, we flipped this page due to KPTI
 * - Otherwise, this was a page-out
 */
#define PTE_ZERO	MMU_PAT

/* Protects x86_domain_list and serializes instantiation of intermediate
 * paging structures.
 */
static struct k_spinlock x86_mmu_lock;

#if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
/* List of all active and initialized memory domains. This is used to make
 * sure all memory mappings are the same across all page tables when invoking
 * range_map()
 */
static sys_slist_t x86_domain_list;
#endif

/*
 * Definitions for building an ontology of paging levels and capabilities
 * at each level
 */

/* Data structure describing the characteristics of a particular paging
 * level
 */
struct paging_level {
	/* What bits are used to store physical address */
	pentry_t mask;

	/* Number of entries in this paging structure */
	size_t entries;

	/* How many bits to right-shift a virtual address to obtain the
	 * appropriate entry within this table.
	 *
	 * The memory scope of each entry in this table is 1 << shift.
	 */
	unsigned int shift;
#ifdef CONFIG_EXCEPTION_DEBUG
	/* Name of this level, for debug purposes */
	const char *name;
#endif
};

/* Flags for all entries in intermediate paging levels.
 * Fortunately, the same bits are set for all intermediate levels for all
 * three paging modes.
 *
 * Obviously P is set.
 *
 * We want RW and US bit always set; actual access control will be
 * done at the leaf level.
 *
 * XD (if supported) always 0. Disabling execution done at leaf level.
 *
 * PCD/PWT always 0. Caching properties again done at leaf level.
 */
#define INT_FLAGS	(MMU_P | MMU_RW | MMU_US)

/* Paging level ontology for the selected paging mode.
 *
 * See Figures 4-4, 4-7, 4-11 in the Intel SDM, vol 3A
 */
static const struct paging_level paging_levels[] = {
#ifdef CONFIG_X86_64
	/* Page Map Level 4 */
	{
		.mask = 0x7FFFFFFFFFFFF000ULL,
		.entries = 512U,
		.shift = 39U,
#ifdef CONFIG_EXCEPTION_DEBUG
		.name = "PML4"
#endif
	},
#endif /* CONFIG_X86_64 */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
	/* Page Directory Pointer Table */
	{
		.mask = 0x7FFFFFFFFFFFF000ULL,
#ifdef CONFIG_X86_64
		.entries = 512U,
#else
		/* PAE version */
		.entries = 4U,
#endif
		.shift = 30U,
#ifdef CONFIG_EXCEPTION_DEBUG
		.name = "PDPT"
#endif
	},
#endif /* CONFIG_X86_64 || CONFIG_X86_PAE */
	/* Page Directory */
	{
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
		.mask = 0x7FFFFFFFFFFFF000ULL,
		.entries = 512U,
		.shift = 21U,
#else
		/* 32-bit */
		.mask = 0xFFFFF000U,
		.entries = 1024U,
		.shift = 22U,
#endif /* CONFIG_X86_64 || CONFIG_X86_PAE */
#ifdef CONFIG_EXCEPTION_DEBUG
		.name = "PD"
#endif
	},
	/* Page Table */
	{
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
		.mask = 0x07FFFFFFFFFFF000ULL,
		.entries = 512U,
		.shift = 12U,
#else
		/* 32-bit */
		.mask = 0xFFFFF000U,
		.entries = 1024U,
		.shift = 12U,
#endif /* CONFIG_X86_64 || CONFIG_X86_PAE */
#ifdef CONFIG_EXCEPTION_DEBUG
		.name = "PT"
#endif
	}
};

#define NUM_LEVELS	ARRAY_SIZE(paging_levels)
#define PTE_LEVEL	(NUM_LEVELS - 1)

/*
 * Macros for reserving space for page tables
 *
 * We need to reserve a block of memory equal in size to the page tables
 * generated by gen_mmu.py so that memory addresses do not shift between
 * build phases. These macros ultimately specify INITIAL_PAGETABLE_SIZE.
 */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
#ifdef CONFIG_X86_64
#define NUM_PML4_ENTRIES 512U
#define NUM_PDPT_ENTRIES 512U
#else
#define NUM_PDPT_ENTRIES 4U
#endif /* CONFIG_X86_64 */
#define NUM_PD_ENTRIES   512U
#define NUM_PT_ENTRIES   512U
#else
#define NUM_PD_ENTRIES   1024U
#define NUM_PT_ENTRIES   1024U
#endif /* !CONFIG_X86_64 && !CONFIG_X86_PAE */

/* Memory range covered by an instance of various table types */
#define PT_AREA		((uintptr_t)(CONFIG_MMU_PAGE_SIZE * NUM_PT_ENTRIES))
#define PD_AREA 	(PT_AREA * NUM_PD_ENTRIES)
#ifdef CONFIG_X86_64
#define PDPT_AREA	(PD_AREA * NUM_PDPT_ENTRIES)
#endif

#define VM_ADDR		CONFIG_KERNEL_VM_BASE
#define VM_SIZE		CONFIG_KERNEL_VM_SIZE

/* Define a range [PT_START, PT_END) which is the memory range
 * covered by all the page tables needed for the address space
 */
#define PT_START	((uintptr_t)ROUND_DOWN(VM_ADDR, PT_AREA))
#define PT_END		((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PT_AREA))

/* Number of page tables needed to cover address space. Depends on the specific
 * bounds, but roughly 1 page table per 2MB of RAM
 */
#define NUM_PT	((PT_END - PT_START) / PT_AREA)

#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
/* Same semantics as above, but for the page directories needed to cover
 * system RAM.
 */
#define PD_START	((uintptr_t)ROUND_DOWN(VM_ADDR, PD_AREA))
#define PD_END		((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PD_AREA))
/* Number of page directories needed to cover the address space. Depends on the
 * specific bounds, but roughly 1 page directory per 1GB of RAM
 */
#define NUM_PD	((PD_END - PD_START) / PD_AREA)
#else
/* 32-bit page tables just have one toplevel page directory */
#define NUM_PD	1
#endif

#ifdef CONFIG_X86_64
/* Same semantics as above, but for the page directory pointer tables needed
 * to cover the address space. On 32-bit there is just one 4-entry PDPT.
 */
#define PDPT_START	((uintptr_t)ROUND_DOWN(VM_ADDR, PDPT_AREA))
#define PDPT_END	((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PDPT_AREA))
/* Number of PDPTs needed to cover the address space. 1 PDPT per 512GB of VM */
#define NUM_PDPT	((PDPT_END - PDPT_START) / PDPT_AREA)

/* All pages needed for page tables, using computed values plus one more for
 * the top-level PML4
 */
#define NUM_TABLE_PAGES	(NUM_PT + NUM_PD + NUM_PDPT + 1)
#else /* !CONFIG_X86_64 */
/* Number of pages we need to reserve in the stack for per-thread page tables */
#define NUM_TABLE_PAGES	(NUM_PT + NUM_PD)
#endif /* CONFIG_X86_64 */

#ifdef CONFIG_X86_PAE
/* Toplevel PDPT wasn't included as it is not a page in size */
#define INITIAL_PTABLE_SIZE ((NUM_TABLE_PAGES * CONFIG_MMU_PAGE_SIZE) + 0x20)
#else
#define INITIAL_PTABLE_SIZE (NUM_TABLE_PAGES * CONFIG_MMU_PAGE_SIZE)
#endif

