Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 | /* * Copyright (c) 2011-2014 Wind River Systems, Inc. * Copyright (c) 2017-2020 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <kernel.h> #include <arch/x86/mmustructs.h> #include <sys/mem_manage.h> #include <sys/__assert.h> #include <logging/log.h> #include <errno.h> #include <ctype.h> #include <spinlock.h> #include <kernel_arch_func.h> #include <x86_mmu.h> #include <init.h> #include <kernel_internal.h> #include <mmu.h> #include <drivers/interrupt_controller/loapic.h> #include <mmu.h> LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); /* We will use some ignored bits in the PTE to backup permission settings * when the mapping was made. This is used to un-apply memory domain memory * partitions to page tables when the partitions are removed. */ #define MMU_RW_ORIG MMU_IGNORED0 #define MMU_US_ORIG MMU_IGNORED1 #define MMU_XD_ORIG MMU_IGNORED2 /* Bits in the PTE that form the set of permission bits, when resetting */ #define MASK_PERM (MMU_RW | MMU_US | MMU_XD) /* When we want to set up a new mapping, discarding any previous state */ #define MASK_ALL (~((pentry_t)0U)) /* Bits to set at mapping time for particular permissions. We set the actual * page table bit effecting the policy and also the backup bit. */ #define ENTRY_RW (MMU_RW | MMU_RW_ORIG) #define ENTRY_US (MMU_US | MMU_US_ORIG) #define ENTRY_XD (MMU_XD | MMU_XD_ORIG) /* Bit position which is always zero in a PTE. We'll use the PAT bit. * This helps disambiguate PTEs that do not have the Present bit set (MMU_P): * - If the entire entry is zero, it's an un-mapped virtual page * - If PTE_ZERO is set, we flipped this page due to KPTI * - Otherwise, this was a page-out */ #define PTE_ZERO MMU_PAT /* Protects x86_domain_list and serializes instantiation of intermediate * paging structures. */ static struct k_spinlock x86_mmu_lock; #if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE) /* List of all active and initialized memory domains. This is used to make * sure all memory mappings are the same across all page tables when invoking * range_map() */ static sys_slist_t x86_domain_list; #endif /* * Definitions for building an ontology of paging levels and capabilities * at each level */ /* Data structure describing the characteristics of a particular paging * level */ struct paging_level { /* What bits are used to store physical address */ pentry_t mask; /* Number of entries in this paging structure */ size_t entries; /* How many bits to right-shift a virtual address to obtain the * appropriate entry within this table. * * The memory scope of each entry in this table is 1 << shift. */ unsigned int shift; #ifdef CONFIG_EXCEPTION_DEBUG /* Name of this level, for debug purposes */ const char *name; #endif }; /* Flags for all entries in intermediate paging levels. * Fortunately, the same bits are set for all intermediate levels for all * three paging modes. * * Obviously P is set. * * We want RW and US bit always set; actual access control will be * done at the leaf level. * * XD (if supported) always 0. Disabling execution done at leaf level. * * PCD/PWT always 0. Caching properties again done at leaf level. */ #define INT_FLAGS (MMU_P | MMU_RW | MMU_US) /* Paging level ontology for the selected paging mode. * * See Figures 4-4, 4-7, 4-11 in the Intel SDM, vol 3A */ static const struct paging_level paging_levels[] = { #ifdef CONFIG_X86_64 /* Page Map Level 4 */ { .mask = 0x7FFFFFFFFFFFF000ULL, .entries = 512U, .shift = 39U, #ifdef CONFIG_EXCEPTION_DEBUG .name = "PML4" #endif }, #endif /* CONFIG_X86_64 */ #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) /* Page Directory Pointer Table */ { .mask = 0x7FFFFFFFFFFFF000ULL, #ifdef CONFIG_X86_64 .entries = 512U, #else /* PAE version */ .entries = 4U, #endif .shift = 30U, #ifdef CONFIG_EXCEPTION_DEBUG .name = "PDPT" #endif }, #endif /* CONFIG_X86_64 || CONFIG_X86_PAE */ /* Page Directory */ { #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) .mask = 0x7FFFFFFFFFFFF000ULL, .entries = 512U, .shift = 21U, #else /* 32-bit */ .mask = 0xFFFFF000U, .entries = 1024U, .shift = 22U, #endif /* CONFIG_X86_64 || CONFIG_X86_PAE */ #ifdef CONFIG_EXCEPTION_DEBUG .name = "PD" #endif }, /* Page Table */ { #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) .mask = 0x07FFFFFFFFFFF000ULL, .entries = 512U, .shift = 12U, #else /* 32-bit */ .mask = 0xFFFFF000U, .entries = 1024U, .shift = 12U, #endif /* CONFIG_X86_64 || CONFIG_X86_PAE */ #ifdef CONFIG_EXCEPTION_DEBUG .name = "PT" #endif } }; #define NUM_LEVELS ARRAY_SIZE(paging_levels) #define PTE_LEVEL (NUM_LEVELS - 1) /* * Macros for reserving space for page tables * * We need to reserve a block of memory equal in size to the page tables * generated by gen_mmu.py so that memory addresses do not shift between * build phases. These macros ultimately specify INITIAL_PAGETABLE_SIZE. */ #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #ifdef CONFIG_X86_64 #define NUM_PML4_ENTRIES 512U #define NUM_PDPT_ENTRIES 512U #else #define NUM_PDPT_ENTRIES 4U #endif /* CONFIG_X86_64 */ #define NUM_PD_ENTRIES 512U #define NUM_PT_ENTRIES 512U #else #define NUM_PD_ENTRIES 1024U #define NUM_PT_ENTRIES 1024U #endif /* !CONFIG_X86_64 && !CONFIG_X86_PAE */ /* Memory range covered by an instance of various table types */ #define PT_AREA ((uintptr_t)(CONFIG_MMU_PAGE_SIZE * NUM_PT_ENTRIES)) #define PD_AREA (PT_AREA * NUM_PD_ENTRIES) #ifdef CONFIG_X86_64 #define PDPT_AREA (PD_AREA * NUM_PDPT_ENTRIES) #endif #define VM_ADDR CONFIG_KERNEL_VM_BASE #define VM_SIZE CONFIG_KERNEL_VM_SIZE /* Define a range [PT_START, PT_END) which is the memory range * covered by all the page tables needed for the address space */ #define PT_START ((uintptr_t)ROUND_DOWN(VM_ADDR, PT_AREA)) #define PT_END ((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PT_AREA)) /* Number of page tables needed to cover address space. Depends on the specific * bounds, but roughly 1 page table per 2MB of RAM */ #define NUM_PT ((PT_END - PT_START) / PT_AREA) #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) /* Same semantics as above, but for the page directories needed to cover * system RAM. */ #define PD_START ((uintptr_t)ROUND_DOWN(VM_ADDR, PD_AREA)) #define PD_END ((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PD_AREA)) /* Number of page directories needed to cover the address space. Depends on the * specific bounds, but roughly 1 page directory per 1GB of RAM */ #define NUM_PD ((PD_END - PD_START) / PD_AREA) #else /* 32-bit page tables just have one toplevel page directory */ #define NUM_PD 1 #endif #ifdef CONFIG_X86_64 /* Same semantics as above, but for the page directory pointer tables needed * to cover the address space. On 32-bit there is just one 4-entry PDPT. */ #define PDPT_START ((uintptr_t)ROUND_DOWN(VM_ADDR, PDPT_AREA)) #define PDPT_END ((uintptr_t)ROUND_UP(VM_ADDR + VM_SIZE, PDPT_AREA)) /* Number of PDPTs needed to cover the address space. 