Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*
 * Copyright (c) 2017 Linaro Limited.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <device.h>
#include <init.h>
#include <kernel.h>
#include <soc.h>
#include "arm_core_mpu_dev.h"
#include <sys/__assert.h>
#include <sys/math_extras.h>
#include <linker/linker-defs.h>

#define LOG_LEVEL CONFIG_MPU_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_DECLARE(mpu);

/*
 * Global status variable holding the number of HW MPU region indices, which
 * have been reserved by the MPU driver to program the static (fixed) memory
 * regions.
 */
static uint8_t static_regions_num;

/* Global MPU configuration at system initialization. */
static void mpu_init(void)
{
	/* Enable clock for the Memory Protection Unit (MPU). */
	CLOCK_EnableClock(kCLOCK_Sysmpu0);
}

/**
 *  Get the number of supported MPU regions.
 */
static inline uint8_t get_num_regions(void)
{
	return FSL_FEATURE_SYSMPU_DESCRIPTOR_COUNT;
}

/* @brief Partition sanity check
 *
 * This internal function performs run-time sanity check for
 * MPU region start address and size.
 *
 * @param part Pointer to the data structure holding the partition
 *             information (must be valid).
 */
static int mpu_partition_is_valid(const struct k_mem_partition *part)
{
	/* Partition size must be a multiple of the minimum MPU region
	 * size. Start address of the partition must align with the
	 * minimum MPU region size.
	 */
	int partition_is_valid =
		(part->size != 0U)
		&&
		((part->size &
			(~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1)))
			== part->size)
		&&
		((part->start &
			(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1)) == 0U);

	return partition_is_valid;
}

/* This internal function performs MPU region initialization.
 *
 * Note:
 *   The caller must provide a valid region index.
 */
static void region_init(const uint32_t index,
	const struct nxp_mpu_region *region_conf)
{
	uint32_t region_base = region_conf->base;
	uint32_t region_end = region_conf->end;
	uint32_t region_attr = region_conf->attr.attr;

	if (index == 0U) {
		/* The MPU does not allow writes from the core to affect the
		 * RGD0 start or end addresses nor the permissions associated
		 * with the debugger; it can only write the permission fields
		 * associated with the other masters. These protections
		 * guarantee that the debugger always has access to the entire
		 * address space.
		 */
		__ASSERT(region_base == SYSMPU->WORD[index][0],
			 "Region %d base address got 0x%08x expected 0x%08x",
			 index, region_base, (uint32_t)SYSMPU->WORD[index][0]);

		__ASSERT(region_end == SYSMPU->WORD[index][1],
			 "Region %d end address got 0x%08x expected 0x%08x",
			 index, region_end, (uint32_t)SYSMPU->WORD[index][1]);

		/* Changes to the RGD0_WORD2 alterable fields should be done
		 * via a write to RGDAAC0.
		 */
		SYSMPU->RGDAAC[index] = region_attr;

	} else {
		SYSMPU->WORD[index][0] = region_base;
		SYSMPU->WORD[index][1] = region_end;
		SYSMPU->WORD[index][2] = region_attr;
		SYSMPU->WORD[index][3] = SYSMPU_WORD_VLD_MASK;
	}

	LOG_DBG("[%02d] 0x%08x 0x%08x 0x%08x 0x%08x", index,
		    (uint32_t)SYSMPU->WORD[index][0],
		    (uint32_t)SYSMPU->WORD[index][1],
		    (uint32_t)SYSMPU->WORD[index][2],
		    (uint32_t)SYSMPU->WORD[index][3]);

}

static int region_allocate_and_init(const uint8_t index,
	const struct nxp_mpu_region *region_conf)
{
	/* Attempt to allocate new region index. */
	if (index > (get_num_regions() - 1)) {

		/* No available MPU region index. */
		LOG_ERR("Failed to allocate new MPU region %u\n", index);
		return -EINVAL;
	}

	LOG_DBG("Program MPU region at index 0x%x", index);

