Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
/* ieee802154_nrf5.c - nRF5 802.15.4 driver */

/*
 * Copyright (c) 2017 Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#define LOG_MODULE_NAME ieee802154_nrf5
#if defined(CONFIG_IEEE802154_DRIVER_LOG_LEVEL)
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#else
#define LOG_LEVEL LOG_LEVEL_NONE
#endif

#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);

#include <errno.h>

#include <kernel.h>
#include <arch/cpu.h>
#include <debug/stack.h>

#include <soc.h>
#include <device.h>
#include <init.h>
#include <debug/stack.h>
#include <net/net_if.h>
#include <net/net_pkt.h>

#if defined(CONFIG_NET_L2_OPENTHREAD)
#include <net/openthread.h>
#endif

#include <sys/byteorder.h>
#include <string.h>
#include <random/rand32.h>

#include <net/ieee802154_radio.h>

#include "ieee802154_nrf5.h"
#include "nrf_802154.h"

#ifdef CONFIG_NRF_802154_SER_HOST
#include "nrf_802154_serialization_error.h"
#endif

struct nrf5_802154_config {
	void (*irq_config_func)(const struct device *dev);
};

static struct nrf5_802154_data nrf5_data;

#define ACK_REQUEST_BYTE 1
#define ACK_REQUEST_BIT (1 << 5)
#define FRAME_PENDING_BYTE 1
#define FRAME_PENDING_BIT (1 << 4)
#define TXTIME_OFFSET_US  (5 * USEC_PER_MSEC)

#if defined(CONFIG_SOC_NRF5340_CPUAPP) || defined(CONFIG_SOC_NRF5340_CPUNET)
#define EUI64_ADDR (NRF_FICR->INFO.DEVICEID)
#else
#define EUI64_ADDR (NRF_FICR->DEVICEID)
#endif

/* Convenience defines for RADIO */
#define NRF5_802154_DATA(dev) \
	((struct nrf5_802154_data * const)(dev)->data)

#define NRF5_802154_CFG(dev) \
	((const struct nrf5_802154_config * const)(dev)->config)

#if CONFIG_IEEE802154_VENDOR_OUI_ENABLE
#define IEEE802154_NRF5_VENDOR_OUI CONFIG_IEEE802154_VENDOR_OUI
#else
#define IEEE802154_NRF5_VENDOR_OUI (uint32_t)0xF4CE36
#endif

static void nrf5_get_eui64(uint8_t *mac)
{
	uint64_t factoryAddress;
	uint32_t index = 0;

	/* Set the MAC Address Block Larger (MA-L) formerly called OUI. */
	mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 16) & 0xff;
	mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 8) & 0xff;
	mac[index++] = IEEE802154_NRF5_VENDOR_OUI & 0xff;

#if defined(CONFIG_SOC_NRF5340_CPUAPP) && \
	defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
#error Accessing EUI64 on the non-secure mode is not supported at the moment
#else
	/* Use device identifier assigned during the production. */
	factoryAddress = (uint64_t)EUI64_ADDR[0] << 32;
	factoryAddress |= EUI64_ADDR[1];
#endif
	memcpy(mac + index, &factoryAddress, sizeof(factoryAddress) - index);
}

static void nrf5_rx_thread(void *arg1, void *arg2, void *arg3)
{
	struct nrf5_802154_data *nrf5_radio = (struct nrf5_802154_data *)arg1;
	struct net_pkt *pkt;
	struct nrf5_802154_rx_frame *rx_frame;
	uint8_t pkt_len;

	ARG_UNUSED(arg2);
	ARG_UNUSED(arg3);

	while (1) {
		pkt = NULL;
		rx_frame = NULL;

		LOG_DBG("Waiting for frame");

		rx_frame = k_fifo_get(&nrf5_radio->rx_fifo, K_FOREVER);

