Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Kernel initialization module
 *
 * This module contains routines that are used to initialize the kernel.
 */

#include <zephyr.h>
#include <offsets_short.h>
#include <kernel.h>
#include <sys/printk.h>
#include <debug/stack.h>
#include <random/rand32.h>
#include <linker/sections.h>
#include <toolchain.h>
#include <kernel_structs.h>
#include <device.h>
#include <init.h>
#include <linker/linker-defs.h>
#include <ksched.h>
#include <string.h>
#include <sys/dlist.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <drivers/entropy.h>
#include <logging/log_ctrl.h>
#include <tracing/tracing.h>
#include <stdbool.h>
#include <debug/gcov.h>
#include <kswap.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);

/* boot time measurement items */
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
uint32_t __noinit z_timestamp_main;  /* timestamp when main task starts */
uint32_t __noinit z_timestamp_idle;  /* timestamp when CPU goes idle */
#endif

/* init/main and idle threads */
K_THREAD_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
struct k_thread z_main_thread;

#ifdef CONFIG_MULTITHREADING
struct k_thread z_idle_threads[CONFIG_MP_NUM_CPUS];
static K_KERNEL_STACK_ARRAY_DEFINE(z_idle_stacks, CONFIG_MP_NUM_CPUS,
				   CONFIG_IDLE_STACK_SIZE);
#endif /* CONFIG_MULTITHREADING */

/*
 * storage space for the interrupt stack
 *
 * Note: This area is used as the system stack during kernel initialization,
 * since the kernel hasn't yet set up its own stack areas. The dual purposing
 * of this area is safe since interrupts are disabled until the kernel context
 * switches to the init thread.
 */
K_KERNEL_STACK_ARRAY_DEFINE(z_interrupt_stacks, CONFIG_MP_NUM_CPUS,
			    CONFIG_ISR_STACK_SIZE);

#ifdef CONFIG_SYS_CLOCK_EXISTS
	#define initialize_timeouts() do { \
		sys_dlist_init(&_timeout_q); \
	} while (false)
#else
	#define initialize_timeouts() do { } while ((0))
#endif

extern void idle(void *unused1, void *unused2, void *unused3);


/* LCOV_EXCL_START
 *
 * This code is called so early in the boot process that code coverage
 * doesn't work properly. In addition, not all arches call this code,
 * some like x86 do this with optimized assembly
 */

/**
 *
 * @brief Clear BSS
 *
 * This routine clears the BSS region, so all bytes are 0.
 *
 * @return N/A
 */
void z_bss_zero(void)
{
	(void)memset(__bss_start, 0, __bss_end - __bss_start);
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay)
	(void)memset(&__ccm_bss_start, 0,
		     ((uint32_t) &__ccm_bss_end - (uint32_t) &__ccm_bss_start));
#endif
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
	(void)memset(&__dtcm_bss_start, 0,
		     ((uint32_t) &__dtcm_bss_end - (uint32_t) &__dtcm_bss_start));
#endif
#ifdef CONFIG_CODE_DATA_RELOCATION
	extern void bss_zeroing_relocation(void);

	bss_zeroing_relocation();
#endif	/* CONFIG_CODE_DATA_RELOCATION */
#ifdef CONFIG_COVERAGE_GCOV
	(void)memset(&__gcov_bss_start, 0,
		 ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start));
#endif
}

#ifdef CONFIG_STACK_CANARIES
extern volatile uintptr_t __stack_chk_guard;
#endif /* CONFIG_STACK_CANARIES */

/* LCOV_EXCL_STOP */

bool z_sys_post_kernel;
extern void boot_banner(void);

/**
 *
 * @brief Mainline for kernel's background thread
 *
 * This routine completes kernel initialization by invoking the remaining
 * init functions, then invokes application's main() routine.
 *
 * @return N/A
 */
static void bg_thread_main(void *unused1, void *unused2, void *unused3)
{
	ARG_UNUSED(unused1);
	ARG_UNUSED(unused2);
	ARG_UNUSED(unused3);

