Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/*
 *
 * Copyright (c) 2019 Linaro Limited.
 * Copyright (c) 2020 Jeremy LOCHE
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <soc.h>
#include <drivers/clock_control.h>
#include <sys/util.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include "stm32_hsem.h"

/* Macros to fill up prescaler values */
#define z_hsi_divider(v) LL_RCC_HSI_DIV ## v
#define hsi_divider(v) z_hsi_divider(v)

#define z_sysclk_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define sysclk_prescaler(v) z_sysclk_prescaler(v)

#define z_ahb_prescaler(v) LL_RCC_AHB_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)

#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)

#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)

#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)

#define z_apb4_prescaler(v) LL_RCC_APB4_DIV_ ## v
#define apb4_prescaler(v) z_apb4_prescaler(v)

/* Macro to check for clock feasability */
/* It is Cortex M7's responsibility to setup clock tree */
/* This check should only be performed for the M7 core code */
#ifdef CONFIG_CPU_CORTEX_M7

/* Define primary oscillator frequencies */
/* Suppress the cast to uint32_t which */
/* prevents from compare with #if > operator*/
/* original defines in stm32h7xx_hal_conf.h*/
#define HSI_FREQ 64000000UL	/* HSI_VALUE ((uint32_t)64000000) */
/* HSE_VALUE overridden by the build system without C cast to uint*/
/* Build system doesn't provide the UL type suffix for HSE_VALUE */
/* Force HSE_FREQ to be cast to preprocessor UL to prevent overflow*/
/* Only use these constants in preprocessor expressions */
#define HSE_FREQ HSE_VALUE
#define CSI_FREQ 4000000UL	/* CSI_VALUE ((uint32_t)4000000) */

/* Choose PLL SRC */
#ifdef CONFIG_CLOCK_STM32_PLL_SRC_HSI
#define PLLSRC_FREQ  ((HSI_FREQ)/(CONFIG_CLOCK_STM32_HSI_DIVISOR))
#elif defined(CONFIG_CLOCK_STM32_PLL_SRC_CSI)
#define PLLSRC_FREQ  CSI_FREQ
#elif defined(CONFIG_CLOCK_STM32_PLL_SRC_HSE)
#define PLLSRC_FREQ  HSE_FREQ
#else
#define PLLSRC_FREQ 0
#endif

#define VCO_FREQ	(PLLSRC_FREQ / CONFIG_CLOCK_STM32_PLL_M_DIVISOR)

#if (1000000UL <= VCO_FREQ && VCO_FREQ <= 2000000UL)
#define VCO_INPUT_RANGE LL_RCC_PLLINPUTRANGE_1_2
#elif (2000000UL < VCO_FREQ && VCO_FREQ <= 4000000UL)
#define VCO_INPUT_RANGE LL_RCC_PLLINPUTRANGE_2_4
#elif (4000000UL < VCO_FREQ && VCO_FREQ <= 8000000UL)
#define VCO_INPUT_RANGE LL_RCC_PLLINPUTRANGE_4_8
#elif (8000000UL < VCO_FREQ && VCO_FREQ <= 16000000UL)
#define VCO_INPUT_RANGE LL_RCC_PLLINPUTRANGE_8_16
#else
#error "PLL1 VCO frequency input range out of range"
#endif

/* Given source clock and dividers, computed the output frequency of PLLP */
#define PLLP_FREQ(pllsrc_freq, divm, divn, divp)	(((pllsrc_freq)*\
							(divn))/((divm)*(divp)))

/* PLL P output frequency value */
#define PLLP_VALUE	PLLP_FREQ(\
				PLLSRC_FREQ,\
				CONFIG_CLOCK_STM32_PLL_M_DIVISOR,\
				CONFIG_CLOCK_STM32_PLL_N_MULTIPLIER,\
				CONFIG_CLOCK_STM32_PLL_P_DIVISOR)

/* SYSCLKSRC before the D1CPRE prescaler */
#ifdef CONFIG_CLOCK_STM32_SYSCLK_SRC_PLL
#define SYSCLKSRC_FREQ	PLLP_VALUE
#elif defined(CONFIG_CLOCK_STM32_SYSCLK_SRC_HSI)
#define SYSCLKSRC_FREQ	((HSI_FREQ)/(CONFIG_CLOCK_STM32_HSI_DIVISOR))
#elif defined(CONFIG_CLOCK_STM32_SYSCLK_SRC_CSI)
#define SYSCLKSRC_FREQ	CSI_FREQ
#elif defined(CONFIG_CLOCK_STM32_SYSCLK_SRC_HSE)
#define SYSCLKSRC_FREQ	HSE_FREQ
#endif

/* ARM Sys CPU Clock before HPRE prescaler */
#define SYSCLK_FREQ	((SYSCLKSRC_FREQ)/(CONFIG_CLOCK_STM32_D1CPRE))
#define AHB_FREQ	((SYSCLK_FREQ)/(CONFIG_CLOCK_STM32_HPRE))
#define APB1_FREQ	((AHB_FREQ)/(CONFIG_CLOCK_STM32_D2PPRE1))
#define APB2_FREQ	((AHB_FREQ)/(CONFIG_CLOCK_STM32_D2PPRE2))
#define APB3_FREQ	((AHB_FREQ)/(CONFIG_CLOCK_STM32_D1PPRE))
#define APB4_FREQ	((AHB_FREQ)/(CONFIG_CLOCK_STM32_D3PPRE))

/* Datasheet maximum frequency definitions */
#define SYSCLK_FREQ_MAX	480000000UL
#define AHB_FREQ_MAX	240000000UL
#define APBx_FREQ_MAX	120000000UL

#if SYSCLK_FREQ > SYSCLK_FREQ_MAX
#error "SYSCLK frequency is too high, max is 480MHz"
#endif
#if AHB_FREQ > AHB_FREQ_MAX
#error "AHB frequency is too high, max is 240MHz"
#endif
#if APB1_FREQ > APBx_FREQ_MAX
#error "APB1 frequency is too high, max is 120MHz"
#endif
#if APB2_FREQ > APBx_FREQ_MAX
#error "APB2 frequency is too high, max is 120MHz"
#endif
#if APB3_FREQ > APBx_FREQ_MAX
#error "APB3 frequency is too high, max is 120MHz"
#endif
#if APB4_FREQ > APBx_FREQ_MAX
#error "APB4 frequency is too high, max is 120MHz"
#endif

#if SYSCLK_FREQ != CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
#error "Calculated CPU clock frequency (SYS clock) for M7 core doesn't match \
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC"
#endif

/* end of clock feasability check */
#endif /* CONFIG_CPU_CORTEX_M7 */


#if defined(CONFIG_CPU_CORTEX_M7)
#if CONFIG_CLOCK_STM32_D1CPRE > 1
/*
 * D1CPRE prescaler allows to set a HCLK frequency lower than SYSCLK frequency.
 * Though, zephyr doesn't make a difference today between these two clocks.
 * So, changing this prescaler is not allowed until it is made possible to
 * use them independently in zephyr clock subsystem.
 */
#error "D1CPRE presacler can't be higher than 1"
#endif
#endif /* CONFIG_CPU_CORTEX_M7 */

static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
	return clock / prescaler;
}

#if !defined(CONFIG_CPU_CORTEX_M4)

static inline uint32_t get_pllsrc_frequency(void)
{
	switch (LL_RCC_PLL_GetSource()) {
	case LL_RCC_PLLSOURCE_HSI:
		return HSI_VALUE;
	case LL_RCC_PLLSOURCE_CSI:
		return CSI_VALUE;
	case LL_RCC_PLLSOURCE_HSE:
		return HSE_VALUE;
	case LL_RCC_PLLSOURCE_NONE:
	default:
		return 0;
	}
}

static uint32_t get_hclk_frequency(void)
{
	uint32_t sysclk = 0;
	uint32_t hpre = 0;
	uint32_t hsidiv = 0;

	/* Get the current HSI divider */
	switch (LL_RCC_HSI_GetDivider()) {
	case LL_RCC_HSI_DIV2:
		hsidiv = 2;
		break;
	case LL_RCC_HSI_DIV4:
		hsidiv = 4;
		break;
	case LL_RCC_HSI_DIV8:
		hsidiv = 8;
		break;
	case LL_RCC_HSI_DIV1:
	default:
		hsidiv = 1;
		break;
	}

	/* Get the current system clock source */
	switch (LL_RCC_GetSysClkSource()) {
	case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
		sysclk = HSI_VALUE/hsidiv;
		break;
	case LL_RCC_SYS_CLKSOURCE_STATUS_CSI:
		sysclk = CSI_VALUE;
		break;
	case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
		sysclk = HSE_VALUE;
		break;
	case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
		sysclk = PLLP_FREQ(get_pllsrc_frequency(),
				   LL_RCC_PLL1_GetM(),
				   LL_RCC_PLL1_GetN(),
				   LL_RCC_PLL1_GetP());
		break;
	}
	/* AHB/HCLK clock is sysclk/HPRE AHB prescaler*/
	switch (LL_RCC_GetAHBPrescaler()) {
	case LL_RCC_AHB_DIV_1:
		hpre = 1;
		break;
	case LL_RCC_AHB_DIV_2:
		hpre = 2;
		break;
	case LL_RCC_AHB_DIV_4:
		hpre = 4;
		break;
	case LL_RCC_AHB_DIV_8:
		hpre = 8;
		break;
	case LL_RCC_AHB_DIV_16:
		hpre = 16;
		break;
	case LL_RCC_AHB_DIV_64:
		hpre = 64;
		break;
	case LL_RCC_AHB_DIV_128:
		hpre = 128;
		break;
	case LL_RCC_AHB_DIV_256:
		hpre = 256;
		break;
	case LL_RCC_AHB_DIV_512:
		hpre = 512;
		break;
	default:
		hpre = 1;
		break;
	}
	return get_bus_clock(sysclk, hpre);
}

static int32_t prepare_regulator_voltage_scale(void)
{
	/* Make sure to put the CPU in highest Voltage scale during clock configuration */
	LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
	/* Highest voltage is SCALE0 */
	LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
	return 0;
}

static int32_t optimize_regulator_voltage_scale(uint32_t sysclk_freq)
{

	/* After sysclock is configured, tweak the voltage scale down */
	/* to reduce power consumption */

	/* Needs some smart work to configure properly */
	/* LL_PWR_REGULATOR_SCALE3 is lowest power consumption */
	/* Must be done in accordance to the Maximum allowed frequency vs VOS*/
	/* See RM0433 page 352 for more details */
	LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
	LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
	return 0;
}

#if defined(CONFIG_CLOCK_STM32_PLL_SRC_HSE) || \
	defined(CONFIG_CLOCK_STM32_PLL_SRC_HSI) || \
	defined(CONFIG_CLOCK_STM32_PLL_SRC_CSI)

static int32_t get_vco_output_range(uint32_t vco_input_range)
{
	if (vco_input_range == LL_RCC_PLLINPUTRANGE_1_2) {
		return LL_RCC_PLLVCORANGE_MEDIUM;
	}

	return LL_RCC_PLLVCORANGE_WIDE;
}
#endif /* CONFIG_CLOCK_STM32_PLL_SRC_* */

#endif /* ! CONFIG_CPU_CORTEX_M4 */

static inline int stm32_clock_control_on(const struct device *dev,
					 clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	int rc = 0;

	ARG_UNUSED(dev);