/* "dummy" pagetables for the first-phase build. The real page tables
 * are produced by gen-mmu.py based on data read in zephyr-prebuilt.elf,
 * and this dummy array is discarded.
 */
Z_GENERIC_SECTION(.dummy_pagetables)
static __used char dummy_pagetables[INITIAL_PTABLE_SIZE];

/*
 * Utility functions
 */

/* For a table at a particular level, get the entry index that corresponds to
 * the provided virtual address
 */
static inline int get_index(void *virt, int level)
{
	return (((uintptr_t)virt >> paging_levels[level].shift) %
		paging_levels[level].entries);
}

static inline pentry_t *get_entry_ptr(pentry_t *ptables, void *virt, int level)
{
	return &ptables[get_index(virt, level)];
}

static inline pentry_t get_entry(pentry_t *ptables, void *virt, int level)
{
	return ptables[get_index(virt, level)];
}

/* Get the physical memory address associated with this table entry */
static inline uintptr_t get_entry_phys(pentry_t entry, int level)
{
	return entry & paging_levels[level].mask;
}

/* Return the virtual address of a linked table stored in the provided entry */
static inline pentry_t *next_table(pentry_t entry, int level)
{
	return z_x86_virt_addr(get_entry_phys(entry, level));
}

/* Number of table entries at this level */
static inline size_t get_num_entries(int level)
{
	return paging_levels[level].entries;
}

/* 4K for everything except PAE PDPTs */
static inline size_t table_size(int level)
{
	return get_num_entries(level) * sizeof(pentry_t);
}

/* For a table at a particular level, size of the amount of virtual memory
 * that an entry within the table covers
 */
static inline size_t get_entry_scope(int level)
{
	return (1UL << paging_levels[level].shift);
}

/* For a table at a particular level, size of the amount of virtual memory
 * that this entire table covers
 */
static inline size_t get_table_scope(int level)
{
	return get_entry_scope(level) * get_num_entries(level);
}

/* Must have checked Present bit first! Non-present entries may have OS data
 * stored in any other bits
 */
static inline bool is_leaf(int level, pentry_t entry)
{
	if (level == PTE_LEVEL) {
		/* Always true for PTE */
		return true;
	}

	return ((entry & MMU_PS) != 0U);
}

/* This does NOT (by design) un-flip KPTI PTEs, it's just the raw PTE value */
static inline void pentry_get(int *paging_level, pentry_t *val,
			      pentry_t *ptables, void *virt)
{
	pentry_t *table = ptables;

	for (int level = 0; level < NUM_LEVELS; level++) {
		pentry_t entry = get_entry(table, virt, level);

		if ((entry & MMU_P) == 0 || is_leaf(level, entry)) {
			*val = entry;
			if (paging_level != NULL) {
				*paging_level = level;
			}
			break;
		} else {
			table = next_table(entry, level);
		}
	}
}

static inline void tlb_flush_page(void *addr)
{
	/* Invalidate TLB entries corresponding to the page containing the
	 * specified address
	 */
	char *page = (char *)addr;

	__asm__ ("invlpg %0" :: "m" (*page));
}

#ifdef CONFIG_X86_KPTI
static inline bool is_flipped_pte(pentry_t pte)
{
	return (pte & MMU_P) == 0 && (pte & PTE_ZERO) != 0;
}
#endif

#if defined(CONFIG_SMP)
void z_x86_tlb_ipi(const void *arg)
{
	uintptr_t ptables_phys;

	ARG_UNUSED(arg);

#ifdef CONFIG_X86_KPTI
	/* We're always on the kernel's set of page tables in this context
	 * if KPTI is turned on
	 */
	ptables_phys = z_x86_cr3_get();
	__ASSERT(ptables_phys == z_x86_phys_addr(&z_x86_kernel_ptables), "");
#else
	/* We might have been moved to another memory domain, so always invoke
	 * z_x86_thread_page_tables_get() instead of using current CR3 value.
	 */
	ptables_phys = z_x86_phys_addr(z_x86_thread_page_tables_get(_current));
#endif
	/*
	 * In the future, we can consider making this smarter, such as
	 * propagating which page tables were modified (in case they are
	 * not active on this CPU) or an address range to call
	 * tlb_flush_page() on.
	 */
	LOG_DBG("%s on CPU %d\n", __func__, arch_curr_cpu()->id);

	z_x86_cr3_set(ptables_phys);
}

/* NOTE: This is not synchronous and the actual flush takes place some short
 * time after this exits.
 */
static inline void tlb_shootdown(void)
{
	z_loapic_ipi(0, LOAPIC_ICR_IPI_OTHERS, CONFIG_TLB_IPI_VECTOR);
}
#endif /* CONFIG_SMP */

static inline void assert_addr_aligned(uintptr_t addr)
{
#if __ASSERT_ON
	__ASSERT((addr & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U,
		 "unaligned address 0x%" PRIxPTR, addr);
#endif
}

static inline void assert_virt_addr_aligned(void *addr)
{
	assert_addr_aligned((uintptr_t)addr);
}

static inline void assert_region_page_aligned(void *addr, size_t size)
{
	assert_virt_addr_aligned(addr);
#if __ASSERT_ON
	__ASSERT((size & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U,
		 "unaligned size %zu", size);
#endif
}

/*
 * Debug functions. All conditionally compiled with CONFIG_EXCEPTION_DEBUG.
 */
#ifdef CONFIG_EXCEPTION_DEBUG

/* Add colors to page table dumps to indicate mapping type */
#define COLOR_PAGE_TABLES	1

#if COLOR_PAGE_TABLES
#define ANSI_DEFAULT "\x1B[0m"
#define ANSI_RED     "\x1B[1;31m"
#define ANSI_GREEN   "\x1B[1;32m"
#define ANSI_YELLOW  "\x1B[1;33m"
#define ANSI_BLUE    "\x1B[1;34m"
#define ANSI_MAGENTA "\x1B[1;35m"
#define ANSI_CYAN    "\x1B[1;36m"
#define ANSI_GREY    "\x1B[1;90m"

#define COLOR(x)	printk(_CONCAT(ANSI_, x))
#else
#define COLOR(x)	do { } while (0)
#endif

static char get_entry_code(pentry_t value)
{
	char ret;

	if (value == 0U) {
		/* Unmapped entry */
		ret = '.';
	} else {
		if ((value & MMU_RW) != 0U) {
			/* Writable page */
			if ((value & MMU_XD) != 0U) {
				/* RW */
				ret = 'w';
			} else {
				/* RWX */
				ret = 'a';
			}
		} else {
			if ((value & MMU_XD) != 0U) {
				/* R */
				ret = 'r';
			} else {
				/* RX */
				ret = 'x';
			}
		}

		if ((value & MMU_US) != 0U) {
			/* Uppercase indicates user mode access */
			ret = toupper(ret);
		}
	}

	return ret;
}

static void print_entries(pentry_t entries_array[], uint8_t *base, int level,
			  size_t count)
{
	int column = 0;

	for (int i = 0; i < count; i++) {
		pentry_t entry = entries_array[i];

		uintptr_t phys = get_entry_phys(entry, level);
		uintptr_t virt =
			(uintptr_t)base + (get_entry_scope(level) * i);