#ifdef CONFIG_MMU
	/* Invoked here such that backing store or eviction algorithms may
	 * initialize kernel objects, and that all POST_KERNEL and later tasks
	 * may perform memory management tasks (except for z_phys_map() which
	 * is allowed at any time)
	 */
	z_mem_manage_init();
#endif /* CONFIG_MMU */
	z_sys_post_kernel = true;

	z_sys_init_run_level(_SYS_INIT_LEVEL_POST_KERNEL);
#if CONFIG_STACK_POINTER_RANDOM
	z_stack_adjust_initialized = 1;
#endif
	boot_banner();

#ifdef CONFIG_CPLUSPLUS
	/* Process the .ctors and .init_array sections */
	extern void __do_global_ctors_aux(void);
	extern void __do_init_array_aux(void);
	__do_global_ctors_aux();
	__do_init_array_aux();
#endif

	/* Final init level before app starts */
	z_sys_init_run_level(_SYS_INIT_LEVEL_APPLICATION);

	z_init_static_threads();

#ifdef KERNEL_COHERENCE
	__ASSERT_NO_MSG(arch_mem_coherent(_kernel));
#endif

#ifdef CONFIG_SMP
	z_smp_init();
	z_sys_init_run_level(_SYS_INIT_LEVEL_SMP);
#endif

#ifdef CONFIG_BOOT_TIME_MEASUREMENT
	z_timestamp_main = k_cycle_get_32();
#endif

	extern void main(void);

	main();

	/* Mark nonessenrial since main() has no more work to do */
	z_main_thread.base.user_options &= ~K_ESSENTIAL;

#ifdef CONFIG_COVERAGE_DUMP
	/* Dump coverage data once the main() has exited. */
	gcov_coverage_dump();
#endif
} /* LCOV_EXCL_LINE ... because we just dumped final coverage data */

/* LCOV_EXCL_START */

void __weak main(void)
{
	/* NOP default main() if the application does not provide one. */
	arch_nop();
}

/* LCOV_EXCL_STOP */

#if defined(CONFIG_MULTITHREADING)
static void init_idle_thread(int i)
{
	struct k_thread *thread = &z_idle_threads[i];
	k_thread_stack_t *stack = z_idle_stacks[i];

#ifdef CONFIG_THREAD_NAME
	char tname[8];

	snprintk(tname, 8, "idle %02d", i);
#else
	char *tname = NULL;
#endif /* CONFIG_THREAD_NAME */

	z_setup_new_thread(thread, stack,
			  CONFIG_IDLE_STACK_SIZE, idle, &_kernel.cpus[i],
			  NULL, NULL, K_LOWEST_THREAD_PRIO, K_ESSENTIAL,
			  tname);
	z_mark_thread_as_started(thread);

#ifdef CONFIG_SMP
	thread->base.is_idle = 1U;
#endif
}

/**
 *
 * @brief Initializes kernel data structures
 *
 * This routine initializes various kernel data structures, including
 * the init and idle threads and any architecture-specific initialization.
 *
 * Note that all fields of "_kernel" are set to zero on entry, which may
 * be all the initialization many of them require.
 *
 * @return initial stack pointer for the main thread
 */
static char *prepare_multithreading(void)
{
	char *stack_ptr;
	uint32_t opt;

	/* _kernel.ready_q is all zeroes */
	z_sched_init();

#ifndef CONFIG_SMP
	/*
	 * prime the cache with the main thread since:
	 *
	 * - the cache can never be NULL
	 * - the main thread will be the one to run first
	 * - no other thread is initialized yet and thus their priority fields
	 *   contain garbage, which would prevent the cache loading algorithm
	 *   to work as intended
	 */
	_kernel.ready_q.cache = &z_main_thread;
#endif

	opt = K_ESSENTIAL;
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
	/* Enable FPU in main thread */
	opt |= K_FP_REGS;
#endif

	stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
				       CONFIG_MAIN_STACK_SIZE, bg_thread_main,
				       NULL, NULL, NULL,
				       CONFIG_MAIN_THREAD_PRIORITY,
				       opt, "main");
	z_mark_thread_as_started(&z_main_thread);
	z_ready_thread(&z_main_thread);

	for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) {
		init_idle_thread(i);
		_kernel.cpus[i].idle_thread = &z_idle_threads[i];
		_kernel.cpus[i].id = i;
		_kernel.cpus[i].irq_stack =
			(Z_KERNEL_STACK_BUFFER(z_interrupt_stacks[i]) +
			 K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[i]));
	}

	initialize_timeouts();

	return stack_ptr;
}

static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
{
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
	arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
#else
	ARG_UNUSED(stack_ptr);
	/*
	 * Context switch to main task (entry function is _main()): the
	 * current fake thread is not on a wait queue or ready queue, so it
	 * will never be rescheduled in.
	 */
	z_swap_unlocked();
#endif
	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
#endif /* CONFIG_MULTITHREADING */

