Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 | /* * Copyright (c) 2018 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr.h> #include <tc_util.h> #include <ztest.h> #include <kernel.h> #include <ksched.h> #include <kernel_structs.h> #if CONFIG_MP_NUM_CPUS < 2 #error SMP test requires at least two CPUs! #endif #define T2_STACK_SIZE (2048 + CONFIG_TEST_EXTRA_STACKSIZE) #define STACK_SIZE (384 + CONFIG_TEST_EXTRA_STACKSIZE) #define DELAY_US 50000 #define TIMEOUT 1000 #define EQUAL_PRIORITY 1 #define TIME_SLICE_MS 500 #define THREAD_DELAY 1 struct k_thread t2; K_THREAD_STACK_DEFINE(t2_stack, T2_STACK_SIZE); volatile int t2_count; volatile int sync_count = -1; K_SEM_DEFINE(cpuid_sema, 0, 1); K_SEM_DEFINE(sema, 0, 1); #define THREADS_NUM CONFIG_MP_NUM_CPUS struct thread_info { k_tid_t tid; int executed; int priority; int cpu_id; }; static volatile struct thread_info tinfo[THREADS_NUM]; static struct k_thread tthread[THREADS_NUM]; static K_THREAD_STACK_ARRAY_DEFINE(tstack, THREADS_NUM, STACK_SIZE); static volatile int thread_started[THREADS_NUM - 1]; static int curr_cpu(void) { unsigned int k = arch_irq_lock(); int ret = arch_curr_cpu()->id; arch_irq_unlock(k); return ret; } /** * @brief Tests for SMP * @defgroup kernel_smp_tests SMP Tests * @ingroup all_tests * @{ * @} */ static void t2_fn(void *a, void *b, void *c) { ARG_UNUSED(a); ARG_UNUSED(b); ARG_UNUSED(c); t2_count = 0; /* This thread simply increments a counter while spinning on * the CPU. The idea is that it will always be iterating * faster than the other thread so long as it is fairly * scheduled (and it's designed to NOT be fairly schedulable * without a separate CPU!), so the main thread can always * check its progress. */ while (1) { k_busy_wait(DELAY_US); t2_count++; } } /** * @brief Verify SMP with 2 cooperative threads * * @ingroup kernel_smp_tests * * @details Multi processing is verified by checking whether * 2 cooperative threads run simultaneously at different cores */ void test_smp_coop_threads(void) { int i, ok = 1; k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, t2_fn, NULL, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT); /* Wait for the other thread (on a separate CPU) to actually * start running. We want synchrony to be as perfect as * possible. */ t2_count = -1; while (t2_count == -1) { } for (i = 0; i < 10; i++) { /* Wait slightly longer than the other thread so our * count will always be lower */ k_busy_wait(DELAY_US + (DELAY_US / 8)); if (t2_count <= i) { ok = 0; break; } } k_thread_abort(tid); zassert_true(ok, "SMP test failed"); } static void child_fn(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); int parent_cpu_id = POINTER_TO_INT(p1); zassert_true(parent_cpu_id != curr_cpu(), "Parent isn't on other core"); sync_count++; k_sem_give(&cpuid_sema); } /** * @brief Verify CPU IDs of threads in SMP * * @ingroup kernel_smp_tests * * @details Verify whether thread running on other core is * parent thread from child thread */ void test_cpu_id_threads(void) { /* Make sure idle thread runs on each core */ k_sleep(K_MSEC(1000)); int parent_cpu_id = curr_cpu(); k_tid_t tid = k_thread_create(&t2, t2_stack, T2_STACK_SIZE, child_fn, INT_TO_POINTER(parent_cpu_id), NULL, NULL, K_PRIO_PREEMPT(2), 0, K_NO_WAIT); while (sync_count == -1) { } k_sem_take(&cpuid_sema, K_FOREVER); k_thread_abort(tid); } static void thread_entry(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); int thread_num = POINTER_TO_INT(p1); int count = 0; tinfo[thread_num].executed = 1; tinfo[thread_num].cpu_id = curr_cpu(); while (count++ < 5) { k_busy_wait(DELAY_US); } } static void spin_for_threads_exit(void) { for (int i = 0; i < THREADS_NUM - 1; i++) { volatile u8_t *p = &tinfo[i].tid->base.thread_state; while (!(*p & _THREAD_DEAD)) { } } k_busy_wait(DELAY_US); } static void spawn_threads(int prio, int thread_num, int equal_prio, k_thread_entry_t thread_entry, int delay) { int i; /* Spawn threads of priority higher than * the previously created thread */ for (i = 0; i < thread_num; i++) { if (equal_prio) { tinfo[i].priority = prio; } else { /* Increase priority for each thread */ tinfo[i].priority = prio - 1; prio = tinfo[i].priority; } tinfo[i].tid = k_thread_create(&tthread[i], tstack[i], STACK_SIZE, thread_entry, INT_TO_POINTER(i), NULL, NULL, tinfo[i].priority, 0, K_MSEC(delay)); if (delay) { /* Increase delay for each thread */ delay = delay + 10; } } } static void abort_threads(int num) { for (int i = 0; i < num; i++) { k_thread_abort(tinfo[i].tid); } } static void cleanup_resources(void) { for (int i = 0; i < THREADS_NUM; i++) { tinfo[i].tid = 0; tinfo[i].executed = 0; tinfo[i].priority = 0; } } /** * @brief Test cooperative threads non-preemption * * @ingroup kernel_smp_tests * * @details Spawn cooperative threads equal to number of cores * supported. Main thread will already be running on 1 core. * Check if the last thread created preempts any threads * already running. */ void test_coop_resched_threads(void) { /* Spawn