		if (entry & MMU_P) {
			if (is_leaf(level, entry)) {
				if (phys == virt) {
					/* Identity mappings */
					COLOR(YELLOW);
				} else {
					/* Other mappings */
					COLOR(GREEN);
				}
			} else {
				/* Intermediate entry */
				COLOR(MAGENTA);
			}
		} else {
			if (is_leaf(level, entry)) {
				if (entry == 0U) {
					/* Unmapped */
					COLOR(GREY);
#ifdef CONFIG_X86_KPTI
				} else if (is_flipped_pte(entry)) {
					/* KPTI, un-flip it */
					COLOR(BLUE);
					entry = ~entry;
					phys = get_entry_phys(entry, level);
					if (phys == virt) {
						/* Identity mapped */
						COLOR(CYAN);
					} else {
						/* Non-identity mapped */
						COLOR(BLUE);
					}
#endif
				} else {
					/* Paged out */
					COLOR(RED);
				}
			} else {
				/* Un-mapped intermediate entry */
				COLOR(GREY);
			}
		}

		printk("%c", get_entry_code(entry));

		column++;
		if (column == 64) {
			column = 0;
			printk("\n");
		}
	}
	COLOR(DEFAULT);

	if (column != 0) {
		printk("\n");
	}
}

static void dump_ptables(pentry_t *table, uint8_t *base, int level)
{
	const struct paging_level *info = &paging_levels[level];

#ifdef CONFIG_X86_64
	/* Account for the virtual memory "hole" with sign-extension */
	if (((uintptr_t)base & BITL(47)) != 0) {
		base = (uint8_t *)((uintptr_t)base | (0xFFFFULL << 48));
	}
#endif

	printk("%s at %p: ", info->name, table);
	if (level == 0) {
		printk("entire address space\n");
	} else {
		printk("for %p - %p\n", base,
		       base + get_table_scope(level) - 1);
	}

	print_entries(table, base, level, info->entries);

	/* Check if we're a page table */
	if (level == PTE_LEVEL) {
		return;
	}

	/* Dump all linked child tables */
	for (int j = 0; j < info->entries; j++) {
		pentry_t entry = table[j];
		pentry_t *next;

		if ((entry & MMU_P) == 0U ||
			(entry & MMU_PS) != 0U) {
			/* Not present or big page, skip */
			continue;
		}

		next = next_table(entry, level);
		dump_ptables(next, base + (j * get_entry_scope(level)),
			     level + 1);
	}
}

void z_x86_dump_page_tables(pentry_t *ptables)
{
	dump_ptables(ptables, NULL, 0);
}

/* Enable to dump out the kernel's page table right before main() starts,
 * sometimes useful for deep debugging. May overwhelm twister.
 */
#define DUMP_PAGE_TABLES 0

#if DUMP_PAGE_TABLES
static int dump_kernel_tables(const struct device *unused)
{
	z_x86_dump_page_tables(z_x86_kernel_ptables);

	return 0;
}

SYS_INIT(dump_kernel_tables, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif

static void str_append(char **buf, size_t *size, const char *str)
{
	int ret = snprintk(*buf, *size, "%s", str);

	if (ret >= *size) {
		/* Truncated */
		*size = 0U;
	} else {
		*size -= ret;
		*buf += ret;
	}

}

static void dump_entry(int level, void *virt, pentry_t entry)
{
	const struct paging_level *info = &paging_levels[level];
	char buf[24] = { 0 };
	char *pos = buf;
	size_t sz = sizeof(buf);
	uint8_t *virtmap = (uint8_t *)ROUND_DOWN(virt, get_entry_scope(level));

	#define DUMP_BIT(bit) do { \
			if ((entry & MMU_##bit) != 0U) { \
				str_append(&pos, &sz, #bit " "); \
			} \
		} while (0)

	DUMP_BIT(RW);
	DUMP_BIT(US);
	DUMP_BIT(PWT);
	DUMP_BIT(PCD);
	DUMP_BIT(A);
	DUMP_BIT(D);
	DUMP_BIT(G);
	DUMP_BIT(XD);

	LOG_ERR("%sE: %p -> " PRI_ENTRY ": %s", info->name,
		virtmap, entry & info->mask, log_strdup(buf));

	#undef DUMP_BIT
}

void z_x86_pentry_get(int *paging_level, pentry_t *val, pentry_t *ptables,
		      void *virt)
{
	pentry_get(paging_level, val, ptables, virt);
}

/*
 * Debug function for dumping out MMU table information to the LOG for a
 * specific virtual address, such as when we get an unexpected page fault.
 */
void z_x86_dump_mmu_flags(pentry_t *ptables, void *virt)
{
	pentry_t entry = 0;
	int level = 0;

	pentry_get(&level, &entry, ptables, virt);

	if ((entry & MMU_P) == 0) {
		LOG_ERR("%sE: not present", paging_levels[level].name);
	} else {
		dump_entry(level, virt, entry);
	}
}
#endif /* CONFIG_EXCEPTION_DEBUG */

/* Reset permissions on a PTE to original state when the mapping was made */
static inline pentry_t reset_pte(pentry_t old_val)
{
	pentry_t new_val;

	/* Clear any existing state in permission bits */
	new_val = old_val & (~K_MEM_PARTITION_PERM_MASK);

	/* Now set permissions based on the stashed original values */
	if ((old_val & MMU_RW_ORIG) != 0) {
		new_val |= MMU_RW;
	}
	if ((old_val & MMU_US_ORIG) != 0) {
		new_val |= MMU_US;
	}
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
	if ((old_val & MMU_XD_ORIG) != 0) {
		new_val |= MMU_XD;
	}
#endif
	return new_val;
}

/* Wrapper functionsfor some gross stuff we have to do for Kernel
 * page table isolation. If these are User mode page tables, the user bit
 * isn't set, and this is not the shared page, all the bits in the PTE
 * are flipped. This serves three purposes:
 *  - The page isn't present, implementing page table isolation
 *  - Flipping the physical address bits cheaply mitigates L1TF
 *  - State is preserved; to get original PTE, just complement again
 */
static inline pentry_t pte_finalize_value(pentry_t val, bool user_table)
{
#ifdef CONFIG_X86_KPTI
	static const uintptr_t shared_phys_addr =
		(uintptr_t)Z_X86_PHYS_ADDR(&z_shared_kernel_page_start);

	if (user_table && (val & MMU_US) == 0 && (val & MMU_P) != 0 &&
	    get_entry_phys(val, PTE_LEVEL) != shared_phys_addr) {
		val = ~val;
	}
#endif
	return val;
}

/* Atomic functions for modifying PTEs. These don't map nicely to Zephyr's
 * atomic API since the only types supported are 'int' and 'void *' and
 * the size of pentry_t depends on other factors like PAE.
 */
#ifndef CONFIG_X86_PAE
/* Non-PAE, pentry_t is same size as void ptr so use atomic_ptr_* APIs */
static inline pentry_t atomic_pte_get(const pentry_t *target)
{
	return (pentry_t)atomic_ptr_get((atomic_ptr_t *)target);
}

static inline bool atomic_pte_cas(pentry_t *target, pentry_t old_value,
				  pentry_t new_value)
{
	return atomic_ptr_cas((atomic_ptr_t *)target, (void *)old_value,
			      (void *)new_value);
}
#else
/* Atomic builtins for 64-bit values on 32-bit x86 require floating point.
 * Don't do this, just lock local interrupts. Needless to say, this
 * isn't workable if someone ever adds SMP to the 32-bit x86 port.
 */
BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP));

static inline pentry_t atomic_pte_get(const pentry_t *target)
{
	return *target;
}

static inline bool atomic_pte_cas(pentry_t *target, pentry_t old_value,
				  pentry_t new_value)
{
	bool ret = false;
	int key = arch_irq_lock();

	if (*target == old_value) {
		*target = new_value;
		ret = true;
	}
	arch_irq_unlock(key);

	return ret;
}
#endif /* CONFIG_X86_PAE */

/* Indicates that the target page tables will be used by user mode threads.
 * This only has implications for CONFIG_X86_KPTI where user thread facing
 * page tables need nearly all pages that don't have the US bit to also
 * not be Present.
 */
#define OPTION_USER		BIT(0)