		__ASSERT_NO_MSG(rx_frame->psdu);

		/* rx_mpdu contains length, psdu, fcs|lqi
		 * The last 2 bytes contain LQI or FCS, depending if
		 * automatic CRC handling is enabled or not, respectively.
		 */
		if (IS_ENABLED(CONFIG_IEEE802154_RAW_MODE) ||
		    IS_ENABLED(CONFIG_NET_L2_OPENTHREAD)) {
			pkt_len = rx_frame->psdu[0];
		} else {
			pkt_len = rx_frame->psdu[0] -  NRF5_FCS_LENGTH;
		}

		__ASSERT_NO_MSG(pkt_len <= CONFIG_NET_BUF_DATA_SIZE);

		LOG_DBG("Frame received");

		/* Block the RX thread until net_pkt is available, so that we
		 * don't drop already ACKed frame in case of temporary net_pkt
		 * scarcity. The nRF 802154 radio driver will accumulate any
		 * incoming frames until it runs out of internal buffers (and
		 * thus stops acknowledging consecutive frames).
		 */
		pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, pkt_len,
						   AF_UNSPEC, 0, K_FOREVER);

		if (net_pkt_write(pkt, rx_frame->psdu + 1, pkt_len)) {
			goto drop;
		}

		net_pkt_set_ieee802154_lqi(pkt, rx_frame->lqi);
		net_pkt_set_ieee802154_rssi(pkt, rx_frame->rssi);
		net_pkt_set_ieee802154_ack_fpb(pkt, rx_frame->ack_fpb);

#if defined(CONFIG_NET_PKT_TIMESTAMP)
		struct net_ptp_time timestamp = {
			.second = rx_frame->time / USEC_PER_SEC,
			.nanosecond =
				(rx_frame->time % USEC_PER_SEC) * NSEC_PER_USEC
		};

		net_pkt_set_timestamp(pkt, &timestamp);
#endif

		LOG_DBG("Caught a packet (%u) (LQI: %u)",
			 pkt_len, rx_frame->lqi);

		if (net_recv_data(nrf5_radio->iface, pkt) < 0) {
			LOG_ERR("Packet dropped by NET stack");
			goto drop;
		}

		nrf_802154_buffer_free_raw(rx_frame->psdu);
		rx_frame->psdu = NULL;

		if (LOG_LEVEL >= LOG_LEVEL_DBG) {
			log_stack_usage(&nrf5_radio->rx_thread);
		}

		continue;

drop:
		nrf_802154_buffer_free_raw(rx_frame->psdu);
		rx_frame->psdu = NULL;

		if (pkt) {
			net_pkt_unref(pkt);
		}
	}
}

/* Radio device API */

static enum ieee802154_hw_caps nrf5_get_capabilities(const struct device *dev)
{
	return IEEE802154_HW_FCS |
	       IEEE802154_HW_FILTER |
#if !defined(CONFIG_NRF_802154_SL_OPENSOURCE) && \
    !defined(CONFIG_NRF_802154_SER_HOST)
	       IEEE802154_HW_CSMA |
#ifdef CONFIG_IEEE802154_NRF5_PKT_TXTIME
	       IEEE802154_HW_TXTIME |
#endif /* CONFIG_IEEE802154_NRF5_PKT_TXTIME */
#endif
	       IEEE802154_HW_2_4_GHZ |
	       IEEE802154_HW_TX_RX_ACK |
	       IEEE802154_HW_ENERGY_SCAN |
	       IEEE802154_HW_SLEEP_TO_TX;
}

static int nrf5_cca(const struct device *dev)
{
	struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);

	if (!nrf_802154_cca()) {
		LOG_DBG("CCA failed");
		return -EBUSY;
	}

	/* The nRF driver guarantees that a callback will be called once
	 * the CCA function is done, thus unlocking the semaphore.
	 */
	k_sem_take(&nrf5_radio->cca_wait, K_FOREVER);