1 PDPT per 512GB of VM */ #define NUM_PDPT ((PDPT_END - PDPT_START) / PDPT_AREA) /* All pages needed for page tables, using computed values plus one more for * the top-level PML4 */ #define NUM_TABLE_PAGES (NUM_PT + NUM_PD + NUM_PDPT + 1) #else /* !CONFIG_X86_64 */ /* Number of pages we need to reserve in the stack for per-thread page tables */ #define NUM_TABLE_PAGES (NUM_PT + NUM_PD) #endif /* CONFIG_X86_64 */ #ifdef CONFIG_X86_PAE /* Toplevel PDPT wasn't included as it is not a page in size */ #define INITIAL_PTABLE_SIZE ((NUM_TABLE_PAGES * CONFIG_MMU_PAGE_SIZE) + 0x20) #else #define INITIAL_PTABLE_SIZE (NUM_TABLE_PAGES * CONFIG_MMU_PAGE_SIZE) #endif /* "dummy" pagetables for the first-phase build. The real page tables * are produced by gen-mmu.py based on data read in zephyr-prebuilt.elf, * and this dummy array is discarded. */ Z_GENERIC_SECTION(.dummy_pagetables) static __used char dummy_pagetables[INITIAL_PTABLE_SIZE]; /* * Utility functions */ /* For a table at a particular level, get the entry index that corresponds to * the provided virtual address */ static inline int get_index(void *virt, int level) { return (((uintptr_t)virt >> paging_levels[level].shift) % paging_levels[level].entries); } static inline pentry_t *get_entry_ptr(pentry_t *ptables, void *virt, int level) { return &ptables[get_index(virt, level)]; } static inline pentry_t get_entry(pentry_t *ptables, void *virt, int level) { return ptables[get_index(virt, level)]; } /* Get the physical memory address associated with this table entry */ static inline uintptr_t get_entry_phys(pentry_t entry, int level) { return entry & paging_levels[level].mask; } /* Return the virtual address of a linked table stored in the provided entry */ static inline pentry_t *next_table(pentry_t entry, int level) { return z_x86_virt_addr(get_entry_phys(entry, level)); } /* Number of table entries at this level */ static inline size_t get_num_entries(int level) { return paging_levels[level].entries; } /* 4K for everything except PAE PDPTs */ static inline size_t table_size(int level) { return get_num_entries(level) * sizeof(pentry_t); } /* For a table at a particular level, size of the amount of virtual memory * that an entry within the table covers */ static inline size_t get_entry_scope(int level) { return (1UL << paging_levels[level].shift); } /* For a table at a particular level, size of the amount of virtual memory * that this entire table covers */ static inline size_t get_table_scope(int level) { return get_entry_scope(level) * get_num_entries(level); } /* Must have checked Present bit first! Non-present entries may have OS data * stored in any other bits */ static inline bool is_leaf(int level, pentry_t entry) { if (level == PTE_LEVEL) { /* Always true for PTE */ return true; } return ((entry & MMU_PS) != 0U); } /* This does NOT (by design) un-flip KPTI PTEs, it's just the raw PTE value */ static inline void pentry_get(int *paging_level, pentry_t *val, pentry_t *ptables, void *virt) { pentry_t *table = ptables; for (int level = 0; level < NUM_LEVELS; level++) { pentry_t entry = get_entry(table, virt, level); if ((entry & MMU_P) == 0 || is_leaf(level, entry)) { *val = entry; if (paging_level != NULL) { *paging_level = level; } break; } else { table = next_table(entry, level); } } } static inline void tlb_flush_page(void *addr) { /* Invalidate TLB entries corresponding to the page containing the * specified address */ char *page = (char *)addr; __asm__ ("invlpg %0" :: "m" (*page)); } #ifdef CONFIG_X86_KPTI static inline bool is_flipped_pte(pentry_t pte) { return (pte & MMU_P) == 0 && (pte & PTE_ZERO) != 0; } #endif #if defined(CONFIG_SMP) void z_x86_tlb_ipi(const void *arg) { uintptr_t ptables_phys; ARG_UNUSED(arg); #ifdef CONFIG_X86_KPTI /* We're always on the kernel's set of page tables in this context * if KPTI is turned on */ ptables_phys = z_x86_cr3_get(); __ASSERT(ptables_phys == z_x86_phys_addr(&z_x86_kernel_ptables), ""); #else /* We might have been moved to another memory domain, so always invoke * z_x86_thread_page_tables_get() instead of using current CR3 value. */ ptables_phys = z_x86_phys_addr(z_x86_thread_page_tables_get(_current)); #endif /* * In the future, we can consider making this smarter, such as * propagating which page tables were modified (in case they are * not active on this CPU) or an address range to call * tlb_flush_page() on. */ LOG_DBG("%s on CPU %d\n", __func__, arch_curr_cpu()->id); z_x86_cr3_set(ptables_phys); } /* NOTE: This is not synchronous and the actual flush takes place some short * time after this exits. */ static inline void tlb_shootdown(void) { z_loapic_ipi(0, LOAPIC_ICR_IPI_OTHERS, CONFIG_TLB_IPI_VECTOR); } #endif /* CONFIG_SMP */ static inline void assert_addr_aligned(uintptr_t addr) { #if __ASSERT_ON __ASSERT((addr & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U, "unaligned address 0x%" PRIxPTR, addr); #endif } static inline void assert_virt_addr_aligned(void *addr) { assert_addr_aligned((uintptr_t)addr); } static inline void assert_region_page_aligned(void *addr, size_t size) { assert_virt_addr_aligned(addr); #if __ASSERT_ON __ASSERT((size & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U, "unaligned size %zu", size); #endif } /* * Debug functions. All conditionally compiled with CONFIG_EXCEPTION_DEBUG. */ #ifdef CONFIG_EXCEPTION_DEBUG /* Add colors to page table dumps to indicate mapping type */ #define COLOR_PAGE_TABLES 1 #if COLOR_PAGE_TABLES #define ANSI_DEFAULT "\x1B[0m" #define ANSI_RED "\x1B[1;31m" #define ANSI_GREEN "\x1B[1;32m" #define ANSI_YELLOW "\x1B[1;33m" #define ANSI_BLUE "\x1B[1;34m" #define