Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | /*
* Copyright (c) 2017 BayLibre, SAS
* Copyright (c) 2019 Linaro Limited
* Copyright (c) 2020 Andreas Sandberg
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log.h>
LOG_MODULE_REGISTER(flash_stm32generic, CONFIG_FLASH_LOG_LEVEL);
#include <kernel.h>
#include <device.h>
#include <string.h>
#include <drivers/flash.h>
#include <init.h>
#include <soc.h>
#include "flash_stm32.h"
#if FLASH_STM32_WRITE_BLOCK_SIZE == 8
typedef uint64_t flash_prg_t;
#elif FLASH_STM32_WRITE_BLOCK_SIZE == 4
typedef uint32_t flash_prg_t;
#elif FLASH_STM32_WRITE_BLOCK_SIZE == 2
typedef uint16_t flash_prg_t;
#else
#error Unknown write block size
#endif
#if defined(FLASH_CR_PER)
#define FLASH_ERASED_VALUE ((flash_prg_t)-1)
#elif defined(FLASH_PECR_ERASE)
#define FLASH_ERASED_VALUE 0
#else
#error Unknown erase value
#endif
static unsigned int get_page(off_t offset)
{
return offset / FLASH_PAGE_SIZE;
}
#if defined(FLASH_CR_PER)
static int is_flash_locked(FLASH_TypeDef *regs)
{
return !!(regs->CR & FLASH_CR_LOCK);
}
static void write_enable(FLASH_TypeDef *regs)
{
regs->CR |= FLASH_CR_PG;
}
static void write_disable(FLASH_TypeDef *regs)
{
regs->CR &= (~FLASH_CR_PG);
}
static void erase_page_begin(FLASH_TypeDef *regs, unsigned int page)
{
/* Set the PER bit and select the page you wish to erase */
regs->CR |= FLASH_CR_PER;
regs->AR = CONFIG_FLASH_BASE_ADDRESS + page * FLASH_PAGE_SIZE;
__DSB();
/* Set the STRT bit */
regs->CR |= FLASH_CR_STRT;
}
static void erase_page_end(FLASH_TypeDef *regs)
{
regs->CR &= ~FLASH_CR_PER;
}
#else
static int is_flash_locked(FLASH_TypeDef *regs)
{
return !!(regs->PECR & FLASH_PECR_PRGLOCK);
}
static void write_enable(FLASH_TypeDef *regs)
{
regs->PECR |= FLASH_PECR_PROG;
}
static void write_disable(FLASH_TypeDef *regs)
{
/* Clear the PG bit */
regs->PECR &= ~FLASH_PECR_PROG;
}
static void erase_page_begin(FLASH_TypeDef *regs, unsigned int page)
{
volatile flash_prg_t *page_base = (flash_prg_t *)(
CONFIG_FLASH_BASE_ADDRESS + page * FLASH_PAGE_SIZE);
/* Enable programming in erase mode. An erase is triggered by
* writing 0 to the first word of a page.
*/
regs->PECR |= FLASH_PECR_ERASE;
regs->PECR |= FLASH_PECR_PROG;
__DSB();
*page_base = 0;
}
static void erase_page_end(FLASH_TypeDef *regs)
{
/* Disable programming */
regs->PECR &= ~FLASH_PECR_PROG;
regs->PECR &= ~FLASH_PECR_ERASE;
}
#endif
static int write_value(const struct device *dev, off_t offset,
flash_prg_t val)
{
volatile flash_prg_t *flash = (flash_prg_t *)(
offset + CONFIG_FLASH_BASE_ADDRESS);
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
int rc;
/* if the control register is locked, do not fail silently */
if (is_flash_locked(regs)) {
LOG_ERR("Flash is locked");
return -EIO;
}
/* Check that no Flash main memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
/* Check if this half word is erased */
if (*flash != FLASH_ERASED_VALUE) {
LOG_DBG("Flash location not erased");
return -EIO;
}
/* Enable writing */
write_enable(regs);
/* Make sure the register write has taken effect */
__DSB();
/* Perform the data write operation at the desired memory address */
*flash = val;
/* Wait until the BSY bit is cleared */
rc = flash_stm32_wait_flash_idle(dev);
/* Disable writing */
write_disable(regs);
return rc;
}
/* offset and len must be aligned on 2 for write
* positive and not beyond end of flash
*/
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len,
bool write)
{
return (!write || (offset % 2 == 0 && len % 2 == 0U)) &&
flash_stm32_range_exists(dev, offset, len);
}
int flash_stm32_block_erase_loop(const struct device *dev,
unsigned int offset,
unsigned int len)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
int i, rc = 0;
/* if the control register is locked, do not fail silently */
if (is_flash_locked(regs)) {
LOG_ERR("Flash is locked");
return -EIO;
}
/* Check that no Flash memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
for (i = get_page(offset); i <= get_page(offset + len - 1); ++i) {
erase_page_begin(regs, i);
__DSB();
rc = flash_stm32_wait_flash_idle(dev);
erase_page_end(regs);
if (rc < 0) {
break;
}
}
return rc;
}
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int i, rc = 0;
const flash_prg_t *values = (const flash_prg_t *)data;
for (i = 0; i < len / sizeof(flash_prg_t); i++) {
rc = write_value(dev, offset + i * sizeof(flash_prg_t),
values[i]);
if (rc < 0) {
return rc;
}
}
return rc;
}
void flash_stm32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
static struct flash_pages_layout flash_layout = {
.pages_count = 0,
.pages_size = 0,
};
ARG_UNUSED(dev);
if (flash_layout.pages_count == 0) {
#if defined(CONFIG_SOC_SERIES_STM32F3X)
flash_layout.pages_count =
DT_REG_SIZE(DT_INST(0, soc_nv_flash)) / FLASH_PAGE_SIZE;
#else
flash_layout.pages_count = (CONFIG_FLASH_SIZE * 1024) /
FLASH_PAGE_SIZE;
#endif
flash_layout.pages_size = FLASH_PAGE_SIZE;
}
*layout = &flash_layout;
*layout_size = 1;
}
|