Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | /* * Copyright (c) 2019 Linaro Limited * Copyright (c) 2020 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_DOMAIN flash_stm32wb #define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL #include <logging/log.h> LOG_MODULE_REGISTER(LOG_DOMAIN); #include <kernel.h> #include <device.h> #include <string.h> #include <drivers/flash.h> #include <init.h> #include <soc.h> #include <sys/__assert.h> #include "flash_stm32.h" #include "stm32_hsem.h" #if defined(CONFIG_BT) #include "shci.h" #endif #define STM32WBX_PAGE_SHIFT 12 /* offset and len must be aligned on 8 for write, * positive and not beyond end of flash */ bool flash_stm32_valid_range(const struct device *dev, off_t offset, uint32_t len, bool write) { return (!write || (offset % 8 == 0 && len % 8 == 0U)) && flash_stm32_range_exists(dev, offset, len); } /* * Up to 255 4K pages */ static uint32_t get_page(off_t offset) { return offset >> STM32WBX_PAGE_SHIFT; } static int write_dword(const struct device *dev, off_t offset, uint64_t val) { volatile uint32_t *flash = (uint32_t *)(offset + CONFIG_FLASH_BASE_ADDRESS); FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); uint32_t tmp; int ret, rc; uint32_t cpu1_sem_status; uint32_t cpu2_sem_status = 0; uint32_t key; /* if the control register is locked, do not fail silently */ if (regs->CR & FLASH_CR_LOCK) { return -EIO; } /* Check if this double word is erased */ if (flash[0] != 0xFFFFFFFFUL || flash[1] != 0xFFFFFFFFUL) { return -EIO; } ret = flash_stm32_check_status(dev); if (ret < 0) { return -EIO; } /* Implementation of STM32 AN5289, proposed in STM32WB Cube Application * BLE_RfWithFlash * https://github.com/STMicroelectronics/STM32CubeWB/tree/master/Projects/P-NUCLEO-WB55.Nucleo/Applications/BLE/BLE_RfWithFlash */ do { /** * When the PESD bit mechanism is used by CPU2 to protect its * timing, the PESD bit should be polled here. * If the PESD is set, the CPU1 will be stalled when reading * literals from an ISR that may occur after the flash * processing has been requested but suspended due to the PESD * bit. * * Note: This code is required only when the PESD mechanism is * used to protect the CPU2 timing. * However, keeping that code make it compatible with both * mechanisms. */ while (LL_FLASH_IsActiveFlag_OperationSuspended()) ; /* Enter critical section */ key = irq_lock(); /** * Depending on the application implementation, in case a * multitasking is possible with an OS, it should be checked * here if another task in the application disallowed flash * processing to protect some latency in critical code * execution. * When flash processing is ongoing, the CPU cannot access the * flash anymore.Trying to access the flash during that time * stalls the CPU. * The only way for CPU1 to disallow flash processing is to * take CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID. */ cpu1_sem_status = LL_HSEM_GetStatus(HSEM, CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID); if (cpu1_sem_status == 0) { /** * Check now if the CPU2 disallows flash processing to * protect its timing. If the semaphore is locked, the * CPU2 does not allow flash processing * * Note: By default, the CPU2 uses the PESD mechanism * to protect its timing, therefore, it is useless to * get/release the semaphore. * * However, keeping that code make it compatible with * bothmechanisms. * The protection by semaphore is enabled on CPU2 side * with the command SHCI_C2_SetFlashActivityControl() * */ cpu2_sem_status = LL_HSEM_1StepLock(HSEM, CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID); if (cpu2_sem_status == 0) { /** * When CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID is * taken, it is allowed to only write one * single 64bits data. * When several 64bits data need to be erased, * the application shall first exit from the * critical section and try again. */ /* Set the PG bit */ regs->CR |= FLASH_CR_PG; /* Flush the register write */ tmp = regs->CR; /* Perform the data write operation at desired * memory address */ flash[0] = (uint32_t)val; flash[1] = (uint32_t)(val >> 32); /** * Release the semaphore to give the * opportunity to CPU2 to protect its timing * versus the next flash operation by taking * this semaphore. * Note that the CPU2 is polling on this * semaphore so CPU1 shall release it as fast * as possible. * This is why this code is protected by a * critical section. */ LL_HSEM_ReleaseLock(HSEM, CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID, 0); } } /* Exit critical section */ irq_unlock(key); } while (cpu2_sem_status || cpu1_sem_status); /* Wait until the BSY bit is cleared */ rc = flash_stm32_wait_flash_idle(dev); /* Clear the PG bit */ regs->CR &= (~FLASH_CR_PG); return rc; } static int erase_page(const struct device *dev, uint32_t page) { uint32_t cpu1_sem_status; uint32_t cpu2_sem_status = 0; uint32_t key; FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); int rc; /* if the control register is locked, do not fail silently */ if (regs->CR & FLASH_CR_LOCK) { return -EIO; } /* Check that no Flash memory operation is ongoing */ rc = flash_stm32_wait_flash_idle(dev); if (rc < 0) { return