	/* Program region */
	region_init(index, region_conf);

	return index;
}

/**
 * This internal function is utilized by the MPU driver to combine a given
 * region attribute configuration and size and fill-in a driver-specific
 * structure with the correct MPU region attribute configuration.
 */
static inline void get_region_attr_from_k_mem_partition_info(
	nxp_mpu_region_attr_t *p_attr,
	const k_mem_partition_attr_t *attr, uint32_t base, uint32_t size)
{
	/* in NXP MPU the base address and size are not required
	 * to determine region attributes
	 */
	(void) base;
	(void) size;

	p_attr->attr = attr->ap_attr;
}

/* This internal function programs an MPU region
 * of a given configuration at a given MPU index.
 */
static int mpu_configure_region(const uint8_t index,
	const struct k_mem_partition *new_region)
{
	struct nxp_mpu_region region_conf;

	LOG_DBG("Configure MPU region at index 0x%x", index);

	/* Populate internal NXP MPU region configuration structure. */
	region_conf.base = new_region->start;
	region_conf.end = (new_region->start + new_region->size - 1);
	get_region_attr_from_k_mem_partition_info(&region_conf.attr,
		&new_region->attr, new_region->start, new_region->size);

	/* Allocate and program region */
	return region_allocate_and_init(index,
		(const struct nxp_mpu_region *)&region_conf);
}

#if defined(CONFIG_MPU_STACK_GUARD)
/* This internal function partitions the SRAM MPU region */
static int mpu_sram_partitioning(uint8_t index,
	const struct k_mem_partition *p_region)
{
	/*
	 * The NXP MPU manages the permissions of the overlapping regions
	 * doing the logical OR in between them, hence they can't be used
	 * for stack/stack guard protection. For this reason we need to
	 * perform a partitioning of the SRAM area in such a way that the
	 * guard region does not overlap with the (background) SRAM regions
	 * holding the default SRAM access permission configuration.
	 * In other words, the SRAM is split in two different regions.
	 */

	/*
	 * SRAM partitioning needs to be performed in a strict order.
	 * First, we program a new MPU region with the default SRAM
	 * access permissions for the SRAM area _after_ the stack
	 * guard. Note that the permissions are stored in the global
	 * array:
	 *      'mpu_config.mpu_regions[]', on 'sram_region' index.
	 */
	struct nxp_mpu_region added_sram_region;

	added_sram_region.base = p_region->start + p_region->size;
	added_sram_region.end =
		mpu_config.mpu_regions[mpu_config.sram_region].end;
	added_sram_region.attr.attr =
		mpu_config.mpu_regions[mpu_config.sram_region].attr.attr;

	if (region_allocate_and_init(index,
				     (const struct nxp_mpu_region *)&added_sram_region) < 0) {
		return -EINVAL;
	}

	/* Increment, as an additional region index has been consumed. */
	index++;

	/* Second, adjust the original SRAM region to end at the beginning
	 * of the stack guard.
	 */
	struct nxp_mpu_region adjusted_sram_region;

	adjusted_sram_region.base =
		mpu_config.mpu_regions[mpu_config.sram_region].base;
	adjusted_sram_region.end = p_region->start - 1;
	adjusted_sram_region.attr.attr =
		mpu_config.mpu_regions[mpu_config.sram_region].attr.attr;

	region_init(mpu_config.sram_region,
		(const struct nxp_mpu_region *)&adjusted_sram_region);

	return index;
}
#endif /* CONFIG_MPU_STACK_GUARD */

/* This internal function programs a set of given MPU regions
 * over a background memory area, optionally performing a
 * sanity check of the memory regions to be programmed.
 */
static int mpu_configure_regions(const struct k_mem_partition
	*regions[], uint8_t regions_num, uint8_t start_reg_index,
	bool do_sanity_check)
{
	int i;
	int reg_index = start_reg_index;

	for (i = 0; i < regions_num; i++) {
		if (regions[i]->size == 0U) {
			continue;
		}
		/* Non-empty region. */

		if (do_sanity_check &&
				(!mpu_partition_is_valid(regions[i]))) {
			LOG_ERR("Partition %u: sanity check failed.", i);
			return -EINVAL;
		}