/* Indicates that the operation requires TLBs to be flushed as we are altering
 * existing mappings. Not needed for establishing new mappings
 */
#define OPTION_FLUSH		BIT(1)

/* Indicates that each PTE's permission bits should be restored to their
 * original state when the memory was mapped. All other bits in the PTE are
 * preserved.
 */
#define OPTION_RESET		BIT(2)

/**
 * Atomically update bits in a page table entry
 *
 * This is atomic with respect to modifications by other CPUs or preempted
 * contexts, which can be very important when making decisions based on
 * the PTE's prior "dirty" state.
 *
 * @param pte Pointer to page table entry to update
 * @param update_val Updated bits to set/clear in PTE. Ignored with
 *        OPTION_RESET.
 * @param update_mask Which bits to modify in the PTE. Ignored with
 *        OPTION_RESET
 * @param options Control flags
 * @retval Old PTE value
 */
static inline pentry_t pte_atomic_update(pentry_t *pte, pentry_t update_val,
					 pentry_t update_mask,
					 uint32_t options)
{
	bool user_table = (options & OPTION_USER) != 0U;
	bool reset = (options & OPTION_RESET) != 0U;
	pentry_t old_val, new_val;

	do {
		old_val = atomic_pte_get(pte);

		new_val = old_val;
#ifdef CONFIG_X86_KPTI
		if (is_flipped_pte(new_val)) {
			/* Page was flipped for KPTI. Un-flip it */
			new_val = ~new_val;
		}
#endif /* CONFIG_X86_KPTI */

		if (reset) {
			new_val = reset_pte(new_val);
		} else {
			new_val = ((new_val & ~update_mask) |
				   (update_val & update_mask));
		}

		new_val = pte_finalize_value(new_val, user_table);
	} while (atomic_pte_cas(pte, old_val, new_val) == false);

#ifdef CONFIG_X86_KPTI
	if (is_flipped_pte(old_val)) {
		/* Page was flipped for KPTI. Un-flip it */
		old_val = ~old_val;
	}
#endif /* CONFIG_X86_KPTI */

	return old_val;
}

/**
 * Low level page table update function for a virtual page
 *
 * For the provided set of page tables, update the PTE associated with the
 * virtual address to a new value, using the mask to control what bits
 * need to be preserved.
 *
 * It is permitted to set up mappings without the Present bit set, in which
 * case all other bits may be used for OS accounting.
 *
 * This function is atomic with respect to the page table entries being
 * modified by another CPU, using atomic operations to update the requested
 * bits and return the previous PTE value.
 *
 * Common mask values:
 *  MASK_ALL  - Update all PTE bits. Exitsing state totally discarded.
 *  MASK_PERM - Only update permission bits. All other bits and physical
 *              mapping preserved.
 *
 * @param ptables Page tables to modify
 * @param virt Virtual page table entry to update
 * @param entry_val Value to update in the PTE (ignored if OPTION_RESET)
 * @param [out] old_val_ptr Filled in with previous PTE value. May be NULL.
 * @param mask What bits to update in the PTE (ignored if OPTION_RESET)
 * @param options Control options, described above
 */
static void page_map_set(pentry_t *ptables, void *virt, pentry_t entry_val,
			 pentry_t *old_val_ptr, pentry_t mask, uint32_t options)
{
	pentry_t *table = ptables;
	bool flush = (options & OPTION_FLUSH) != 0U;

	for (int level = 0; level < NUM_LEVELS; level++) {
		int index;
		pentry_t *entryp;

		index = get_index(virt, level);
		entryp = &table[index];

		/* Check if we're a PTE */
		if (level == PTE_LEVEL) {
			pentry_t old_val = pte_atomic_update(entryp, entry_val,
							     mask, options);
			if (old_val_ptr != NULL) {
				*old_val_ptr = old_val;
			}
			break;
		}

		/* We fail an assertion here due to no support for
		 * splitting existing bigpage mappings.
		 * If the PS bit is not supported at some level (like
		 * in a PML4 entry) it is always reserved and must be 0
		 */
		__ASSERT((*entryp & MMU_PS) == 0U, "large page encountered");
		table = next_table(*entryp, level);
		__ASSERT(table != NULL,
			 "missing page table level %d when trying to map %p",
			 level + 1, virt);
	}
	if (flush) {
		tlb_flush_page(virt);
	}
}

/**
 * Map a physical region in a specific set of page tables.
 *
 * See documentation for page_map_set() for additional notes about masks and
 * supported options.
 *
 * It is vital to remember that all virtual-to-physical mappings must be
 * the same with respect to supervisor mode regardless of what thread is
 * scheduled (and therefore, if multiple sets of page tables exist, which one
 * is active).
 *
 * It is permitted to set up mappings without the Present bit set.
 *
 * @param ptables Page tables to modify
 * @param virt Base page-aligned virtual memory address to map the region.
 * @param phys Base page-aligned physical memory address for the region.
 *        Ignored if OPTION_RESET. Also affected by the mask parameter. This
 *        address is not directly examined, it will simply be programmed into
 *        the PTE.
 * @param size Size of the physical region to map
 * @param entry_flags Non-address bits to set in every PTE. Ignored if
 *        OPTION_RESET. Also affected by the mask parameter.
 * @param mask What bits to update in each PTE. Un-set bits will never be
 *        modified. Ignored if OPTION_RESET.
 * @param options Control options, described above
 */
static void range_map_ptables(pentry_t *ptables, void *virt, uintptr_t phys,
			      size_t size, pentry_t entry_flags, pentry_t mask,
			      uint32_t options)
{
	bool reset = (options & OPTION_RESET) != 0U;

	assert_addr_aligned(phys);
	__ASSERT((size & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U,
		 "unaligned size %zu", size);
	__ASSERT((entry_flags & paging_levels[0].mask) == 0U,
		 "entry_flags " PRI_ENTRY " overlaps address area",
		 entry_flags);