rc; } /* Implementation of STM32 AN5289, proposed in STM32WB Cube Application * BLE_RfWithFlash * https://github.com/STMicroelectronics/STM32CubeWB/tree/master/Projects/P-NUCLEO-WB55.Nucleo/Applications/BLE/BLE_RfWithFlash */ do { /** * When the PESD bit mechanism is used by CPU2 to protect its * timing, the PESD bit should be polled here. * If the PESD is set, the CPU1 will be stalled when reading * literals from an ISR that may occur after the flash * processing has been requested but suspended due to the PESD * bit. * * Note: This code is required only when the PESD mechanism is * used to protect the CPU2 timing. * However, keeping that code make it compatible with both * mechanisms. */ while (LL_FLASH_IsActiveFlag_OperationSuspended()) ; /* Enter critical section */ key = irq_lock(); /** * Depending on the application implementation, in case a * multitasking is possible with an OS, it should be checked * here if another task in the application disallowed flash * processing to protect some latency in critical code * execution. * When flash processing is ongoing, the CPU cannot access the * flash anymore.Trying to access the flash during that time * stalls the CPU. * The only way for CPU1 to disallow flash processing is to * take CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID. */ cpu1_sem_status = LL_HSEM_GetStatus(HSEM, CFG_HW_BLOCK_FLASH_REQ_BY_CPU1_SEMID); if (cpu1_sem_status == 0) { /** * Check now if the CPU2 disallows flash processing to * protect its timing. If the semaphore is locked, the * CPU2 does not allow flash processing * * Note: By default, the CPU2 uses the PESD mechanism * to protect its timing, therefore, it is useless to * get/release the semaphore. * * However, keeping that code make it compatible with * bothmechanisms. * The protection by semaphore is enabled on CPU2 side * with the command SHCI_C2_SetFlashActivityControl() * */ cpu2_sem_status = LL_HSEM_1StepLock(HSEM, CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID); if (cpu2_sem_status == 0) { /** * When CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID is * taken, it is allowed to only erase one * sector. * When several sectors need to be erased, * the application shall first exit from the * critical section and try again. */ regs->CR |= FLASH_CR_PER; regs->CR &= ~FLASH_CR_PNB_Msk; regs->CR |= page << FLASH_CR_PNB_Pos; regs->CR |= FLASH_CR_STRT; /** * Release the semaphore to give the * opportunity to CPU2 to protect its timing * versus the next flash operation by taking * this semaphore. * Note that the CPU2 is polling on this * semaphore so CPU1 shall release it as fast * as possible. * This is why this code is protected by a * critical section. */ LL_HSEM_ReleaseLock(HSEM, CFG_HW_BLOCK_FLASH_REQ_BY_CPU2_SEMID, 0); } } /* Exit critical section */ irq_unlock(key); } while (cpu2_sem_status || cpu1_sem_status); /* Wait for the BSY bit */ rc = flash_stm32_wait_flash_idle(dev); regs->CR &= ~FLASH_CR_PER; return rc; } int flash_stm32_block_erase_loop(const struct device *dev, unsigned int offset, unsigned int len) { int i, rc = 0; #if defined(CONFIG_BT) /** * Notify the CPU2 that some flash erase activity may be executed * On reception of this command, the CPU2 enables the BLE timing * protection versus flash erase processing. * The Erase flash activity will be executed only when the BLE RF is * idle for at least 25ms. * The CPU2 will prevent all flash activity (write or erase) in all * cases when the BL RF Idle is shorter than 25ms. */ SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON); #endif /* CONFIG_BT */ i = get_page(offset); for (; i <= get_page(offset + len - 1) ; ++i) { rc = erase_page(dev, i); if (rc < 0) { break; } } #if defined(CONFIG_BT) /** * Notify the CPU2 there will be no request anymore to erase the flash * On reception of this command, the CPU2 disables the BLE timing * protection versus flash erase processing */ SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_OFF); #endif /* CONFIG_BT */ return rc; } int flash_stm32_write_range(const struct device *dev, unsigned int offset, const void *data, unsigned int len) { int i, rc = 0; for (i = 0; i < len; i += 8, offset += 8U) { rc = write_dword(dev, offset, UNALIGNED_GET((const uint64_t *) data + (i >> 3))); if (rc < 0) { return rc; } } return rc; } void flash_stm32_page_layout(const struct device *dev, const struct flash_pages_layout **layout, size_t *layout_size) { static struct flash_pages_layout stm32wb_flash_layout = { .pages_count = 0, .pages_size = 0, }; ARG_UNUSED(dev); if (stm32wb_flash_layout.pages_count == 0) { stm32wb_flash_layout.pages_count = FLASH_SIZE / FLASH_PAGE_SIZE; stm32wb_flash_layout.pages_size = FLASH_PAGE_SIZE; } *layout = &stm32wb_flash_layout; *layout_size = 1; } int flash_stm32_check_status(const struct device *dev) { FLASH_TypeDef *regs = FLASH_STM32_REGS(dev); uint32_t error = 0; /* Save Flash errors */ error = (regs->SR & FLASH_FLAG_SR_ERRORS); error |= (regs->ECCR & FLASH_FLAG_ECCC); /* Clear systematic Option and Enginneering bits validity error */ if (error & FLASH_FLAG_OPTVERR) { regs->SR |= FLASH_FLAG_SR_ERRORS; return 0; } if (error) { return -EIO; } return 0; } |