ANSI_MAGENTA "\x1B[1;35m" #define ANSI_CYAN "\x1B[1;36m" #define ANSI_GREY "\x1B[1;90m" #define COLOR(x) printk(_CONCAT(ANSI_, x)) #else #define COLOR(x) do { } while (0) #endif static char get_entry_code(pentry_t value) { char ret; if (value == 0U) { /* Unmapped entry */ ret = '.'; } else { if ((value & MMU_RW) != 0U) { /* Writable page */ if ((value & MMU_XD) != 0U) { /* RW */ ret = 'w'; } else { /* RWX */ ret = 'a'; } } else { if ((value & MMU_XD) != 0U) { /* R */ ret = 'r'; } else { /* RX */ ret = 'x'; } } if ((value & MMU_US) != 0U) { /* Uppercase indicates user mode access */ ret = toupper(ret); } } return ret; } static void print_entries(pentry_t entries_array[], uint8_t *base, int level, size_t count) { int column = 0; for (int i = 0; i < count; i++) { pentry_t entry = entries_array[i]; uintptr_t phys = get_entry_phys(entry, level); uintptr_t virt = (uintptr_t)base + (get_entry_scope(level) * i); if (entry & MMU_P) { if (is_leaf(level, entry)) { if (phys == virt) { /* Identity mappings */ COLOR(YELLOW); } else { /* Other mappings */ COLOR(GREEN); } } else { /* Intermediate entry */ COLOR(MAGENTA); } } else { if (is_leaf(level, entry)) { if (entry == 0U) { /* Unmapped */ COLOR(GREY); #ifdef CONFIG_X86_KPTI } else if (is_flipped_pte(entry)) { /* KPTI, un-flip it */ COLOR(BLUE); entry = ~entry; phys = get_entry_phys(entry, level); if (phys == virt) { /* Identity mapped */ COLOR(CYAN); } else { /* Non-identity mapped */ COLOR(BLUE); } #endif } else { /* Paged out */ COLOR(RED); } } else { /* Un-mapped intermediate entry */ COLOR(GREY); } } printk("%c", get_entry_code(entry)); column++; if (column == 64) { column = 0; printk("\n"); } } COLOR(DEFAULT); if (column != 0) { printk("\n"); } } static void dump_ptables(pentry_t *table, uint8_t *base, int level) { const struct paging_level *info = &paging_levels[level]; #ifdef CONFIG_X86_64 /* Account for the virtual memory "hole" with sign-extension */ if (((uintptr_t)base & BITL(47)) != 0) { base = (uint8_t *)((uintptr_t)base | (0xFFFFULL << 48)); } #endif printk("%s at %p: ", info->name, table); if (level == 0) { printk("entire address space\n"); } else { printk("for %p - %p\n", base, base + get_table_scope(level) - 1); } print_entries(table, base, level, info->entries); /* Check if we're a page table */ if (level == PTE_LEVEL) { return; } /* Dump all linked child tables */ for (int j = 0; j < info->entries; j++) { pentry_t entry = table[j]; pentry_t *next; if ((entry & MMU_P) == 0U || (entry & MMU_PS) != 0U) { /* Not present or big page, skip */ continue; } next = next_table(entry, level); dump_ptables(next, base + (j * get_entry_scope(level)), level + 1); } } void z_x86_dump_page_tables(pentry_t *ptables) { dump_ptables(ptables, NULL, 0); } /* Enable to dump out the kernel's page table right before main() starts, * sometimes useful for deep debugging. May overwhelm twister. */ #define DUMP_PAGE_TABLES 0 #if DUMP_PAGE_TABLES static int dump_kernel_tables(const struct device *unused) { z_x86_dump_page_tables(z_x86_kernel_ptables); return 0; } SYS_INIT(dump_kernel_tables, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); #endif static void str_append(char **buf, size_t *size, const char *str) { int ret = snprintk(*buf, *size, "%s", str); if (ret >= *size) { /* Truncated */ *size = 0U; } else { *size -= ret; *buf += ret; } } static void dump_entry(int level, void *virt, pentry_t entry) { const struct paging_level *info = &paging_levels[level]; char buf[24] = { 0 }; char *pos = buf; size_t sz = sizeof(buf); uint8_t *virtmap = (uint8_t *)ROUND_DOWN(virt, get_entry_scope(level)); #define DUMP_BIT(bit) do { \ if ((entry & MMU_##bit) != 0U) { \ str_append(&pos, &sz, #bit " "); \ } \ } while (0) DUMP_BIT(RW); DUMP_BIT(US); DUMP_BIT(PWT); DUMP_BIT(PCD); DUMP_BIT(A); DUMP_BIT(D); DUMP_BIT(G); DUMP_BIT(XD); LOG_ERR("%sE: %p -> " PRI_ENTRY ": %s", info->name, virtmap, entry & info->mask, log_strdup(buf)); #undef DUMP_BIT } void z_x86_pentry_get(int *paging_level, pentry_t *val, pentry_t *ptables, void *virt) { pentry_get(paging_level, val, ptables, virt); } /* * Debug function for dumping out MMU table information to the LOG for a * specific virtual address, such as when we get an unexpected page fault. */ void z_x86_dump_mmu_flags(pentry_t *ptables, void *virt) { pentry_t entry = 0; int level = 0; pentry_get(&level, &entry, ptables, virt); if ((entry & MMU_P) == 0) { LOG_ERR("%sE: not present", paging_levels[level].name); } else { dump_entry(level, virt, entry); } } #endif /* CONFIG_EXCEPTION_DEBUG */ /* Reset permissions on a PTE to original state when the mapping was made */ static inline pentry_t reset_pte(pentry_t old_val) { pentry_t new_val; /* Clear any existing state in permission bits */ new_val = old_val & (~K_MEM_PARTITION_PERM_MASK); /* Now set permissions based on the stashed original values */ if ((old_val & MMU_RW_ORIG) != 0) { new_val |= MMU_RW; } if ((old_val & MMU_US_ORIG) != 0) { new_val |= MMU_US; } #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) if ((old_val & MMU_XD_ORIG) != 0) { new_val |= MMU_XD; } #endif return new_val; } /* Wrapper functionsfor some gross stuff we have to do for Kernel * page table isolation. If these are User mode page tables, the user bit * isn't set, and this is not the shared page, all the bits in the PTE * are flipped. This serves three purposes: * - The page isn't present, implementing page table isolation * - Flipping the physical address bits cheaply mitigates L1TF * - State is preserved; to get original PTE, just complement again */ static inline pentry_t pte_finalize_value(pentry_t val, bool user_table) { #ifdef CONFIG_X86_KPTI static const uintptr_t shared_phys_addr = (uintptr_t)Z_X86_PHYS_ADDR(&z_shared_kernel_page_start); if (user_table && (val & MMU_US) == 0 && (val & MMU_P) != 0 && get_entry_phys(val, PTE_LEVEL) != shared_phys_addr) { val = ~val; } #endif return val; } /* Atomic functions for modifying PTEs. These don't map nicely to Zephyr's * atomic API since the only types supported are 'int' and 'void *' and * the size of pentry_t depends on other factors like PAE. */ #ifndef CONFIG_X86_PAE /* Non-PAE, pentry_t is same size as void ptr so use atomic_ptr_* APIs */ static inline pentry_t atomic_pte_get(const pentry_t *target) { return (pentry_t)atomic_ptr_get((atomic_ptr_t *)target); } static inline bool atomic_pte_cas(pentry_t *target, pentry_t old_value, pentry_t new_value) { return atomic_ptr_cas((atomic_ptr_t *)target, (void *)old_value, (void *)new_value); } #else /* Atomic builtins for 64-bit values on 32-bit x86 require floating point. * Don't do this, just lock local interrupts. Needless to say, this * isn't workable if someone ever adds SMP to the 32-bit x86 port. */ BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP)); static inline pentry_t atomic_pte_get(const pentry_t *target) { return *target; } static inline bool atomic_pte_cas(pentry_t *target, pentry_t old_value, pentry_t new_value) { bool ret = false; int key = arch_irq_lock(); if (*target == old_value) { *target = new_value; ret = true; } arch_irq_unlock(key); return ret; } #endif /* CONFIG_X86_PAE */ /* Indicates that the target page tables will be used by user mode threads. * This only has implications for CONFIG_X86_KPTI where user thread facing * page tables need nearly all pages that don't have the US bit to also * not be Present. */ #define OPTION_USER BIT(0) /* Indicates that the operation requires TLBs to be flushed as we are altering * existing mappings. Not needed for establishing new mappings */ #define OPTION_FLUSH BIT(1) /* Indicates that each PTE's permission bits should be restored to their * original state when the memory was mapped. All other bits in the PTE are * preserved. */ #define OPTION_RESET BIT(2) /** * Atomically update bits in a page table entry * * This is atomic with respect to modifications by other CPUs or preempted * contexts, which can be very important when making decisions based on * the PTE's prior "dirty" state. * * @param pte Pointer to page table entry to update * @param update_val Updated bits to set/clear in PTE. Ignored with * OPTION_RESET. * @param update_mask Which bits to modify in the PTE. Ignored with * OPTION_RESET * @param options Control flags * @retval Old PTE value */ static inline pentry_t pte_atomic_update(pentry_t *pte, pentry_t update_val, pentry_t update_mask, uint32_t options) { bool user_table = (options & OPTION_USER) != 0U; bool reset = (options & OPTION_RESET) != 0U; pentry_t old_val, new_val; do { old_val = atomic_pte_get(pte); new_val = old_val; #ifdef CONFIG_X86_KPTI if (is_flipped_pte(new_val)) { /* Page was flipped for KPTI. Un-flip it */ new_val = ~new_val; } #endif /* CONFIG_X86_KPTI */ if (reset) { new_val = reset_pte(new_val); } else { new_val = ((new_val & ~update_mask) | (update_val & update_mask)); } new_val = pte_finalize_value(new_val, user_table); } while (atomic_pte_cas(pte, old_val, new_val) == false); #ifdef CONFIG_X86_KPTI if (is_flipped_pte(old_val)) { /* Page was flipped for KPTI. Un-flip it */ old_val = ~old_val; } #endif /* CONFIG_X86_KPTI */ return old_val; } /** * Low level page table update function for a virtual page * * For the provided set of page tables, update the PTE associated with the * virtual address to a new value, using the mask to control what bits * need to be preserved. * * It is permitted to set up mappings without the Present bit set, in which * case all other bits may be used for OS accounting. * * This function is atomic with respect to the page table entries being * modified by another CPU, using atomic operations to update the requested * bits and return the previous PTE value. * * Common mask values: * MASK_ALL - Update all PTE bits. Exitsing state totally discarded. * MASK_PERM - Only update permission bits. All other bits and physical * mapping preserved. * * @param ptables Page tables to modify * @param virt Virtual page table entry to update * @param entry_val Value to update in the PTE (ignored if OPTION_RESET) * @param [out] old_val_ptr Filled in with previous PTE value. May be NULL. * @param mask What bits to update in the PTE (ignored if OPTION_RESET) * @param options Control options, described above */ static void page_map_set(pentry_t *ptables, void *virt, pentry_t entry_val, pentry_t *old_val_ptr, pentry_t mask, uint32_t options) { pentry_t *table = ptables; bool flush = (options & OPTION_FLUSH) != 0U; for (int level = 0; level < NUM_LEVELS; level++) { int index; pentry_t *entryp; index = get_index(virt, level); entryp = &table[index]; /* Check if we're a PTE */ if (level == PTE_LEVEL) { pentry_t old_val = pte_atomic_update(entryp, entry_val, mask, options); if (old_val_ptr != NULL) { *old_val_ptr = old_val; } break; } /* We fail an assertion here due to no support for * splitting existing bigpage mappings. * If the PS bit is not supported at some level (like * in a PML4 entry) it is always reserved and must be 0 */ __ASSERT((*entryp & MMU_PS) == 0U, "large page encountered"); table = next_table(*entryp, level); __ASSERT(table != NULL, "missing page table level %d when trying to map %p", level + 1, virt); } if (flush) { tlb_flush_page(virt); } } /** * Map a physical region in a specific set of page tables. * * See documentation for page_map_set() for additional notes about masks and * supported options. * * It is vital to remember that all virtual-to-physical mappings must be * the same with respect to supervisor mode regardless of what thread is * scheduled (and therefore, if multiple sets of page tables exist, which one * is active). * * It is permitted to set up mappings without the Present bit set. * * @param ptables Page tables to modify * @param virt Base page-aligned virtual memory address to map the region. * @param phys Base page-aligned physical memory address for the region. * Ignored if OPTION_RESET. Also affected by the mask parameter. This * address is not directly examined, it will simply be programmed into * the PTE. * @param size Size of the physical region to map * @param entry_flags Non-address bits to set in every PTE. Ignored if * OPTION_RESET. Also affected by the mask parameter. * @param mask What bits to update in each PTE. Un-set bits will never be * modified. Ignored if OPTION_RESET. * @param options Control options, described above */ static void range_map_ptables(pentry_t *ptables, void *virt, uintptr_t phys, size_t size, pentry_t entry_flags, pentry_t mask, uint32_t options) { bool reset = (options & OPTION_RESET) != 0U; assert_addr_aligned(phys); __ASSERT((size & (CONFIG_MMU_PAGE_SIZE - 1)) == 0U, "unaligned size %zu", size); __ASSERT((entry_flags & paging_levels[0].mask) == 0U, "entry_flags " PRI_ENTRY " overlaps address area", entry_flags); /* This implementation is stack-efficient but not particularly fast. * We do a full page table walk for every page we are updating. * Recursive approaches are possible, but use much more stack space. */ for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) { uint8_t *dest_virt = (uint8_t *)virt + offset; pentry_t entry_val; if (reset) { entry_val = 0; } else { entry_val = (phys + offset) | entry_flags; } page_map_set(ptables, dest_virt, entry_val, NULL, mask, options); } } /** * Establish or update a memory mapping for all page tables * * The physical region noted from phys to phys + size will be mapped to * an equal sized virtual region starting at virt, with the provided flags. * The mask value denotes what bits in PTEs will actually be modified. * * See range_map_ptables() for additional details. * * @param virt Page-aligned starting virtual address * @param phys Page-aligned starting physical address. Ignored if the mask * parameter does not enable address bits or OPTION_RESET used. * This region is not directly examined, it will simply be * programmed into the page tables. * @param size Size of the physical region to map * @param entry_flags Desired state of non-address PTE bits covered by mask, * ignored if OPTION_RESET * @param mask What bits in the PTE to actually modifiy; unset bits will * be preserved. Ignored if OPTION_RESET. * @param options Control options. Do not set OPTION_USER here. OPTION_FLUSH * will trigger a TLB shootdown after all tables are updated. */ static void range_map(void *virt, uintptr_t phys, size_t size, pentry_t entry_flags, pentry_t mask, uint32_t options) { LOG_DBG("%s: %p -> %p (%zu) flags " PRI_ENTRY " mask " PRI_ENTRY " opt 0x%x", __func__, (void *)phys, virt, size, entry_flags, mask, options); #ifdef CONFIG_X86_64 /* There's a gap in the "64-bit" address space, as 4-level paging * requires bits 48 to 63 to be copies of bit 47. Test this * by treating as a signed value and shifting. */ __ASSERT(((((intptr_t)virt) << 16) >> 16) == (intptr_t)virt, "non-canonical virtual address mapping %p (size %zu)", virt, size); #endif /* CONFIG_X86_64 */ __ASSERT((options & OPTION_USER) == 0U, "invalid option for function"); /* All virtual-to-physical mappings are the same in all page tables. * What can differ is only access permissions, defined by the memory * domain associated with the page tables, and the threads that are * members of that domain. * * Any new mappings need to be applied to all page tables. */ #if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE) sys_snode_t *node; SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) { struct arch_mem_domain *domain = CONTAINER_OF(node, struct arch_mem_domain, node); range_map_ptables(domain->ptables, virt, phys, size, entry_flags, mask, options | OPTION_USER); } #endif /* CONFIG_USERSPACE */ range_map_ptables(z_x86_kernel_ptables, virt, phys, size, entry_flags, mask, options); #ifdef CONFIG_SMP if ((options & OPTION_FLUSH) != 0U) { tlb_shootdown(); } #endif /* CONFIG_SMP */ } static inline void range_map_unlocked(void *virt, uintptr_t phys, size_t size, pentry_t entry_flags, pentry_t mask, uint32_t options) { k_spinlock_key_t key; key = k_spin_lock(&x86_mmu_lock); range_map(virt, phys, size, entry_flags, mask, options); k_spin_unlock(&x86_mmu_lock, key); } static pentry_t flags_to_entry(uint32_t flags) { pentry_t entry_flags = MMU_P; /* Translate flags argument into HW-recognized entry flags. * * Support for PAT is not implemented yet. Many systems may have * BIOS-populated MTRR values such that these cache settings are * redundant. */ switch (flags & K_MEM_CACHE_MASK) { case K_MEM_CACHE_NONE: entry_flags |= MMU_PCD; break; case K_MEM_CACHE_WT: entry_flags |= MMU_PWT; break; case K_MEM_CACHE_WB: break; default: __ASSERT(false, "bad memory mapping flags 0x%x", flags); } if ((flags & K_MEM_PERM_RW) != 0U) { entry_flags |= ENTRY_RW; } if ((flags & K_MEM_PERM_USER) != 0U) { entry_flags |= ENTRY_US; } if ((flags & K_MEM_PERM_EXEC) == 0U) { entry_flags |= ENTRY_XD; } return entry_flags; } /* map new region virt..virt+size to phys with provided arch-neutral flags */ void arch_mem_map(void *virt, uintptr_t phys, size_t size, uint32_t flags) { range_map_unlocked(virt, phys, size, flags_to_entry(flags), MASK_ALL, 0); } #if CONFIG_X86_STACK_PROTECTION void z_x86_set_stack_guard(k_thread_stack_t *stack) { /* Applied to all page tables as this affects supervisor mode. * XXX: This never gets reset when the thread exits, which can * cause problems if the memory is later used for something else. * See #29499 * * Guard page is always the first page of the stack object for both * kernel and thread stacks. */ range_map_unlocked(stack, 0, CONFIG_MMU_PAGE_SIZE, MMU_P | ENTRY_XD, MASK_PERM, OPTION_FLUSH); } #endif /* CONFIG_X86_STACK_PROTECTION */ #ifdef CONFIG_USERSPACE static bool page_validate(pentry_t *ptables, uint8_t *addr, bool write) { pentry_t *table = (pentry_t *)ptables; for (int level = 0; level < NUM_LEVELS; level++) { pentry_t entry = get_entry(table, addr, level); if (is_leaf(level, entry)) { #ifdef CONFIG_X86_KPTI if (is_flipped_pte(entry)) { /* We flipped this to prevent user access * since just clearing US isn't sufficient */ return false; } #endif /* US and RW bits still carry meaning if non-present. * If the data page is paged out, access bits are * preserved. If un-mapped, the whole entry is 0. */ if (((entry & MMU_US) == 0U) || (write && ((entry & MMU_RW) == 0U))) { return false; } } else { if ((entry & MMU_P) == 0U) { /* Missing intermediate table, address is * un-mapped */ return false; } table = next_table(entry, level); } } return true; } static inline void bcb_fence(void) { #ifdef CONFIG_X86_BOUNDS_CHECK_BYPASS_MITIGATION __asm__ volatile ("lfence" : : : "memory"); #endif } int arch_buffer_validate(void *addr, size_t size, int write) { pentry_t *ptables = z_x86_thread_page_tables_get(_current); uint8_t *virt; size_t aligned_size; int ret = 0; /* addr/size arbitrary, fix this up into an aligned region */ k_mem_region_align((uintptr_t *)&virt, &aligned_size, (uintptr_t)addr, size, CONFIG_MMU_PAGE_SIZE); for (size_t offset = 0; offset < aligned_size; offset += CONFIG_MMU_PAGE_SIZE) { if (!page_validate(ptables, virt + offset, write)) { ret = -1; break; } } bcb_fence(); return ret; } #ifdef CONFIG_X86_COMMON_PAGE_TABLE /* Very low memory configuration. A single set of page tables is used for * all threads. This relies on some assumptions: * * - No KPTI. If that were supported, we would need both a kernel and user * set of page tables. * - No SMP. If that were supported, we would need per-core page tables. * - Memory domains don't affect supervisor mode. * - All threads have the same virtual-to-physical mappings. * - Memory domain APIs can't be called by user mode. * * Because there is no SMP, only one set of page tables, and user threads can't * modify their own memory domains, we don't have to do much when * arch_mem_domain_* APIs are called. We do use a caching scheme to avoid * updating page tables if the last user thread scheduled was in the same * domain. * * We don't set CONFIG_ARCH_MEM_DOMAIN_DATA, since we aren't setting * up any arch-specific memory domain data (per domain page tables.) * * This is all nice and simple and saves a lot of memory. The cost is that * context switching is not trivial CR3 update. We have to reset all partitions * for the current domain configuration and then apply all the partitions for * the incoming thread's domain if they are not the same. We also need to * update permissions similarly on the thread stack region. */ static inline void reset_region(uintptr_t start, size_t size) { range_map_unlocked((void *)start, 0, size, 0, 0, OPTION_FLUSH | OPTION_RESET); } static inline void apply_region(uintptr_t start, size_t size, pentry_t attr) { range_map_unlocked((void *)start, 0, size, attr, MASK_PERM, OPTION_FLUSH); } /* Cache of the current memory domain applied to the common page tables and * the stack buffer region that had User access granted. */ static struct k_mem_domain *current_domain; static uintptr_t current_stack_start; static size_t current_stack_size; void z_x86_swap_update_common_page_table(struct k_thread *incoming) { k_spinlock_key_t key; if ((incoming->base.user_options & K_USER) == 0) { /* Incoming thread is not a user thread. Memory domains don't * affect supervisor threads and we don't need to enable User * bits for its stack buffer; do nothing. */ return; } /* Step 1: Make sure the thread stack is set up correctly for the * for the incoming thread */ if (incoming->stack_info.start != current_stack_start || incoming->stack_info.size != current_stack_size) { if (current_stack_size != 0U) { reset_region(current_stack_start, current_stack_size); } /* The incoming thread's stack region needs User permissions */ apply_region(incoming->stack_info.start, incoming->stack_info.size, K_MEM_PARTITION_P_RW_U_RW); /* Update cache */ current_stack_start = incoming->stack_info.start; current_stack_size = incoming->stack_info.size; } /* Step 2: The page tables always have some memory domain applied to * them. If the incoming thread's memory domain is different, * update the page tables */ key = k_spin_lock(&z_mem_domain_lock); if (incoming->mem_domain_info.mem_domain == current_domain) { /* The incoming thread's domain is already applied */ goto out_unlock; } /* Reset the current memory domain regions... */ if (current_domain != NULL) { for (int i = 0; i < CONFIG_MAX_DOMAIN_PARTITIONS; i++) { struct k_mem_partition *ptn = ¤t_domain->partitions[i]; if (ptn->size == 0) { continue; } reset_region(ptn->start, ptn->size); } } /* ...and apply all the incoming domain's regions */ for (int i = 0; i < CONFIG_MAX_DOMAIN_PARTITIONS; i++) { struct k_mem_partition *ptn = &incoming->mem_domain_info.mem_domain->partitions[i]; if (ptn->size == 0) { continue; } apply_region(ptn->start, ptn->size, ptn->attr); } current_domain = incoming->mem_domain_info.mem_domain; out_unlock: k_spin_unlock(&z_mem_domain_lock, key); } /* If a partition was added or removed in the cached domain, update the * page tables. */ void arch_mem_domain_partition_remove(struct k_mem_domain *domain, uint32_t partition_id) { struct k_mem_partition *ptn; if (domain != current_domain) { return; } ptn = &domain->partitions[partition_id]; reset_region(ptn->start, ptn->size); } void arch_mem_domain_partition_add(struct k_mem_domain *domain, uint32_t partition_id) { struct k_mem_partition *ptn; if (domain != current_domain) { return; } ptn = &domain->partitions[partition_id]; apply_region(ptn->start, ptn->size, ptn->attr); } /* Rest of the APIs don't need to do anything */ void arch_mem_domain_thread_add(struct k_thread *thread) { } void arch_mem_domain_thread_remove(struct k_thread *thread) { } void arch_mem_domain_destroy(struct k_mem_domain *domain) { } #else /* Memory domains each have a set of page tables assigned to them */ /* * Pool of free memory pages for copying page tables, as needed. */ #define PTABLE_COPY_SIZE (NUM_TABLE_PAGES * CONFIG_MMU_PAGE_SIZE) static uint8_t __noinit page_pool[PTABLE_COPY_SIZE * CONFIG_X86_MAX_ADDITIONAL_MEM_DOMAINS] __aligned(CONFIG_MMU_PAGE_SIZE); static uint8_t *page_pos = page_pool + sizeof(page_pool); /* Return a zeroed and suitably aligned memory page for page table data * from the global page pool */ static void *page_pool_get(void) { void *ret; if (page_pos == page_pool) { ret = NULL; } else { page_pos -= CONFIG_MMU_PAGE_SIZE; ret = page_pos; } if (ret != NULL) { memset(ret, 0, CONFIG_MMU_PAGE_SIZE); } return ret; } /* Debugging function to show how many pages are free in the pool */ static inline unsigned int pages_free(void) { return (page_pos - page_pool) / CONFIG_MMU_PAGE_SIZE; } /** * Duplicate an entire set of page tables * * Uses recursion, but depth at any given moment is limited by the number of * paging levels. * * x86_mmu_lock must be held. * * @param dst a zeroed out chunk of memory of sufficient size for the indicated * paging level. * @param src some paging structure from within the source page tables to copy * at the indicated paging level * @param level Current paging level * @retval 0 Success * @retval -ENOMEM Insufficient page pool memory */ static int copy_page_table(pentry_t *dst, pentry_t *src, int level) { if (level == PTE_LEVEL) { /* Base case: leaf page table */ for (int i = 0; i < get_num_entries(level); i++) { dst[i] = pte_finalize_value(reset_pte(src[i]), true); } } else { /* Recursive case: allocate sub-structures as needed and * make recursive calls on them */ for (int i = 0; i < get_num_entries(level); i++) { pentry_t *child_dst; int ret; if ((src[i] & MMU_P) == 0) { /* Non-present, skip */ continue; } __ASSERT((src[i] & MMU_PS) == 0, "large page encountered"); child_dst = page_pool_get(); if (child_dst == NULL) { return -ENOMEM; } /* Page table links are by physical address. RAM * for page tables is identity-mapped, but double- * cast needed for PAE case where sizeof(void *) and * sizeof(pentry_t) are not the same. */ dst[i] = ((pentry_t)z_x86_phys_addr(child_dst) | INT_FLAGS); ret = copy_page_table(child_dst, next_table(src[i], level), level + 1); if (ret != 0) { return ret; } } } return 0; } static void region_map_update(pentry_t *ptables, void *start, size_t size, pentry_t flags, bool reset) { uint32_t options = OPTION_USER; k_spinlock_key_t key; if (reset) { options |= OPTION_RESET; } if (ptables == z_x86_page_tables_get()) { options |= OPTION_FLUSH; } key = k_spin_lock(&x86_mmu_lock); (void)range_map_ptables(ptables, start, 0, size, flags, MASK_PERM, options); k_spin_unlock(&x86_mmu_lock, key); #ifdef CONFIG_SMP tlb_shootdown(); #endif } static inline void reset_region(pentry_t *ptables, void *start, size_t size) { LOG_DBG("%s(%p, %p, %zu)", __func__, ptables, start, size); region_map_update(ptables, start, size, 0, true); } static inline void apply_region(pentry_t *ptables, void *start, size_t size, pentry_t attr) { LOG_DBG("%s(%p, %p, %zu, " PRI_ENTRY ")", __func__, ptables, start, size, attr); region_map_update(ptables, start, size, attr, false); } static void set_stack_perms(struct k_thread *thread, pentry_t *ptables) { LOG_DBG("update stack for thread %p's ptables at %p: %p (size %zu)", thread, ptables, (void *)thread->stack_info.start, thread->stack_info.size); apply_region(ptables, (void *)thread->stack_info.start, thread->stack_info.size, MMU_P | MMU_XD | MMU_RW | MMU_US); } /* * Arch interface implementations for memory domains and userspace */ int arch_mem_domain_init(struct k_mem_domain *domain) { int ret; k_spinlock_key_t key = k_spin_lock(&x86_mmu_lock); LOG_DBG("%s(%p)", __func__, domain); #if __ASSERT_ON sys_snode_t *node; /* Assert that we have not already initialized this domain */ SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) { struct arch_mem_domain *list_domain = CONTAINER_OF(node, struct arch_mem_domain, node); __ASSERT(list_domain != &domain->arch, "%s(%p) called multiple times", __func__, domain); } #endif /* __ASSERT_ON */ #ifndef CONFIG_X86_KPTI /* If we're not using KPTI then we can use the build time page tables * (which are mutable) as the set of page tables for the default * memory domain, saving us some memory. * * We skip adding this domain to x86_domain_list since we already * update z_x86_kernel_ptables directly in range_map(). */ if (domain == &k_mem_domain_default) { domain->arch.ptables = z_x86_kernel_ptables; k_spin_unlock(&x86_mmu_lock, key); return 0; } #endif /* CONFIG_X86_KPTI */ #ifdef CONFIG_X86_PAE /* PDPT is stored within the memory domain itself since it is * much smaller than a full page */ (void)memset(domain->arch.pdpt, 0, sizeof(domain->arch.pdpt)); domain->arch.ptables = domain->arch.pdpt; #else /* Allocate a page-sized top-level structure, either a PD or PML4 */ domain->arch.ptables = page_pool_get(); if (domain->arch.ptables == NULL) { k_spin_unlock(&x86_mmu_lock, key); return -ENOMEM; } #endif /* CONFIG_X86_PAE */ LOG_DBG("copy_page_table(%p, %p, 0)", domain->arch.ptables, z_x86_kernel_ptables); /* Make a copy of the boot page tables created by gen_mmu.py */ ret = copy_page_table(domain->arch.ptables, z_x86_kernel_ptables, 0); if (ret == 0) { sys_slist_append(&x86_domain_list, &domain->arch.node); } k_spin_unlock(&x86_mmu_lock, key); return ret; } void arch_mem_domain_partition_remove(struct k_mem_domain *domain, uint32_t partition_id) { struct k_mem_partition *partition = &domain->partitions[partition_id]; /* Reset the partition's region back to defaults */ reset_region(domain->arch.ptables, (void *)partition->start, partition->size); } void arch_mem_domain_destroy(struct k_mem_domain *domain) { /* No-op, this is eventually getting removed in 2.5 */ } /* Called on thread exit or when moving it to a different memory domain */ void arch_mem_domain_thread_remove(struct k_thread *thread) { struct k_mem_domain *domain = thread->mem_domain_info.mem_domain; if ((thread->base.user_options & K_USER) == 0) { return; } if ((thread->base.thread_state & _THREAD_DEAD) == 0) { /* Thread is migrating to another memory domain and not * exiting for good; we weren't called from * z_thread_single_abort(). Resetting the stack region will * take place in the forthcoming thread_add() call. */ return; } /* Restore permissions on the thread's stack area since it is no * longer a member of the domain. */ reset_region(domain->arch.ptables, (void *)thread->stack_info.start, thread->stack_info.size); } void arch_mem_domain_partition_add(struct k_mem_domain *domain, uint32_t partition_id) { struct k_mem_partition *partition = &domain->partitions[partition_id]; /* Update the page tables with the partition info */ apply_region(domain->arch.ptables, (void *)partition->start, partition->size, partition->attr | MMU_P); } /* Invoked from memory domain API calls, as well as during thread creation */ void arch_mem_domain_thread_add(struct k_thread *thread) { /* New memory domain we are being added to */ struct k_mem_domain *domain = thread->mem_domain_info.mem_domain; /* This is only set for threads that were migrating from some other * memory domain; new threads this is NULL */ pentry_t *old_ptables = z_x86_virt_addr(thread->arch.ptables); bool is_user = (thread->base.user_options & K_USER) != 0; bool is_migration = (old_ptables != NULL) && is_user; /* Allow US access to the thread's stack in its new domain if * we are migrating. If we are not migrating this is done in * z_x86_current_stack_perms() */ if (is_migration) { set_stack_perms(thread, domain->arch.ptables); } thread->arch.ptables = z_x86_phys_addr(domain->arch.ptables); LOG_DBG("set thread %p page tables to %p", thread, (void *)thread->arch.ptables); /* Check if we're doing a migration from a different memory domain * and have to remove permissions from its old domain. * * XXX: The checks we have to do here and in * arch_mem_domain_thread_remove() are clumsy, it may be worth looking * into adding a specific arch_mem_domain_thread_migrate() API. * See #29601 */ if (is_migration) { reset_region(old_ptables, (void *)thread->stack_info.start, thread->stack_info.size); } #if !defined(CONFIG_X86_KPTI) && !defined(CONFIG_X86_COMMON_PAGE_TABLE) /* Need to switch to using these new page tables, in case we drop * to user mode before we are ever context switched out. * IPI takes care of this if the thread is currently running on some * other CPU. */ if (thread == _current && thread->arch.ptables != z_x86_cr3_get()) { z_x86_cr3_set(thread->arch.ptables); } #endif /* CONFIG_X86_KPTI */ } #endif /* !CONFIG_X86_COMMON_PAGE_TABLE */ int arch_mem_domain_max_partitions_get(void) { return CONFIG_MAX_DOMAIN_PARTITIONS; } /* Invoked from z_x86_userspace_enter */ void z_x86_current_stack_perms(void) { /* Clear any previous context in the stack buffer to prevent * unintentional data leakage. */ (void)memset((void *)_current->stack_info.start, 0xAA, _current->stack_info.size - _current->stack_info.delta); /* Only now is it safe to grant access to the stack buffer since any * previous context has been erased. */ #ifdef CONFIG_X86_COMMON_PAGE_TABLE /* Re run swap page table update logic since we're entering User mode. * This will grant stack and memory domain access if it wasn't set * already (in which case this returns very quickly). */ z_x86_swap_update_common_page_table(_current); #else /* Memory domain access is already programmed into the page tables. * Need to enable access to this new user thread's stack buffer in * its domain-specific page tables. */ set_stack_perms(_current, z_x86_thread_page_tables_get(_current)); #endif } #endif /* CONFIG_USERSPACE */ #ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES /* Selected on PC-like targets at the SOC level. * * Best is to do some E820 or similar enumeration to specifically identify * all page frames which are reserved by the hardware or firmware. * * For now, just reserve everything in the first megabyte of physical memory. */ void arch_reserved_pages_update(void) { for (uintptr_t pos = 0; pos < (1024 * 1024); pos += CONFIG_MMU_PAGE_SIZE) { struct z_page_frame *pf = z_phys_to_page_frame(pos); pf->flags |= Z_PAGE_FRAME_RESERVED; } } #endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */ #ifdef CONFIG_DEMAND_PAGING #define PTE_MASK (paging_levels[PTE_LEVEL].mask) void arch_mem_page_out(void *addr, uintptr_t location) { pentry_t mask = PTE_MASK | MMU_P | MMU_A; /* Accessed bit set to guarantee the entry is not completely 0 in * case of location value 0. A totally 0 PTE is un-mapped. */ range_map(addr, location, CONFIG_MMU_PAGE_SIZE, MMU_A, mask, OPTION_FLUSH); } void arch_mem_page_in(void *addr, uintptr_t phys) { pentry_t mask = PTE_MASK | MMU_P | MMU_D | MMU_A; range_map(addr, phys, CONFIG_MMU_PAGE_SIZE, MMU_P, mask, OPTION_FLUSH); } void arch_mem_scratch(uintptr_t phys) { page_map_set(z_x86_page_tables_get(), Z_SCRATCH_PAGE, phys | MMU_P | MMU_RW | MMU_XD, NULL, MASK_ALL, OPTION_FLUSH); } uintptr_t arch_page_info_get(void *addr, uintptr_t *phys, bool clear_accessed) { pentry_t all_pte, mask; uint32_t options; /* What to change, if anything, in the page_map_set() calls */ if (clear_accessed) { mask = MMU_A; options = OPTION_FLUSH; } else { /* In this configuration page_map_set() just queries the * page table and makes no changes */ mask = 0; options = 0; } page_map_set(z_x86_kernel_ptables, addr, 0, &all_pte, mask, options); /* Un-mapped PTEs are completely zeroed. No need to report anything * else in this case. */ if (all_pte == 0) { return ARCH_DATA_PAGE_NOT_MAPPED; } #if defined(CONFIG_USERSPACE) && !defined(CONFIG_X86_COMMON_PAGE_TABLE) /* Don't bother looking at other page tables if non-present as we * are not required to report accurate accessed/dirty in this case * and all mappings are otherwise the same. */ if ((all_pte & MMU_P) != 0) { sys_snode_t *node; /* IRQs are locked, safe to do this */ SYS_SLIST_FOR_EACH_NODE(&x86_domain_list, node) { pentry_t cur_pte; struct arch_mem_domain *domain = CONTAINER_OF(node, struct arch_mem_domain, node); page_map_set(domain->ptables, addr, 0, &cur_pte, mask, options | OPTION_USER); /* Logical OR of relevant PTE in all page tables. * addr/location and present state should be identical * among them. */ all_pte |= cur_pte; } } #endif /* USERSPACE && ~X86_COMMON_PAGE_TABLE */ /* NOTE: We are truncating the PTE on PAE systems, whose pentry_t * are larger than a uintptr_t. * * We currently aren't required to report back XD state (bit 63), and * Zephyr just doesn't support large physical memory on 32-bit * systems, PAE was only implemented for XD support. */ if (phys != NULL) { *phys = (uintptr_t)get_entry_phys(all_pte, PTE_LEVEL); } /* We don't filter out any other bits in the PTE and the kernel * ignores them. For the case of ARCH_DATA_PAGE_NOT_MAPPED, * we use a bit which is never set in a real PTE (the PAT bit) in the * current system. * * The other ARCH_DATA_PAGE_* macros are defined to their corresponding * bits in the PTE. */ return (uintptr_t)all_pte; } enum arch_page_location arch_page_location_get(void *addr, uintptr_t *location) { pentry_t pte; int level; /* TODO: since we only have to query the current set of page tables, * could optimize this with recursive page table mapping */ pentry_get(&level, &pte, z_x86_page_tables_get(), addr); if (pte == 0) { /* Not mapped */ return ARCH_PAGE_LOCATION_BAD; } __ASSERT(level == PTE_LEVEL, "bigpage found at %p", addr); *location = (uintptr_t)get_entry_phys(pte, PTE_LEVEL); if ((pte & MMU_P) != 0) { return ARCH_PAGE_LOCATION_PAGED_IN; } else { return ARCH_PAGE_LOCATION_PAGED_OUT; } } #ifdef CONFIG_X86_KPTI bool z_x86_kpti_is_access_ok(void *addr, pentry_t *ptables) { pentry_t pte; int level; pentry_get(&level, &pte, ptables, addr); /* Might as well also check if it's un-mapped, normally we don't * fetch the PTE from the page tables until we are inside * z_page_fault() and call arch_page_fault_status_get() */ if (level != PTE_LEVEL || pte == 0 || is_flipped_pte(pte)) { return false; } return true; } #endif /* CONFIG_X86_KPTI */ #endif /* CONFIG_DEMAND_PAGING */ |