	LOG_DBG("Channel free? %d", nrf5_radio->channel_free);

	return nrf5_radio->channel_free ? 0 : -EBUSY;
}

static int nrf5_set_channel(const struct device *dev, uint16_t channel)
{
	ARG_UNUSED(dev);

	LOG_DBG("%u", channel);

	if (channel < 11 || channel > 26) {
		return -EINVAL;
	}

	nrf_802154_channel_set(channel);

	return 0;
}

static int nrf5_energy_scan_start(const struct device *dev,
				  uint16_t duration,
				  energy_scan_done_cb_t done_cb)
{
	int err = 0;

	ARG_UNUSED(dev);

	if (nrf5_data.energy_scan_done == NULL) {
		nrf5_data.energy_scan_done = done_cb;

		if (nrf_802154_energy_detection(duration * 1000) == false) {
			nrf5_data.energy_scan_done = NULL;
			err = -EPERM;
		}
	} else {
		err = -EALREADY;
	}

	return err;
}

static int nrf5_set_pan_id(const struct device *dev, uint16_t pan_id)
{
	uint8_t pan_id_le[2];

	ARG_UNUSED(dev);

	sys_put_le16(pan_id, pan_id_le);
	nrf_802154_pan_id_set(pan_id_le);

	LOG_DBG("0x%x", pan_id);

	return 0;
}

static int nrf5_set_short_addr(const struct device *dev, uint16_t short_addr)
{
	uint8_t short_addr_le[2];

	ARG_UNUSED(dev);

	sys_put_le16(short_addr, short_addr_le);
	nrf_802154_short_address_set(short_addr_le);

	LOG_DBG("0x%x", short_addr);

	return 0;
}

static int nrf5_set_ieee_addr(const struct device *dev,
			      const uint8_t *ieee_addr)
{
	ARG_UNUSED(dev);

	LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
		    ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
		    ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);

	nrf_802154_extended_address_set(ieee_addr);

	return 0;
}

static int nrf5_filter(const struct device *dev, bool set,
		       enum ieee802154_filter_type type,
		       const struct ieee802154_filter *filter)
{
	LOG_DBG("Applying filter %u", type);

	if (!set) {
		return -ENOTSUP;
	}

	if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
		return nrf5_set_ieee_addr(dev, filter->ieee_addr);
	} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
		return nrf5_set_short_addr(dev, filter->short_addr);
	} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
		return nrf5_set_pan_id(dev, filter->pan_id);
	}

	return -ENOTSUP;
}

static int nrf5_set_txpower(const struct device *dev, int16_t dbm)
{
	ARG_UNUSED(dev);

	LOG_DBG("%d", dbm);

	nrf_802154_tx_power_set(dbm);

	return 0;
}

static int handle_ack(struct nrf5_802154_data *nrf5_radio)
{
	uint8_t ack_len = nrf5_radio->ack_frame.psdu[0] - NRF5_FCS_LENGTH;
	struct net_pkt *ack_pkt;
	int err = 0;

	ack_pkt = net_pkt_alloc_with_buffer(nrf5_radio->iface, ack_len,
					    AF_UNSPEC, 0, K_NO_WAIT);
	if (!ack_pkt) {
		LOG_ERR("No free packet available.");
		err = -ENOMEM;
		goto free_nrf_ack;
	}

	/* Upper layers expect the frame to start at the MAC header, skip the
	 * PHY header (1 byte).
	 */
	if (net_pkt_write(ack_pkt, nrf5_radio->ack_frame.psdu + 1,
			  ack_len) < 0) {
		LOG_ERR("Failed to write to a packet.");
		err = -ENOMEM;
		goto free_net_ack;
	}

	net_pkt_set_ieee802154_lqi(ack_pkt, nrf5_radio->ack_frame.lqi);
	net_pkt_set_ieee802154_rssi(ack_pkt, nrf5_radio->ack_frame.rssi);

	net_pkt_cursor_init(ack_pkt);

	if (ieee802154_radio_handle_ack(nrf5_radio->iface, ack_pkt) != NET_OK) {
		LOG_INF("ACK packet not handled - releasing.");
	}