	/* This implementation is stack-efficient but not particularly fast.
	 * We do a full page table walk for every page we are updating.
	 * Recursive approaches are possible, but use much more stack space.
	 */
	for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
		uint8_t *dest_virt = (uint8_t *)virt + offset;
		pentry_t entry_val;

		if (reset) {
			entry_val = 0;
		} else {
			entry_val = (phys + offset) | entry_flags;
		}

		page_map_set(ptables, dest_virt, entry_val, NULL, mask,
			     options);
	}
}

/**
 * Establish or update a memory mapping for all page tables
 *
 * The physical region noted from phys to phys + size will be mapped to
 * an equal sized virtual region starting at virt, with the provided flags.
 * The mask value denotes what bits in PTEs will actually be modified.
 *
 * See range_map_ptables() for additional details.
 *
 * @param virt Page-aligned starting virtual address
 * @param phys Page-aligned starting physical address. Ignored if the mask
 *             parameter does not enable address bits or OPTION_RESET used.
 *             This region is not directly examined, it will simply be
 *             programmed into the page tables.
 * @param size Size of the physical region to map
 * @param entry_flags Desired state of non-address PTE bits covered by mask,
 *                    ignored if OPTION_RESET
 * @param mask What bits in the PTE to actually modifiy; unset bits will
 *             be preserved. Ignored if OPTION_RESET.
 * @param options Control options. Do not set OPTION_USER here. OPTION_FLUSH
 *                will trigger a TLB shootdown after all tables are updated.
 */
static void range_map(void *virt, uintptr_t phys, size_t size,
		      pentry_t entry_flags, pentry_t mask, uint32_t options)
{
	LOG_DBG("%s: %p -> %p (%zu) flags " PRI_ENTRY " mask "
		PRI_ENTRY " opt 0x%x", __func__, (void *)phys, virt, size,
		entry_flags, mask, options);

#ifdef CONFIG_X86_64
	/* There's a gap in the "64-bit" address space, as 4-level paging
	 * requires bits 48 to 63 to be copies of bit 47. Test this
	 * by treating as a signed value and shifting.
	 */
	__ASSERT(((((intptr_t)virt) << 16) >> 16) == (intptr_t)virt,
		 "non-canonical virtual address mapping %p (size %zu)",
		 virt, size);
#endif /* CONFIG_X86_64 */

	__ASSERT((options & OPTION_USER) == 0U, "invalid option for function");

	/* All virtual-to-physical mappings are the same in all page tables.
	 * What can differ is only access permissions, defined by the memory
	 * domain associated with the page tables, and the threads that are
	 * members of that domain.
	 *
	 * Any new mappings need to be applied to all page tables.
	 */
#if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
	sys_snode_t *node;

	SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) {
		struct arch_mem_domain *domain =
			CONTAINER_OF(node, struct arch_mem_domain, node);

		range_map_ptables(domain->ptables, virt, phys, size,
				  entry_flags, mask, options | OPTION_USER);
	}
#endif /* CONFIG_USERSPACE */
	range_map_ptables(z_x86_kernel_ptables, virt, phys, size, entry_flags,
			  mask, options);

#ifdef CONFIG_SMP
	if ((options & OPTION_FLUSH) != 0U) {
		tlb_shootdown();
	}
#endif /* CONFIG_SMP */
}

static inline void range_map_unlocked(void *virt, uintptr_t phys, size_t size,
				      pentry_t entry_flags, pentry_t mask,
				      uint32_t options)
{
	k_spinlock_key_t key;

	key = k_spin_lock(&x86_mmu_lock);
	range_map(virt, phys, size, entry_flags, mask, options);
	k_spin_unlock(&x86_mmu_lock, key);
}

static pentry_t flags_to_entry(uint32_t flags)
{
	pentry_t entry_flags = MMU_P;

	/* Translate flags argument into HW-recognized entry flags.
	 *
	 * Support for PAT is not implemented yet. Many systems may have
	 * BIOS-populated MTRR values such that these cache settings are
	 * redundant.
	 */
	switch (flags & K_MEM_CACHE_MASK) {
	case K_MEM_CACHE_NONE:
		entry_flags |= MMU_PCD;
		break;
	case K_MEM_CACHE_WT:
		entry_flags |= MMU_PWT;
		break;
	case K_MEM_CACHE_WB:
		break;
	default:
		__ASSERT(false, "bad memory mapping flags 0x%x", flags);
	}

	if ((flags & K_MEM_PERM_RW) != 0U) {
		entry_flags |= ENTRY_RW;
	}

	if ((flags & K_MEM_PERM_USER) != 0U) {
		entry_flags |= ENTRY_US;
	}

	if ((flags & K_MEM_PERM_EXEC) == 0U) {
		entry_flags |= ENTRY_XD;
	}

	return entry_flags;
}

/* map new region virt..virt+size to phys with provided arch-neutral flags */
void arch_mem_map(void *virt, uintptr_t phys, size_t size, uint32_t flags)
{
	range_map_unlocked(virt, phys, size, flags_to_entry(flags),
			   MASK_ALL, 0);
}

#if CONFIG_X86_STACK_PROTECTION
void z_x86_set_stack_guard(k_thread_stack_t *stack)
{
	/* Applied to all page tables as this affects supervisor mode.
	 * XXX: This never gets reset when the thread exits, which can
	 * cause problems if the memory is later used for something else.
	 * See #29499
	 *
	 * Guard page is always the first page of the stack object for both
	 * kernel and thread stacks.
	 */
	range_map_unlocked(stack, 0, CONFIG_MMU_PAGE_SIZE,
			   MMU_P | ENTRY_XD, MASK_PERM, OPTION_FLUSH);
}
#endif /* CONFIG_X86_STACK_PROTECTION */

#ifdef CONFIG_USERSPACE
static bool page_validate(pentry_t *ptables, uint8_t *addr, bool write)
{
	pentry_t *table = (pentry_t *)ptables;

	for (int level = 0; level < NUM_LEVELS; level++) {
		pentry_t entry = get_entry(table, addr, level);

		if (is_leaf(level, entry)) {
#ifdef CONFIG_X86_KPTI
			if (is_flipped_pte(entry)) {
				/* We flipped this to prevent user access
				 * since just clearing US isn't sufficient
				 */
				return false;
			}
#endif
			/* US and RW bits still carry meaning if non-present.
			 * If the data page is paged out, access bits are
			 * preserved. If un-mapped, the whole entry is 0.
			 */
			if (((entry & MMU_US) == 0U) ||
			    (write && ((entry & MMU_RW) == 0U))) {
				return false;
			}
		} else {
			if ((entry & MMU_P) == 0U) {
				/* Missing intermediate table, address is
				 * un-mapped
				 */
				return false;
			}
			table = next_table(entry, level);
		}
	}

	return true;
}

static inline void bcb_fence(void)
{
#ifdef CONFIG_X86_BOUNDS_CHECK_BYPASS_MITIGATION
	__asm__ volatile ("lfence" : : : "memory");
#endif
}

int arch_buffer_validate(void *addr, size_t size, int write)
{
	pentry_t *ptables = z_x86_thread_page_tables_get(_current);
	uint8_t *virt;
	size_t aligned_size;
	int ret = 0;