threads equal to number of cores, * since we don't give up current CPU, last thread * will not get scheduled */ spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY, &thread_entry, THREAD_DELAY); /* Wait for some time to let other core's thread run */ k_busy_wait(DELAY_US); /* Reassure that cooperative thread's are not preempted * by checking last thread's execution * status. We know that all threads got rescheduled on * other cores except the last one */ for (int i = 0; i < THREADS_NUM - 1; i++) { zassert_true(tinfo[i].executed == 1, "cooperative thread %d didn't run", i); } zassert_true(tinfo[THREADS_NUM - 1].executed == 0, "cooperative thread is preempted"); /* Abort threads created */ abort_threads(THREADS_NUM); cleanup_resources(); } /** * @brief Test preemptness of preemptive thread * * @ingroup kernel_smp_tests * * @details Create preemptive thread and let it run * on another core and verify if it gets preempted * if another thread of higher priority is spawned */ void test_preempt_resched_threads(void) { /* Spawn threads equal to number of cores, * lower priority thread should * be preempted by higher ones */ spawn_threads(K_PRIO_PREEMPT(10), THREADS_NUM, !EQUAL_PRIORITY, &thread_entry, THREAD_DELAY); spin_for_threads_exit(); for (int i = 0; i < THREADS_NUM; i++) { zassert_true(tinfo[i].executed == 1, "preemptive thread %d didn't run", i); } /* Abort threads created */ abort_threads(THREADS_NUM); cleanup_resources(); } /** * @brief Validate behavior of thread when it yields * * @ingroup kernel_smp_tests * * @details Spawn cooperative threads equal to number * of cores, so last thread would be pending, call * yield() from main thread. Now, all threads must be * executed */ void test_yield_threads(void) { /* Spawn threads equal to the number * of cores, so the last thread would be * pending. */ spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY, &thread_entry, !THREAD_DELAY); k_yield(); k_busy_wait(DELAY_US); for (int i = 0; i < THREADS_NUM; i++) { zassert_true(tinfo[i].executed == 1, "thread %d did not execute", i); } abort_threads(THREADS_NUM); cleanup_resources(); } /** * @brief Test behavior of thread when it sleeps * * @ingroup kernel_smp_tests * * @details Spawn cooperative thread and call * sleep() from main thread. After timeout, all * threads has to be scheduled. */ void test_sleep_threads(void) { spawn_threads(K_PRIO_COOP(10), THREADS_NUM, !EQUAL_PRIORITY, &thread_entry, !THREAD_DELAY); k_msleep(TIMEOUT); for (int i = 0; i < THREADS_NUM; i++) { zassert_true(tinfo[i].executed == 1, "thread %d did not execute", i); } abort_threads(THREADS_NUM); cleanup_resources(); } static void thread_wakeup_entry(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); int thread_num = POINTER_TO_INT(p1); thread_started[thread_num] = 1; k_msleep(DELAY_US * 1000); tinfo[thread_num].executed = 1; } static void wakeup_on_start_thread(int tnum) { int threads_started = 0, i; /* For each thread, spin waiting for it to first flag that * it's going to sleep, and then that it's actually blocked */ for (i = 0; i < tnum; i++) { while (thread_started[i] == 0) { } while (!z_is_thread_prevented_from_running(tinfo[i].tid)) { } } for (i = 0; i < tnum; i++) { if (thread_started[i] == 1 && threads_started <= tnum) { threads_started++; k_wakeup(tinfo[i].tid); } } zassert_equal(threads_started, tnum, "All threads haven't started"); } static void check_wokeup_threads(int tnum) { int threads_woke_up = 0, i; /* k_wakeup() isn't synchronous, give the other CPU time to * schedule them */ k_busy_wait(200000); for (i = 0; i < tnum; i++) { if (tinfo[i].executed == 1 && threads_woke_up <= tnum) { threads_woke_up++; } } zassert_equal(threads_woke_up, tnum, "Threads did not wakeup"); } /** * @brief Test behavior of wakeup() in SMP case * * @ingroup kernel_smp_tests * * @details Spawn number of threads equal to number of * remaining cores and let them sleep for a while. Call * wakeup() of those threads from parent thread and check * if they are all running */ void test_wakeup_threads(void) { /* Spawn threads to run on all remaining cores */ spawn_threads(K_PRIO_COOP(10), THREADS_NUM - 1, !EQUAL_PRIORITY, &thread_wakeup_entry, !THREAD_DELAY); /* Check if all the threads have started, then call wakeup */ wakeup_on_start_thread(THREADS_NUM - 1); /* Count threads which are woken up */ check_wokeup_threads(THREADS_NUM - 1); /* Abort all threads and cleanup */ abort_threads(THREADS_NUM - 1); cleanup_resources(); } void test_main(void) { /* Sleep a bit to guarantee that both CPUs enter an idle * thread from which they can exit correctly to run the main * test. */ k_sleep(K_MSEC(1000)); ztest_test_suite(smp, ztest_unit_test(test_smp_coop_threads), ztest_unit_test(test_cpu_id_threads), ztest_unit_test(test_coop_resched_threads), ztest_unit_test(test_preempt_resched_threads), ztest_unit_test(test_yield_threads), ztest_unit_test(test_sleep_threads), ztest_unit_test(test_wakeup_threads) ); ztest_run_test_suite(smp); } |