free_net_ack:
	net_pkt_unref(ack_pkt);

free_nrf_ack:
	nrf_802154_buffer_free_raw(nrf5_radio->ack_frame.psdu);
	nrf5_radio->ack_frame.psdu = NULL;

	return err;
}

static void nrf5_tx_started(const struct device *dev,
			    struct net_pkt *pkt,
			    struct net_buf *frag)
{
	ARG_UNUSED(pkt);

	if (nrf5_data.event_handler) {
		nrf5_data.event_handler(dev, IEEE802154_EVENT_TX_STARTED,
					(void *)frag);
	}
}

#ifdef CONFIG_IEEE802154_NRF5_PKT_TXTIME
static bool nrf5_tx_at(struct net_pkt *pkt, bool cca)
{
	uint32_t tx_at = net_pkt_txtime(pkt) / NSEC_PER_USEC;
	bool ret;

	ret = nrf_802154_transmit_raw_at(nrf5_data.tx_psdu,
					 cca,
					 tx_at - TXTIME_OFFSET_US,
					 TXTIME_OFFSET_US,
					 nrf_802154_channel_get());
	if (nrf5_data.event_handler) {
		LOG_WRN("TX_STARTED event will be triggered without delay");
	}
	return ret;
}
#endif /* CONFIG_IEEE802154_NRF5_PKT_TXTIME */

static int nrf5_tx(const struct device *dev,
		   enum ieee802154_tx_mode mode,
		   struct net_pkt *pkt,
		   struct net_buf *frag)
{
	struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
	uint8_t payload_len = frag->len;
	uint8_t *payload = frag->data;
	bool ret = true;

	LOG_DBG("%p (%u)", payload, payload_len);

	nrf5_radio->tx_psdu[0] = payload_len + NRF5_FCS_LENGTH;
	memcpy(nrf5_radio->tx_psdu + 1, payload, payload_len);

	/* Reset semaphore in case ACK was received after timeout */
	k_sem_reset(&nrf5_radio->tx_wait);

	switch (mode) {
	case IEEE802154_TX_MODE_DIRECT:
		ret = nrf_802154_transmit_raw(nrf5_radio->tx_psdu, false);
		break;
	case IEEE802154_TX_MODE_CCA:
		ret = nrf_802154_transmit_raw(nrf5_radio->tx_psdu, true);
		break;
#if !defined(CONFIG_NRF_802154_SL_OPENSOURCE) && \
    !defined(CONFIG_NRF_802154_SER_HOST)
	case IEEE802154_TX_MODE_CSMA_CA:
		nrf_802154_transmit_csma_ca_raw(nrf5_radio->tx_psdu);
		break;
#ifdef CONFIG_IEEE802154_NRF5_PKT_TXTIME
	case IEEE802154_TX_MODE_TXTIME:
	case IEEE802154_TX_MODE_TXTIME_CCA:
		__ASSERT_NO_MSG(pkt);
		ret = nrf5_tx_at(pkt,
				 mode == IEEE802154_TX_MODE_TXTIME_CCA);
		break;
#endif /* CONFIG_IEEE802154_NRF5_PKT_TXTIME */
#endif
	default:
		NET_ERR("TX mode %d not supported", mode);
		return -ENOTSUP;
	}

	if (!ret) {
		LOG_ERR("Cannot send frame");
		return -EIO;
	}

	nrf5_tx_started(dev, pkt, frag);

	LOG_DBG("Sending frame (ch:%d, txpower:%d)",
		nrf_802154_channel_get(), nrf_802154_tx_power_get());

	/* Wait for the callback from the radio driver. */
	k_sem_take(&nrf5_radio->tx_wait, K_FOREVER);

	LOG_DBG("Result: %d", nrf5_data.tx_result);

	switch (nrf5_radio->tx_result) {
	case NRF_802154_TX_ERROR_NONE:
		if (nrf5_radio->ack_frame.psdu == NULL) {
			/* No ACK was requested. */
			return 0;
		}
		/* Handle ACK packet. */
		return handle_ack(nrf5_radio);
	case NRF_802154_TX_ERROR_NO_MEM:
		return -ENOBUFS;
	case NRF_802154_TX_ERROR_BUSY_CHANNEL:
		return -EBUSY;
	case NRF_802154_TX_ERROR_INVALID_ACK:
	case NRF_802154_TX_ERROR_NO_ACK:
		return -ENOMSG;
	case NRF_802154_TX_ERROR_ABORTED:
	case NRF_802154_TX_ERROR_TIMESLOT_DENIED:
	case NRF_802154_TX_ERROR_TIMESLOT_ENDED:
		return -EIO;
	}

	return -EIO;
}

static int nrf5_start(const struct device *dev)
{
	ARG_UNUSED(dev);

	if (!nrf_802154_receive()) {
		LOG_ERR("Failed to enter receive state");
		return -EIO;
	}

	LOG_DBG("nRF5 802154 radio started (channel: %d)",
		nrf_802154_channel_get());

	return 0;
}

static int nrf5_stop(const struct device *dev)
{
	ARG_UNUSED(dev);

	if (!nrf_802154_sleep()) {
		LOG_ERR("Error while stopping radio");
		return -EIO;
	}

	LOG_DBG("nRF5 802154 radio stopped");

	return 0;
}

#ifndef CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT
static void nrf5_radio_irq(void *arg)
{
	ARG_UNUSED(arg);

	nrf_802154_radio_irq_handler();
}
#endif

static void nrf5_irq_config(const struct device *dev)
{
	ARG_UNUSED(dev);

#ifndef CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT
	IRQ_CONNECT(RADIO_IRQn, NRF_802154_IRQ_PRIORITY,
		    nrf5_radio_irq, NULL, 0);
	irq_enable(RADIO_IRQn);
#endif
}

static int nrf5_init(const struct device *dev)
{
	const struct nrf5_802154_config *nrf5_radio_cfg = NRF5_802154_CFG(dev);
	struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);

	k_fifo_init(&nrf5_radio->rx_fifo);
	k_sem_init(&nrf5_radio->tx_wait, 0, 1);
	k_sem_init(&nrf5_radio->cca_wait, 0, 1);

	nrf_802154_init();

	nrf5_radio_cfg->irq_config_func(dev);

	k_thread_create(&nrf5_radio->rx_thread, nrf5_radio->rx_stack,
			CONFIG_IEEE802154_NRF5_RX_STACK_SIZE,
			nrf5_rx_thread, nrf5_radio, NULL, NULL,
			K_PRIO_COOP(2), 0, K_NO_WAIT);

	k_thread_name_set(&nrf5_radio->rx_thread, "nrf5_rx");

	LOG_INF("nRF5 802154 radio initialized");

	return 0;
}

static void nrf5_iface_init(struct net_if *iface)
{
	const struct device *dev = net_if_get_device(iface);
	struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);

	nrf5_get_eui64(nrf5_radio->mac);
	net_if_set_link_addr(iface, nrf5_radio->mac, sizeof(nrf5_radio->mac),
			     NET_LINK_IEEE802154);

	nrf5_radio->iface = iface;

	ieee802154_init(iface);
}

static int nrf5_configure(const struct device *dev,
			  enum ieee802154_config_type type,
			  const struct ieee802154_config *config)
{
	ARG_UNUSED(dev);

	switch (type) {
	case IEEE802154_CONFIG_AUTO_ACK_FPB:
		if (config->auto_ack_fpb.enabled) {
			switch (config->auto_ack_fpb.mode) {
			case IEEE802154_FPB_ADDR_MATCH_THREAD:
				nrf_802154_src_addr_matching_method_set(
					NRF_802154_SRC_ADDR_MATCH_THREAD);
				break;

			case IEEE802154_FPB_ADDR_MATCH_ZIGBEE:
				nrf_802154_src_addr_matching_method_set(
					NRF_802154_SRC_ADDR_MATCH_ZIGBEE);
				break;

			default:
				return -EINVAL;
			}
		}

		nrf_802154_auto_pending_bit_set(config->auto_ack_fpb.enabled);
		break;

	case IEEE802154_CONFIG_ACK_FPB:
		if (config->ack_fpb.enabled) {
			if (!nrf_802154_pending_bit_for_addr_set(
						config->ack_fpb.addr,
						config->ack_fpb.extended)) {
				return -ENOMEM;
			}

			break;
		}

		if (config->ack_fpb.addr != NULL) {
			if (!nrf_802154_pending_bit_for_addr_clear(
						config->ack_fpb.addr,
						config->ack_fpb.extended)) {
				return -ENOENT;
			}
		} else {
			nrf_802154_pending_bit_for_addr_reset(
						config->ack_fpb.extended);
		}

		break;

	case IEEE802154_CONFIG_PAN_COORDINATOR:
		nrf_802154_pan_coord_set(config->pan_coordinator);
		break;

	case IEEE802154_CONFIG_PROMISCUOUS:
		nrf_802154_promiscuous_set(config->promiscuous);
		break;

	case IEEE802154_CONFIG_EVENT_HANDLER:
		nrf5_data.event_handler = config->event_handler;

	default:
		return -EINVAL;
	}

	return 0;
}

/* nRF5 radio driver callbacks */

void nrf_802154_received_timestamp_raw(uint8_t *data, int8_t power, uint8_t lqi,
				       uint32_t time)
{
	for (uint32_t i = 0; i < ARRAY_SIZE(nrf5_data.rx_frames); i++) {
		if (nrf5_data.rx_frames[i].psdu != NULL) {
			continue;
		}

		nrf5_data.rx_frames[i].psdu = data;
		nrf5_data.rx_frames[i].time = time;
		nrf5_data.rx_frames[i].rssi = power;
		nrf5_data.rx_frames[i].lqi = lqi;

		if (data[ACK_REQUEST_BYTE] & ACK_REQUEST_BIT) {
			nrf5_data.rx_frames[i].ack_fpb =
						nrf5_data.last_frame_ack_fpb;
		} else {
			nrf5_data.rx_frames[i].ack_fpb = false;
		}

		nrf5_data.last_frame_ack_fpb = false;

		k_fifo_put(&nrf5_data.rx_fifo, &nrf5_data.rx_frames[i]);

		return;
	}

	__ASSERT(false, "Not enough rx frames allocated for 15.4 driver");
}

void nrf_802154_receive_failed(nrf_802154_rx_error_t error)
{
	enum ieee802154_rx_fail_reason reason;

	switch (error) {
	case NRF_802154_RX_ERROR_INVALID_FRAME:
	case NRF_802154_RX_ERROR_DELAYED_TIMEOUT:
		reason = IEEE802154_RX_FAIL_NOT_RECEIVED;
		break;

	case NRF_802154_RX_ERROR_INVALID_FCS:
		reason = IEEE802154_RX_FAIL_INVALID_FCS;
		break;

	case NRF_802154_RX_ERROR_INVALID_DEST_ADDR:
		reason = IEEE802154_RX_FAIL_ADDR_FILTERED;
		break;

	default:
		reason = IEEE802154_RX_FAIL_OTHER;
		break;
	}

	nrf5_data.last_frame_ack_fpb = false;
	if (nrf5_data.event_handler) {
		nrf5_data.event_handler(net_if_get_device(nrf5_data.iface),
					IEEE802154_EVENT_RX_FAILED,
					(void *)&reason);
	}
}

void nrf_802154_tx_ack_started(const uint8_t *data)
{
	nrf5_data.last_frame_ack_fpb =
				data[FRAME_PENDING_BYTE] & FRAME_PENDING_BIT;
}

void nrf_802154_transmitted_raw(const uint8_t *frame, uint8_t *ack,
				int8_t power, uint8_t lqi)
{
	ARG_UNUSED(frame);
	ARG_UNUSED(power);
	ARG_UNUSED(lqi);

	nrf5_data.tx_result = NRF_802154_TX_ERROR_NONE;
	nrf5_data.ack_frame.psdu = ack;
	nrf5_data.ack_frame.rssi = power;
	nrf5_data.ack_frame.lqi = lqi;

	k_sem_give(&nrf5_data.tx_wait);
}

void nrf_802154_transmit_failed(const uint8_t *frame,
				nrf_802154_tx_error_t error)
{
	ARG_UNUSED(frame);

	nrf5_data.tx_result = error;

	k_sem_give(&nrf5_data.tx_wait);
}

void nrf_802154_cca_done(bool channel_free)
{
	nrf5_data.channel_free = channel_free;

	k_sem_give(&nrf5_data.cca_wait);
}

void nrf_802154_cca_failed(nrf_802154_cca_error_t error)
{
	ARG_UNUSED(error);

	nrf5_data.channel_free = false;

	k_sem_give(&nrf5_data.cca_wait);
}

void nrf_802154_energy_detected(uint8_t result)
{
	if (nrf5_data.energy_scan_done != NULL) {
		int16_t dbm;
		energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;

		nrf5_data.energy_scan_done = NULL;
		dbm = nrf_802154_dbm_from_energy_level_calculate(result);
		callback(net_if_get_device(nrf5_data.iface), dbm);
	}
}

void nrf_802154_energy_detection_failed(nrf_802154_ed_error_t error)
{
	if (nrf5_data.energy_scan_done != NULL) {
		energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;

		nrf5_data.energy_scan_done = NULL;
		callback(net_if_get_device(nrf5_data.iface), SHRT_MAX);
	}
}

#ifdef CONFIG_NRF_802154_SER_HOST
void nrf_802154_serialization_error(const nrf_802154_ser_err_data_t *p_err)
{
	__ASSERT(false, "802.15.4 serialization error");
}
#endif

static const struct nrf5_802154_config nrf5_radio_cfg = {
	.irq_config_func = nrf5_irq_config,
};

static struct ieee802154_radio_api nrf5_radio_api = {
	.iface_api.init = nrf5_iface_init,

	.get_capabilities = nrf5_get_capabilities,
	.cca = nrf5_cca,
	.set_channel = nrf5_set_channel,
	.filter = nrf5_filter,
	.set_txpower = nrf5_set_txpower,
	.start = nrf5_start,
	.stop = nrf5_stop,
	.tx = nrf5_tx,
	.ed_scan = nrf5_energy_scan_start,
	.configure = nrf5_configure,
};

#if defined(CONFIG_NET_L2_IEEE802154)
#define L2 IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2)
#define MTU 125
#elif defined(CONFIG_NET_L2_OPENTHREAD)
#define L2 OPENTHREAD_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2)
#define MTU 1280
#endif

#if defined(CONFIG_NET_L2_IEEE802154) || defined(CONFIG_NET_L2_OPENTHREAD)
NET_DEVICE_INIT(nrf5_154_radio, CONFIG_IEEE802154_NRF5_DRV_NAME,
		nrf5_init, device_pm_control_nop, &nrf5_data, &nrf5_radio_cfg,
		CONFIG_IEEE802154_NRF5_INIT_PRIO,
		&nrf5_radio_api, L2,
		L2_CTX_TYPE, MTU);
#else
DEVICE_DEFINE(nrf5_154_radio, CONFIG_IEEE802154_NRF5_DRV_NAME,
		nrf5_init, device_pm_control_nop, &nrf5_data, &nrf5_radio_cfg,
		POST_KERNEL, CONFIG_IEEE802154_NRF5_INIT_PRIO,
		&nrf5_radio_api);
#endif