	/* addr/size arbitrary, fix this up into an aligned region */
	k_mem_region_align((uintptr_t *)&virt, &aligned_size,
			   (uintptr_t)addr, size, CONFIG_MMU_PAGE_SIZE);

	for (size_t offset = 0; offset < aligned_size;
	     offset += CONFIG_MMU_PAGE_SIZE) {
		if (!page_validate(ptables, virt + offset, write)) {
			ret = -1;
			break;
		}
	}

	bcb_fence();

	return ret;
}
#ifdef CONFIG_X86_COMMON_PAGE_TABLE
/* Very low memory configuration. A single set of page tables is used for
 * all threads. This relies on some assumptions:
 *
 * - No KPTI. If that were supported, we would need both a kernel and user
 *   set of page tables.
 * - No SMP. If that were supported, we would need per-core page tables.
 * - Memory domains don't affect supervisor mode.
 * - All threads have the same virtual-to-physical mappings.
 * - Memory domain APIs can't be called by user mode.
 *
 * Because there is no SMP, only one set of page tables, and user threads can't
 * modify their own memory domains, we don't have to do much when
 * arch_mem_domain_* APIs are called. We do use a caching scheme to avoid
 * updating page tables if the last user thread scheduled was in the same
 * domain.
 *
 * We don't set CONFIG_ARCH_MEM_DOMAIN_DATA, since we aren't setting
 * up any arch-specific memory domain data (per domain page tables.)
 *
 * This is all nice and simple and saves a lot of memory. The cost is that
 * context switching is not trivial CR3 update. We have to reset all partitions
 * for the current domain configuration and then apply all the partitions for
 * the incoming thread's domain if they are not the same. We also need to
 * update permissions similarly on the thread stack region.
 */

static inline void reset_region(uintptr_t start, size_t size)
{
	range_map_unlocked((void *)start, 0, size, 0, 0,
			   OPTION_FLUSH | OPTION_RESET);
}

static inline void apply_region(uintptr_t start, size_t size, pentry_t attr)
{
	range_map_unlocked((void *)start, 0, size, attr, MASK_PERM,
			   OPTION_FLUSH);
}

/* Cache of the current memory domain applied to the common page tables and
 * the stack buffer region that had User access granted.
 */
static struct k_mem_domain *current_domain;
static uintptr_t current_stack_start;
static size_t current_stack_size;

void z_x86_swap_update_common_page_table(struct k_thread *incoming)
{
	k_spinlock_key_t key;

	if ((incoming->base.user_options & K_USER) == 0) {
		/* Incoming thread is not a user thread. Memory domains don't
		 * affect supervisor threads and we don't need to enable User
		 * bits for its stack buffer; do nothing.
		 */
		return;
	}

	/* Step 1: Make sure the thread stack is set up correctly for the
	 * for the incoming thread
	 */
	if (incoming->stack_info.start != current_stack_start ||
	    incoming->stack_info.size != current_stack_size) {
		if (current_stack_size != 0U) {
			reset_region(current_stack_start, current_stack_size);
		}

		/* The incoming thread's stack region needs User permissions */
		apply_region(incoming->stack_info.start,
			     incoming->stack_info.size,
			     K_MEM_PARTITION_P_RW_U_RW);

		/* Update cache */
		current_stack_start = incoming->stack_info.start;
		current_stack_size = incoming->stack_info.size;
	}

	/* Step 2: The page tables always have some memory domain applied to
	 * them. If the incoming thread's memory domain is different,
	 * update the page tables
	 */
	key = k_spin_lock(&z_mem_domain_lock);
	if (incoming->mem_domain_info.mem_domain == current_domain) {
		/* The incoming thread's domain is already applied */
		goto out_unlock;
	}

	/* Reset the current memory domain regions... */
	if (current_domain != NULL) {
		for (int i = 0; i < CONFIG_MAX_DOMAIN_PARTITIONS; i++) {
			struct k_mem_partition *ptn =
				&current_domain->partitions[i];

			if (ptn->size == 0) {
				continue;
			}
			reset_region(ptn->start, ptn->size);
		}
	}

	/* ...and apply all the incoming domain's regions */
	for (int i = 0; i < CONFIG_MAX_DOMAIN_PARTITIONS; i++) {
		struct k_mem_partition *ptn =
			&incoming->mem_domain_info.mem_domain->partitions[i];

		if (ptn->size == 0) {
			continue;
		}
		apply_region(ptn->start, ptn->size, ptn->attr);
	}
	current_domain = incoming->mem_domain_info.mem_domain;
out_unlock:
	k_spin_unlock(&z_mem_domain_lock, key);
}

/* If a partition was added or removed in the cached domain, update the
 * page tables.
 */
void arch_mem_domain_partition_remove(struct k_mem_domain *domain,
				      uint32_t partition_id)
{
	struct k_mem_partition *ptn;

	if (domain != current_domain) {
		return;
	}

	ptn = &domain->partitions[partition_id];
	reset_region(ptn->start, ptn->size);
}

void arch_mem_domain_partition_add(struct k_mem_domain *domain,
				   uint32_t partition_id)
{
	struct k_mem_partition *ptn;

	if (domain != current_domain) {
		return;
	}

	ptn = &domain->partitions[partition_id];
	apply_region(ptn->start, ptn->size, ptn->attr);
}

/* Rest of the APIs don't need to do anything */
void arch_mem_domain_thread_add(struct k_thread *thread)
{

}

void arch_mem_domain_thread_remove(struct k_thread *thread)
{

}

void arch_mem_domain_destroy(struct k_mem_domain *domain)
{

}
#else
/* Memory domains each have a set of page tables assigned to them */

/*
 * Pool of free memory pages for copying page tables, as needed.
 */
#define PTABLE_COPY_SIZE	(NUM_TABLE_PAGES * CONFIG_MMU_PAGE_SIZE)

static uint8_t __noinit
	page_pool[PTABLE_COPY_SIZE * CONFIG_X86_MAX_ADDITIONAL_MEM_DOMAINS]
	__aligned(CONFIG_MMU_PAGE_SIZE);

static uint8_t *page_pos = page_pool + sizeof(page_pool);

/* Return a zeroed and suitably aligned memory page for page table data
 * from the global page pool
 */
static void *page_pool_get(void)
{
	void *ret;

	if (page_pos == page_pool) {
		ret = NULL;
	} else {
		page_pos -= CONFIG_MMU_PAGE_SIZE;
		ret = page_pos;
	}

	if (ret != NULL) {
		memset(ret, 0, CONFIG_MMU_PAGE_SIZE);
	}

	return ret;
}

/* Debugging function to show how many pages are free in the pool */
static inline unsigned int pages_free(void)
{
	return (page_pos - page_pool) / CONFIG_MMU_PAGE_SIZE;
}

/**
*  Duplicate an entire set of page tables
 *
 * Uses recursion, but depth at any given moment is limited by the number of
 * paging levels.
 *
 * x86_mmu_lock must be held.
 *
 * @param dst a zeroed out chunk of memory of sufficient size for the indicated
 *            paging level.
 * @param src some paging structure from within the source page tables to copy
 *            at the indicated paging level
 * @param level Current paging level
 * @retval 0 Success
 * @retval -ENOMEM Insufficient page pool memory
 */
static int copy_page_table(pentry_t *dst, pentry_t *src, int level)
{
	if (level == PTE_LEVEL) {
		/* Base case: leaf page table */
		for (int i = 0; i < get_num_entries(level); i++) {
			dst[i] = pte_finalize_value(reset_pte(src[i]), true);
		}
	} else {
		/* Recursive case: allocate sub-structures as needed and
		 * make recursive calls on them
		 */
		for (int i = 0; i < get_num_entries(level); i++) {
			pentry_t *child_dst;
			int ret;

			if ((src[i] & MMU_P) == 0) {
				/* Non-present, skip */
				continue;
			}

			__ASSERT((src[i] & MMU_PS) == 0,
				 "large page encountered");

			child_dst = page_pool_get();
			if (child_dst == NULL) {
				return -ENOMEM;
			}

			/* Page table links are by physical address. RAM
			 * for page tables is identity-mapped, but double-
			 * cast needed for PAE case where sizeof(void *) and
			 * sizeof(pentry_t) are not the same.
			 */
			dst[i] = ((pentry_t)z_x86_phys_addr(child_dst) |
				  INT_FLAGS);

			ret = copy_page_table(child_dst,
					      next_table(src[i], level),
					      level + 1);
			if (ret != 0) {
				return ret;
			}
		}
	}

	return 0;
}

static void region_map_update(pentry_t *ptables, void *start,
			      size_t size, pentry_t flags, bool reset)
{
	uint32_t options = OPTION_USER;
	k_spinlock_key_t key;

	if (reset) {
		options |= OPTION_RESET;
	}
	if (ptables == z_x86_page_tables_get()) {
		options |= OPTION_FLUSH;
	}

	key = k_spin_lock(&x86_mmu_lock);
	(void)range_map_ptables(ptables, start, 0, size, flags, MASK_PERM,
				options);
	k_spin_unlock(&x86_mmu_lock, key);

#ifdef CONFIG_SMP
	tlb_shootdown();
#endif
}

static inline void reset_region(pentry_t *ptables, void *start, size_t size)
{
	LOG_DBG("%s(%p, %p, %zu)", __func__, ptables, start, size);
	region_map_update(ptables, start, size, 0, true);
}

static inline void apply_region(pentry_t *ptables, void *start,
				size_t size, pentry_t attr)
{
	LOG_DBG("%s(%p, %p, %zu, " PRI_ENTRY ")", __func__, ptables, start,
		size, attr);
	region_map_update(ptables, start, size, attr, false);
}

static void set_stack_perms(struct k_thread *thread, pentry_t *ptables)
{
	LOG_DBG("update stack for thread %p's ptables at %p: %p (size %zu)",
		thread, ptables, (void *)thread->stack_info.start,
		thread->stack_info.size);
	apply_region(ptables, (void *)thread->stack_info.start,
		     thread->stack_info.size,
		     MMU_P | MMU_XD | MMU_RW | MMU_US);
}

/*
 * Arch interface implementations for memory domains and userspace
 */

int arch_mem_domain_init(struct k_mem_domain *domain)
{
	int ret;
	k_spinlock_key_t key  = k_spin_lock(&x86_mmu_lock);

	LOG_DBG("%s(%p)", __func__, domain);
#if __ASSERT_ON
	sys_snode_t *node;

	/* Assert that we have not already initialized this domain */
	SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) {
		struct arch_mem_domain *list_domain =
			CONTAINER_OF(node, struct arch_mem_domain, node);

		__ASSERT(list_domain != &domain->arch,
			 "%s(%p) called multiple times", __func__, domain);
	}
#endif /* __ASSERT_ON */
#ifndef CONFIG_X86_KPTI
	/* If we're not using KPTI then we can use the build time page tables
	 * (which are mutable) as the set of page tables for the default
	 * memory domain, saving us some memory.
	 *
	 * We skip adding this domain to x86_domain_list since we already
	 * update z_x86_kernel_ptables directly in range_map().
	 */
	if (domain == &k_mem_domain_default) {
		domain->arch.ptables = z_x86_kernel_ptables;
		k_spin_unlock(&x86_mmu_lock, key);
		return 0;
	}
#endif /* CONFIG_X86_KPTI */
#ifdef CONFIG_X86_PAE
	/* PDPT is stored within the memory domain itself since it is
	 * much smaller than a full page
	 */
	(void)memset(domain->arch.pdpt, 0, sizeof(domain->arch.pdpt));
	domain->arch.ptables = domain->arch.pdpt;
#else
	/* Allocate a page-sized top-level structure, either a PD or PML4 */
	domain->arch.ptables = page_pool_get();
	if (domain->arch.ptables == NULL) {
		k_spin_unlock(&x86_mmu_lock, key);
		return -ENOMEM;
	}
#endif /* CONFIG_X86_PAE */

	LOG_DBG("copy_page_table(%p, %p, 0)", domain->arch.ptables,
		z_x86_kernel_ptables);

	/* Make a copy of the boot page tables created by gen_mmu.py */
	ret = copy_page_table(domain->arch.ptables, z_x86_kernel_ptables, 0);
	if (ret == 0) {
		sys_slist_append(&x86_domain_list, &domain->arch.node);
	}
	k_spin_unlock(&x86_mmu_lock, key);

	return ret;
}

void arch_mem_domain_partition_remove(struct k_mem_domain *domain,
				      uint32_t partition_id)
{
	struct k_mem_partition *partition = &domain->partitions[partition_id];

	/* Reset the partition's region back to defaults */
	reset_region(domain->arch.ptables, (void *)partition->start,
		     partition->size);
}

void arch_mem_domain_destroy(struct k_mem_domain *domain)
{
	/* No-op, this is eventually getting removed in 2.5 */
}

/* Called on thread exit or when moving it to a different memory domain */
void arch_mem_domain_thread_remove(struct k_thread *thread)
{
	struct k_mem_domain *domain = thread->mem_domain_info.mem_domain;

	if ((thread->base.user_options & K_USER) == 0) {
		return;
	}

	if ((thread->base.thread_state & _THREAD_DEAD) == 0) {
		/* Thread is migrating to another memory domain and not
		 * exiting for good; we weren't called from
		 * z_thread_single_abort().  Resetting the stack region will
		 * take place in the forthcoming thread_add() call.
		 */
		return;
	}

	/* Restore permissions on the thread's stack area since it is no
	 * longer a member of the domain.
	 */
	reset_region(domain->arch.ptables, (void *)thread->stack_info.start,
		     thread->stack_info.size);
}

void arch_mem_domain_partition_add(struct k_mem_domain *domain,
				   uint32_t partition_id)
{
	struct k_mem_partition *partition = &domain->partitions[partition_id];

	/* Update the page tables with the partition info */
	apply_region(domain->arch.ptables, (void *)partition->start,
		     partition->size, partition->attr | MMU_P);
}

/* Invoked from memory domain API calls, as well as during thread creation */
void arch_mem_domain_thread_add(struct k_thread *thread)
{
	/* New memory domain we are being added to */
	struct k_mem_domain *domain = thread->mem_domain_info.mem_domain;
	/* This is only set for threads that were migrating from some other
	 * memory domain; new threads this is NULL
	 */
	pentry_t *old_ptables = z_x86_virt_addr(thread->arch.ptables);
	bool is_user = (thread->base.user_options & K_USER) != 0;
	bool is_migration = (old_ptables != NULL) && is_user;

	/* Allow US access to the thread's stack in its new domain if
	 * we are migrating. If we are not migrating this is done in
	 * z_x86_current_stack_perms()
	 */
	if (is_migration) {
		set_stack_perms(thread, domain->arch.ptables);
	}

	thread->arch.ptables = z_x86_phys_addr(domain->arch.ptables);
	LOG_DBG("set thread %p page tables to %p", thread,
		(void *)thread->arch.ptables);

	/* Check if we're doing a migration from a different memory domain
	 * and have to remove permissions from its old domain.
	 *
	 * XXX: The checks we have to do here and in
	 * arch_mem_domain_thread_remove() are clumsy, it may be worth looking
	 * into adding a specific arch_mem_domain_thread_migrate() API.
	 * See #29601
	 */
	if (is_migration) {
		reset_region(old_ptables, (void *)thread->stack_info.start,
			     thread->stack_info.size);
	}