#if defined(CONFIG_MPU_STACK_GUARD)
		if (regions[i]->attr.ap_attr == MPU_REGION_SU_RX) {
			unsigned int key;

			/* Attempt to configure an MPU Stack Guard region; this
			 * will require splitting of the underlying SRAM region
			 * into two SRAM regions, leaving out the guard area to
			 * be programmed afterwards.
			 */
			key = irq_lock();
			reg_index =
				mpu_sram_partitioning(reg_index, regions[i]);
			irq_unlock(key);
		}
#endif /* CONFIG_MPU_STACK_GUARD */

		if (reg_index == -EINVAL) {
			return reg_index;
		}

		reg_index = mpu_configure_region(reg_index, regions[i]);

		if (reg_index == -EINVAL) {
			return reg_index;
		}

		/* Increment number of programmed MPU indices. */
		reg_index++;
	}

	return reg_index;
}

/* This internal function programs the static MPU regions.
 *
 * It returns the number of MPU region indices configured.
 *
 * Note:
 * If the static MPU regions configuration has not been successfully
 * performed, the error signal is propagated to the caller of the function.
 */
static int mpu_configure_static_mpu_regions(const struct k_mem_partition
	*static_regions[], const uint8_t regions_num,
	const uint32_t background_area_base,
	const uint32_t background_area_end)
{
	int mpu_reg_index = static_regions_num;

	/* In NXP MPU architecture the static regions are
	 * programmed on top of SRAM region configuration.
	 */
	ARG_UNUSED(background_area_base);
	ARG_UNUSED(background_area_end);

	mpu_reg_index = mpu_configure_regions(static_regions,
		regions_num, mpu_reg_index, true);

	static_regions_num = mpu_reg_index;

	return mpu_reg_index;
}

/* This internal function programs the dynamic MPU regions.
 *
 * It returns the number of MPU region indices configured.
 *
 * Note:
 * If the dynamic MPU regions configuration has not been successfully
 * performed, the error signal is propagated to the caller of the function.
 */
static int mpu_configure_dynamic_mpu_regions(const struct k_mem_partition
	*dynamic_regions[], uint8_t regions_num)
{
	unsigned int key;

	/*
	 * Programming the NXP MPU has to be done with care to avoid race
	 * conditions that will cause memory faults. The NXP MPU is composed
	 * of a number of memory region descriptors. The number of descriptors
	 * varies depending on the SOC. Each descriptor has a start addr, end
	 * addr, attribute, and valid. When the MPU is enabled, access to
	 * memory space is checked for access protection errors through an
	 * OR operation of all of the valid MPU descriptors.
	 *
	 * Writing the start/end/attribute descriptor register will clear the
	 * valid bit for that descriptor. This presents a problem because if
	 * the current program stack is in that region or if an ISR occurs
	 * that switches state and uses that region a memory fault will be
	 * triggered. Note that local variable access can also cause stack
	 * accesses while programming these registers depending on the compiler
	 * optimization level.
	 *
	 * To avoid the race condition a temporary descriptor is set to enable
	 * access to all of memory before the call to mpu_configure_regions()
	 * to configure the dynamic memory regions. After, the temporary
	 * descriptor is invalidated if the mpu_configure_regions() didn't
	 * overwrite it.
	 */
	key = irq_lock();
	/* Use last descriptor region as temporary descriptor */
	region_init(get_num_regions()-1, (const struct nxp_mpu_region *)
		&mpu_config.mpu_regions[mpu_config.sram_region]);

	/* Now reset the main SRAM region */
	region_init(mpu_config.sram_region, (const struct nxp_mpu_region *)
		&mpu_config.mpu_regions[mpu_config.sram_region]);
	irq_unlock(key);

	int mpu_reg_index = static_regions_num;