	/* Both cores can access bansk by following LL API */
	/* Using "_Cn_" LL API would restrict access to one or the other */
	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
		LL_AHB1_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB2:
		LL_AHB2_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB3:
		LL_AHB3_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB4:
		LL_AHB4_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1:
		LL_APB1_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1_2:
		LL_APB1_GRP2_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB2:
		LL_APB2_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB3:
		LL_APB3_GRP1_EnableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB4:
		LL_APB4_GRP1_EnableClock(pclken->enr);
		break;
	default:
		rc = -ENOTSUP;
		break;
	}

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return rc;
}

static inline int stm32_clock_control_off(const struct device *dev,
					  clock_control_subsys_t sub_system)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	int rc = 0;

	ARG_UNUSED(dev);

	/* Both cores can access bansk by following LL API */
	/* Using "_Cn_" LL API would restrict access to one or the other */
	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
		LL_AHB1_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB2:
		LL_AHB2_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB3:
		LL_AHB3_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_AHB4:
		LL_AHB4_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1:
		LL_APB1_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB1_2:
		LL_APB1_GRP2_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB2:
		LL_APB2_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB3:
		LL_APB3_GRP1_DisableClock(pclken->enr);
		break;
	case STM32_CLOCK_BUS_APB4:
		LL_APB4_GRP1_DisableClock(pclken->enr);
		break;
	default:
		rc = -ENOTSUP;
		break;
	}
	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

	return rc;
}

static int stm32_clock_control_get_subsys_rate(const struct device *clock,
					       clock_control_subsys_t sub_system,
					       uint32_t *rate)
{
	struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
	/*
	 * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
	 * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
	 * since it will be updated after clock configuration and hence
	 * more likely to contain actual clock speed
	 */
#if defined(CONFIG_CPU_CORTEX_M4)
	uint32_t ahb_clock = SystemCoreClock;
#else
	uint32_t ahb_clock = get_bus_clock(SystemCoreClock,
				CONFIG_CLOCK_STM32_HPRE);
#endif
	uint32_t apb1_clock = get_bus_clock(ahb_clock,
				CONFIG_CLOCK_STM32_D2PPRE1);
	uint32_t apb2_clock = get_bus_clock(ahb_clock,
				CONFIG_CLOCK_STM32_D2PPRE2);
	uint32_t apb3_clock = get_bus_clock(ahb_clock,
				CONFIG_CLOCK_STM32_D1PPRE);
	uint32_t apb4_clock = get_bus_clock(ahb_clock,
				CONFIG_CLOCK_STM32_D3PPRE);

	ARG_UNUSED(clock);

	switch (pclken->bus) {
	case STM32_CLOCK_BUS_AHB1:
	case STM32_CLOCK_BUS_AHB2:
	case STM32_CLOCK_BUS_AHB3:
	case STM32_CLOCK_BUS_AHB4:
		*rate = ahb_clock;
		break;
	case STM32_CLOCK_BUS_APB1:
	case STM32_CLOCK_BUS_APB1_2:
		*rate = apb1_clock;
		break;
	case STM32_CLOCK_BUS_APB2:
		*rate = apb2_clock;
		break;
	case STM32_CLOCK_BUS_APB3:
		*rate = apb3_clock;
		break;
	case STM32_CLOCK_BUS_APB4:
		*rate = apb4_clock;
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}

static struct clock_control_driver_api stm32_clock_control_api = {
	.on = stm32_clock_control_on,
	.off = stm32_clock_control_off,
	.get_rate = stm32_clock_control_get_subsys_rate,
};

static int stm32_clock_control_init(const struct device *dev)
{

#if !defined(CONFIG_CPU_CORTEX_M4)
	uint32_t old_hclk_freq = 0;
	uint32_t new_hclk_freq = 0;

#if defined(CONFIG_CLOCK_STM32_PLL_SRC_HSE) || \
	defined(CONFIG_CLOCK_STM32_PLL_SRC_HSI) || \
	defined(CONFIG_CLOCK_STM32_PLL_SRC_CSI)

	int32_t vco_output_range = 0;
#endif /* CONFIG_CLOCK_STM32_PLL_SRC_* */

#endif /* ! CONFIG_CPU_CORTEX_M4 */

	ARG_UNUSED(dev);

#if !defined(CONFIG_CPU_CORTEX_M4)

	/* HW semaphore Clock enable */
	LL_AHB4_GRP1_EnableClock(LL_AHB4_GRP1_PERIPH_HSEM);

	z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);

	/* Configure Voltage scale to comply with the desired system frequency */
	prepare_regulator_voltage_scale();

	/* Current hclk value */
	old_hclk_freq = get_hclk_frequency();
	/* AHB is HCLK clock to configure */
	new_hclk_freq = get_bus_clock(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
				      CONFIG_CLOCK_STM32_HPRE);

	/* Set flash latency */
	/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
	/* If freq increases, set flash latency before any clock setting */
	if (new_hclk_freq > old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	/* Configure PLL source */
	/* Can be HSE , HSI 64Mhz/HSIDIV, CSI 4MHz*/
#if defined(CONFIG_CLOCK_STM32_PLL_SRC_HSE)

	if (IS_ENABLED(CONFIG_CLOCK_STM32_HSE_BYPASS)) {
		LL_RCC_HSE_EnableBypass();
	} else {
		LL_RCC_HSE_DisableBypass();
	}

	/* Enable HSE oscillator */
	LL_RCC_HSE_Enable();
	while (LL_RCC_HSE_IsReady() != 1) {
	}

	/* Main PLL configuration and activation */
	LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);

#elif defined(CONFIG_CLOCK_STM32_PLL_SRC_CSI)
	/* Support for CSI oscillator */

	LL_RCC_CSI_Enable();
	while (LL_RCC_CSI_IsReady() != 1) {
	}

	/* Main PLL configuration and activation */
	LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_CSI);

#elif defined(CONFIG_CLOCK_STM32_PLL_SRC_HSI)
	/* By default choose HSI as PLL clock source */

	/* Enable HSI oscillator */
	LL_RCC_HSI_Enable();
	while (LL_RCC_HSI_IsReady() != 1) {
	}

	/* HSI divider configuration */
	LL_RCC_HSI_SetDivider(hsi_divider(CONFIG_CLOCK_STM32_HSI_DIVISOR));

	/* Main PLL configuration and activation */
	LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSI);

#else

	/* No clock source selected for PLL, by default, disable the PLL */
	LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_NONE);
#endif

	/* Configure the PLL dividers/multipliers only if PLL source is configured */
#if defined(CONFIG_CLOCK_STM32_PLL_SRC_HSE) || \
	defined(CONFIG_CLOCK_STM32_PLL_SRC_HSI) || \
	defined(CONFIG_CLOCK_STM32_PLL_SRC_CSI)

	vco_output_range = get_vco_output_range(VCO_INPUT_RANGE);

	/* Configure PLL1 */
	/* According to the RM0433 datasheet */
	/* Select clock source */
	/* Init pre divider DIVM */
	LL_RCC_PLL1_SetM(CONFIG_CLOCK_STM32_PLL_M_DIVISOR);
	/* Config PLL */

	/* VCO sel, VCO range */
	LL_RCC_PLL1_SetVCOInputRange(VCO_INPUT_RANGE);
	LL_RCC_PLL1_SetVCOOutputRange(vco_output_range);

	/* FRACN disable DIVP,DIVQ,DIVR enable*/
	LL_RCC_PLL1FRACN_Disable();
	LL_RCC_PLL1P_Enable();
	LL_RCC_PLL1Q_Enable();
	LL_RCC_PLL1R_Enable();