#if !defined(CONFIG_X86_KPTI) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
	/* Need to switch to using these new page tables, in case we drop
	 * to user mode before we are ever context switched out.
	 * IPI takes care of this if the thread is currently running on some
	 * other CPU.
	 */
	if (thread == _current && thread->arch.ptables != z_x86_cr3_get()) {
		z_x86_cr3_set(thread->arch.ptables);
	}
#endif /* CONFIG_X86_KPTI */
}
#endif /* !CONFIG_X86_COMMON_PAGE_TABLE */

int arch_mem_domain_max_partitions_get(void)
{
	return CONFIG_MAX_DOMAIN_PARTITIONS;
}

/* Invoked from z_x86_userspace_enter */
void z_x86_current_stack_perms(void)
{
	/* Clear any previous context in the stack buffer to prevent
	 * unintentional data leakage.
	 */
	(void)memset((void *)_current->stack_info.start, 0xAA,
		     _current->stack_info.size - _current->stack_info.delta);

	/* Only now is it safe to grant access to the stack buffer since any
	 * previous context has been erased.
	 */
#ifdef CONFIG_X86_COMMON_PAGE_TABLE
	/* Re run swap page table update logic since we're entering User mode.
	 * This will grant stack and memory domain access if it wasn't set
	 * already (in which case this returns very quickly).
	 */
	z_x86_swap_update_common_page_table(_current);
#else
	/* Memory domain access is already programmed into the page tables.
	 * Need to enable access to this new user thread's stack buffer in
	 * its domain-specific page tables.
	 */
	set_stack_perms(_current, z_x86_thread_page_tables_get(_current));
#endif
}
#endif /* CONFIG_USERSPACE */

#ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
/* Selected on PC-like targets at the SOC level.
 *
 * Best is to do some E820 or similar enumeration to specifically identify
 * all page frames which are reserved by the hardware or firmware.
 *
 * For now, just reserve everything in the first megabyte of physical memory.
 */
void arch_reserved_pages_update(void)
{
	for (uintptr_t pos = 0; pos < (1024 * 1024);
	     pos += CONFIG_MMU_PAGE_SIZE) {
		struct z_page_frame *pf = z_phys_to_page_frame(pos);

		pf->flags |= Z_PAGE_FRAME_RESERVED;
	}
}
#endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */

#ifdef CONFIG_DEMAND_PAGING
#define PTE_MASK (paging_levels[PTE_LEVEL].mask)

void arch_mem_page_out(void *addr, uintptr_t location)
{
	pentry_t mask = PTE_MASK | MMU_P | MMU_A;

	/* Accessed bit set to guarantee the entry is not completely 0 in
	 * case of location value 0. A totally 0 PTE is un-mapped.
	 */
	range_map(addr, location, CONFIG_MMU_PAGE_SIZE,	MMU_A, mask,
		  OPTION_FLUSH);
}

void arch_mem_page_in(void *addr, uintptr_t phys)
{
	pentry_t mask = PTE_MASK | MMU_P | MMU_D | MMU_A;

	range_map(addr, phys, CONFIG_MMU_PAGE_SIZE,	MMU_P, mask,
		  OPTION_FLUSH);
}

void arch_mem_scratch(uintptr_t phys)
{
	page_map_set(z_x86_page_tables_get(), Z_SCRATCH_PAGE,
		     phys | MMU_P | MMU_RW | MMU_XD, NULL, MASK_ALL,
		     OPTION_FLUSH);
}

uintptr_t arch_page_info_get(void *addr, uintptr_t *phys, bool clear_accessed)
{
	pentry_t all_pte, mask;
	uint32_t options;

	/* What to change, if anything, in the page_map_set() calls */
	if (clear_accessed) {
		mask = MMU_A;
		options = OPTION_FLUSH;
	} else {
		/* In this configuration page_map_set() just queries the
		 * page table and makes no changes
		 */
		mask = 0;
		options = 0;
	}

	page_map_set(z_x86_kernel_ptables, addr, 0, &all_pte, mask, options);

	/* Un-mapped PTEs are completely zeroed. No need to report anything
	 * else in this case.
	 */
	if (all_pte == 0) {
		return ARCH_DATA_PAGE_NOT_MAPPED;
	}

#if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE)
	/* Don't bother looking at other page tables if non-present as we
	 * are not required to report accurate accessed/dirty in this case
	 * and all mappings are otherwise the same.
	 */
	if ((all_pte & MMU_P) != 0) {
		sys_snode_t *node;

		/* IRQs are locked, safe to do this */
		SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) {
			pentry_t cur_pte;
			struct arch_mem_domain *domain =
				CONTAINER_OF(node, struct arch_mem_domain,
					     node);

			page_map_set(domain->ptables, addr, 0, &cur_pte,
				     mask, options | OPTION_USER);

			/* Logical OR of relevant PTE in all page tables.
			 * addr/location and present state should be identical
			 * among them.
			 */
			all_pte |= cur_pte;
		}
	}
#endif /* USERSPACE && ~X86_COMMON_PAGE_TABLE */

	/* NOTE: We are truncating the PTE on PAE systems, whose pentry_t
	 * are larger than a uintptr_t.
	 *
	 * We currently aren't required to report back XD state (bit 63), and
	 * Zephyr just doesn't support large physical memory on 32-bit
	 * systems, PAE was only implemented for XD support.
	 */
	if (phys != NULL) {
		*phys = (uintptr_t)get_entry_phys(all_pte, PTE_LEVEL);
	}

	/* We don't filter out any other bits in the PTE and the kernel
	 * ignores them. For the case of ARCH_DATA_PAGE_NOT_MAPPED,
	 * we use a bit which is never set in a real PTE (the PAT bit) in the
	 * current system.
	 *
	 * The other ARCH_DATA_PAGE_* macros are defined to their corresponding
	 * bits in the PTE.
	 */
	return (uintptr_t)all_pte;
}

enum arch_page_location arch_page_location_get(void *addr, uintptr_t *location)
{
	pentry_t pte;
	int level;

	/* TODO: since we only have to query the current set of page tables,
	 * could optimize this with recursive page table mapping
	 */
	pentry_get(&level, &pte, z_x86_page_tables_get(), addr);

	if (pte == 0) {
		/* Not mapped */
		return ARCH_PAGE_LOCATION_BAD;
	}

	__ASSERT(level == PTE_LEVEL, "bigpage found at %p", addr);
	*location = (uintptr_t)get_entry_phys(pte, PTE_LEVEL);

	if ((pte & MMU_P) != 0) {
		return ARCH_PAGE_LOCATION_PAGED_IN;
	} else {
		return ARCH_PAGE_LOCATION_PAGED_OUT;
	}
}

#ifdef CONFIG_X86_KPTI
bool z_x86_kpti_is_access_ok(void *addr, pentry_t *ptables)
{
	pentry_t pte;
	int level;

	pentry_get(&level, &pte, ptables, addr);

	/* Might as well also check if it's un-mapped, normally we don't
	 * fetch the PTE from the page tables until we are inside
	 * z_page_fault() and call arch_page_fault_status_get()
	 */
	if (level != PTE_LEVEL || pte == 0 || is_flipped_pte(pte)) {
		return false;
	}

	return true;
}
#endif /* CONFIG_X86_KPTI */
#endif /* CONFIG_DEMAND_PAGING */