#if defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR)
void z_early_boot_rand_get(uint8_t *buf, size_t length)
{
	int n = sizeof(uint32_t);
#ifdef CONFIG_ENTROPY_HAS_DRIVER
	const struct device *entropy = device_get_binding(DT_CHOSEN_ZEPHYR_ENTROPY_LABEL);
	int rc;

	if (entropy == NULL) {
		goto sys_rand_fallback;
	}

	/* Try to see if driver provides an ISR-specific API */
	rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
	if (rc == -ENOTSUP) {
		/* Driver does not provide an ISR-specific API, assume it can
		 * be called from ISR context
		 */
		rc = entropy_get_entropy(entropy, buf, length);
	}

	if (rc >= 0) {
		return;
	}

	/* Fall through to fallback */

sys_rand_fallback:
#endif

	/* FIXME: this assumes sys_rand32_get() won't use any synchronization
	 * primitive, like semaphores or mutexes.  It's too early in the boot
	 * process to use any of them.  Ideally, only the path where entropy
	 * devices are available should be built, this is only a fallback for
	 * those devices without a HWRNG entropy driver.
	 */

	while (length > 0) {
		uint32_t rndbits;
		uint8_t *p_rndbits = (uint8_t *)&rndbits;

		rndbits = sys_rand32_get();

		if (length < sizeof(uint32_t)) {
			n = length;
		}

		for (int i = 0; i < n; i++) {
			*buf = *p_rndbits;
			buf++;
			p_rndbits++;
		}

		length -= n;
	}
}
/* defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR) */
#endif

/**
 *
 * @brief Initialize kernel
 *
 * This routine is invoked when the system is ready to run C code. The
 * processor must be running in 32-bit mode, and the BSS must have been
 * cleared/zeroed.
 *
 * @return Does not return
 */
FUNC_NORETURN void z_cstart(void)
{
	/* gcov hook needed to get the coverage report.*/
	gcov_static_init();

	LOG_CORE_INIT();

	/* perform any architecture-specific initialization */
	arch_kernel_init();

#if defined(CONFIG_MULTITHREADING)
	/* Note: The z_ready_thread() call in prepare_multithreading() requires
	 * a dummy thread even if CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN=y
	 */
	struct k_thread dummy_thread;

	z_dummy_thread_init(&dummy_thread);
#endif
#if defined(CONFIG_MMU) && defined(CONFIG_USERSPACE)
	z_kernel_map_fixup();
#endif
	/* perform basic hardware initialization */
	z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_1);
	z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_2);

#ifdef CONFIG_STACK_CANARIES
	uintptr_t stack_guard;

	z_early_boot_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
	__stack_chk_guard = stack_guard;
	__stack_chk_guard <<= 8;
#endif	/* CONFIG_STACK_CANARIES */

#ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
	timing_init();
	timing_start();
#endif

#ifdef CONFIG_MULTITHREADING
	switch_to_main_thread(prepare_multithreading());
#else
#ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
	/* Custom ARCH-specific routine to switch to main()
	 * in the case of no multi-threading.
	 */
	ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
		NULL, NULL, NULL);
#else
	bg_thread_main(NULL, NULL, NULL);

	/* LCOV_EXCL_START
	 * We've already dumped coverage data at this point.
	 */
	irq_lock();
	while (true) {
	}
	/* LCOV_EXCL_STOP */
#endif
#endif /* CONFIG_MULTITHREADING */

	/*
	 * Compiler can't tell that the above routines won't return and issues
	 * a warning unless we explicitly tell it that control never gets this
	 * far.
	 */

	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}