	/* In NXP MPU architecture the dynamic regions are
	 * programmed on top of existing SRAM region configuration.
	 */

	mpu_reg_index = mpu_configure_regions(dynamic_regions,
		regions_num, mpu_reg_index, false);

	if (mpu_reg_index != -EINVAL) {

		/* Disable the non-programmed MPU regions. */
		for (int i = mpu_reg_index; i < get_num_regions(); i++) {

			LOG_DBG("disable region 0x%x", i);
			/* Disable region */
			SYSMPU->WORD[i][0] = 0;
			SYSMPU->WORD[i][1] = 0;
			SYSMPU->WORD[i][2] = 0;
			SYSMPU->WORD[i][3] = 0;
		}
	}

	return mpu_reg_index;
}

/* ARM Core MPU Driver API Implementation for NXP MPU */

/**
 * @brief enable the MPU
 */
void arm_core_mpu_enable(void)
{
	/* Enable MPU */
	SYSMPU->CESR |= SYSMPU_CESR_VLD_MASK;

	/* Make sure that all the registers are set before proceeding */
	__DSB();
	__ISB();
}

/**
 * @brief disable the MPU
 */
void arm_core_mpu_disable(void)
{
	/* Force any outstanding transfers to complete before disabling MPU */
	__DMB();

	/* Disable MPU */
	SYSMPU->CESR &= ~SYSMPU_CESR_VLD_MASK;
	/* Clear MPU error status */
	SYSMPU->CESR |=  SYSMPU_CESR_SPERR_MASK;
}

#if defined(CONFIG_USERSPACE)

static inline uint32_t mpu_region_get_base(uint32_t r_index)
{
	return SYSMPU->WORD[r_index][0];
}

static inline uint32_t mpu_region_get_size(uint32_t r_index)
{
	/* <END> + 1 - <BASE> */
	return (SYSMPU->WORD[r_index][1] + 1) - SYSMPU->WORD[r_index][0];
}

/**
 * This internal function checks if region is enabled or not.
 *
 * Note:
 *   The caller must provide a valid region number.
 */
static inline int is_enabled_region(uint32_t r_index)
{
	return SYSMPU->WORD[r_index][3] & SYSMPU_WORD_VLD_MASK;
}

/**
 * This internal function checks if the given buffer is in the region.
 *
 * Note:
 *   The caller must provide a valid region number.
 */
static inline int is_in_region(uint32_t r_index, uint32_t start, uint32_t size)
{
	uint32_t r_addr_start;
	uint32_t r_addr_end;
	uint32_t end;

	r_addr_start = SYSMPU->WORD[r_index][0];
	r_addr_end = SYSMPU->WORD[r_index][1];

	size = size == 0 ? 0 : size - 1;
	if (u32_add_overflow(start, size, &end)) {
		return 0;
	}

	if ((start >= r_addr_start) && (end <= r_addr_end)) {
		return 1;
	}

	return 0;
}

/**
 * @brief update configuration of an active memory partition
 */
void arm_core_mpu_mem_partition_config_update(
	struct k_mem_partition *partition,
	k_mem_partition_attr_t *new_attr)
{
	/* Find the partition. ASSERT if not found. */
	uint8_t i;
	uint8_t reg_index = get_num_regions();

	for (i = static_regions_num; i < get_num_regions(); i++) {
		if (!is_enabled_region(i)) {
			continue;
		}

		uint32_t base = mpu_region_get_base(i);

		if (base != partition->start) {
			continue;
		}

		uint32_t size = mpu_region_get_size(i);

		if (size != partition->size) {
			continue;
		}

		/* Region found */
		reg_index = i;
		break;
	}
	__ASSERT(reg_index != get_num_regions(),
		 "Memory domain partition not found\n");

	/* Modify the permissions */
	partition->attr = *new_attr;
	mpu_configure_region(reg_index, partition);
}