	/* DIVN,DIVP,DIVQ,DIVR div*/
	LL_RCC_PLL1_SetN(CONFIG_CLOCK_STM32_PLL_N_MULTIPLIER);
	LL_RCC_PLL1_SetP(CONFIG_CLOCK_STM32_PLL_P_DIVISOR);
	LL_RCC_PLL1_SetQ(CONFIG_CLOCK_STM32_PLL_Q_DIVISOR);
	LL_RCC_PLL1_SetR(CONFIG_CLOCK_STM32_PLL_R_DIVISOR);


#else
	/* PLL will stay in reset state configuration */
#endif /* CONFIG_CLOCK_STM32_PLL_SRC_* */


	/* Preset the prescalers prior to chosing SYSCLK */
	/* Prevents APB clock to go over limits */
	/* Set buses (Sys,AHB, APB1, APB2 & APB4) prescalers */
	LL_RCC_SetSysPrescaler(sysclk_prescaler(CONFIG_CLOCK_STM32_D1CPRE));
	LL_RCC_SetAHBPrescaler(ahb_prescaler(CONFIG_CLOCK_STM32_HPRE));
	LL_RCC_SetAPB1Prescaler(apb1_prescaler(CONFIG_CLOCK_STM32_D2PPRE1));
	LL_RCC_SetAPB2Prescaler(apb2_prescaler(CONFIG_CLOCK_STM32_D2PPRE2));
	LL_RCC_SetAPB3Prescaler(apb3_prescaler(CONFIG_CLOCK_STM32_D1PPRE));
	LL_RCC_SetAPB4Prescaler(apb4_prescaler(CONFIG_CLOCK_STM32_D3PPRE));


#if defined(CONFIG_CLOCK_STM32_SYSCLK_SRC_PLL)

	/* Enable PLL*/
	LL_RCC_PLL1_Enable();
	while (LL_RCC_PLL1_IsReady() != 1) {
	}

	/* Set PLL1 as System Clock Source */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
	}

#elif defined(CONFIG_CLOCK_STM32_SYSCLK_SRC_HSE)

	/* Enable HSI oscillator */
	LL_RCC_HSE_Enable();
	while (LL_RCC_HSE_IsReady() != 1) {
	}

	/* Set sysclk source to HSE */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
	}

#elif defined(CONFIG_CLOCK_STM32_SYSCLK_SRC_HSI)

	/* Enable HSI oscillator */
	LL_RCC_HSI_Enable();
	while (LL_RCC_HSI_IsReady() != 1) {
	}

	/* HSI divider configuration */
	LL_RCC_HSI_SetDivider(hsi_divider(CONFIG_CLOCK_STM32_HSI_DIVISOR));

	/* Set sysclk source to HSI */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
	}

#elif defined(CONFIG_CLOCK_STM32_SYSCLK_SRC_CSI)

	/* Enable CSI oscillator */
	LL_RCC_CSI_Enable();
	while (LL_RCC_CSI_IsReady() != 1) {
	}

	/* Set sysclk source to CSI */
	LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_CSI);
	while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_CSI) {
	}

#endif /* CLOCK_STM32_SYSCLK_SRC */

	/* Set FLASH latency */
	/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
	/* If freq not increased, set flash latency after all clock setting */
	if (new_hclk_freq <= old_hclk_freq) {
		LL_SetFlashLatency(new_hclk_freq);
	}

	optimize_regulator_voltage_scale(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);

	z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);

#endif /* CONFIG_CPU_CORTEX_M4 */

	/* Set systick to 1ms */
	SysTick_Config(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / 1000);
	/* Update CMSIS variable */
	SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;

	return 0;
}

/**
 * @brief RCC device, note that priority is intentionally set to 1 so
 * that the device init runs just after SOC init
 */
DEVICE_AND_API_INIT(rcc_stm32, STM32_CLOCK_CONTROL_NAME,
		    &stm32_clock_control_init,
		    NULL, NULL,
		    PRE_KERNEL_1,
		    CONFIG_CLOCK_CONTROL_STM32_DEVICE_INIT_PRIORITY,
		    &stm32_clock_control_api);