/**
 * @brief get the maximum number of available (free) MPU region indices
 *        for configuring dynamic MPU partitions
 */
int arm_core_mpu_get_max_available_dyn_regions(void)
{
	return get_num_regions() - static_regions_num;
}

/**
 * This internal function checks if the region is user accessible or not
 *
 * Note:
 *   The caller must provide a valid region number.
 */
static inline int is_user_accessible_region(uint32_t r_index, int write)
{
	uint32_t r_ap = SYSMPU->WORD[r_index][2];

	if (write) {
		return (r_ap & MPU_REGION_WRITE) == MPU_REGION_WRITE;
	}

	return (r_ap & MPU_REGION_READ) == MPU_REGION_READ;
}

/**
 * @brief validate the given buffer is user accessible or not
 */
int arm_core_mpu_buffer_validate(void *addr, size_t size, int write)
{
	uint8_t r_index;

	/* Iterate through all MPU regions */
	for (r_index = 0U; r_index < get_num_regions(); r_index++) {
		if (!is_enabled_region(r_index) ||
		    !is_in_region(r_index, (uint32_t)addr, size)) {
			continue;
		}

		/* For NXP MPU, priority is given to granting permission over
		 * denying access for overlapping region.
		 * So we can stop the iteration immediately once we find the
		 * matched region that grants permission.
		 */
		if (is_user_accessible_region(r_index, write)) {
			return 0;
		}
	}

	return -EPERM;
}

#endif /* CONFIG_USERSPACE */

/**
 * @brief configure fixed (static) MPU regions.
 */
void arm_core_mpu_configure_static_mpu_regions(const struct k_mem_partition
	*static_regions[], const uint8_t regions_num,
	const uint32_t background_area_start, const uint32_t background_area_end)
{
	if (mpu_configure_static_mpu_regions(static_regions, regions_num,
					     background_area_start, background_area_end) == -EINVAL) {

		__ASSERT(0, "Configuring %u static MPU regions failed\n",
			regions_num);
	}
}

/**
 * @brief configure dynamic MPU regions.
 */
void arm_core_mpu_configure_dynamic_mpu_regions(const struct k_mem_partition
	*dynamic_regions[], uint8_t regions_num)
{
	if (mpu_configure_dynamic_mpu_regions(dynamic_regions, regions_num)
		== -EINVAL) {

		__ASSERT(0, "Configuring %u dynamic MPU regions failed\n",
			regions_num);
	}
}

/* NXP MPU Driver Initial Setup */

/*
 * @brief MPU default configuration
 *
 * This function provides the default configuration mechanism for the Memory
 * Protection Unit (MPU).
 */
static int nxp_mpu_init(const struct device *arg)
{
	ARG_UNUSED(arg);

	uint32_t r_index;

	if (mpu_config.num_regions > get_num_regions()) {
		/* Attempt to configure more MPU regions than
		 * what is supported by hardware. As this operation
		 * may be executed during system (pre-kernel) initialization,
		 * we want to ensure we can detect an attempt to
		 * perform invalid configuration.
		 */
		__ASSERT(0,
			"Request to configure: %u regions (supported: %u)\n",
			mpu_config.num_regions,
			get_num_regions()
		);
		return -1;
	}

	LOG_DBG("total region count: %d", get_num_regions());

	arm_core_mpu_disable();

	/* Architecture-specific configuration */
	mpu_init();

	/* Program fixed regions configured at SOC definition. */
	for (r_index = 0U; r_index < mpu_config.num_regions; r_index++) {
		region_init(r_index, &mpu_config.mpu_regions[r_index]);
	}

	/* Update the number of programmed MPU regions. */
	static_regions_num = mpu_config.num_regions;


	arm_core_mpu_enable();


	return 0;
}

#if defined(CONFIG_LOG)
/* To have logging the driver needs to be initialized later */
SYS_INIT(nxp_mpu_init, PRE_KERNEL_2,
	 CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#else
SYS_INIT(nxp_mpu_init, PRE_KERNEL_1,
	 CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif