Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | /* * Copyright (c) 2018 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include <logging/log.h> LOG_MODULE_REGISTER(net_tc, CONFIG_NET_TC_LOG_LEVEL); #include <zephyr.h> #include <string.h> #include <net/net_core.h> #include <net/net_pkt.h> #include <net/net_stats.h> #include "net_private.h" #include "net_stats.h" #include "net_tc_mapping.h" /* Stacks for TX work queue */ K_THREAD_STACK_ARRAY_DEFINE(tx_stack, NET_TC_TX_COUNT, CONFIG_NET_TX_STACK_SIZE); /* Stacks for RX work queue */ K_THREAD_STACK_ARRAY_DEFINE(rx_stack, NET_TC_RX_COUNT, CONFIG_NET_RX_STACK_SIZE); static struct net_traffic_class tx_classes[NET_TC_TX_COUNT]; static struct net_traffic_class rx_classes[NET_TC_RX_COUNT]; bool net_tc_submit_to_tx_queue(u8_t tc, struct net_pkt *pkt) { if (k_work_pending(net_pkt_work(pkt))) { return false; } k_work_submit_to_queue(&tx_classes[tc].work_q, net_pkt_work(pkt)); return true; } void net_tc_submit_to_rx_queue(u8_t tc, struct net_pkt *pkt) { k_work_submit_to_queue(&rx_classes[tc].work_q, net_pkt_work(pkt)); } int net_tx_priority2tc(enum net_priority prio) { if (prio > NET_PRIORITY_NC) { /* Use default value suggested in 802.1Q */ prio = NET_PRIORITY_BE; } return tx_prio2tc_map[prio]; } int net_rx_priority2tc(enum net_priority prio) { if (prio > NET_PRIORITY_NC) { /* Use default value suggested in 802.1Q */ prio = NET_PRIORITY_BE; } return rx_prio2tc_map[prio]; } /* Convert traffic class to thread priority */ static u8_t tx_tc2thread(u8_t tc) { /* Initial implementation just maps the traffic class to certain queue. * If there are less queues than classes, then map them into * some specific queue. In order to make this work same way as before, * the thread priority 7 is used to map the default traffic class so * this system works same way as before when TX thread default priority * was 7. * * Lower value in this table means higher thread priority. The * value is used as a parameter to K_PRIO_COOP() which converts it * to actual thread priority. * * Higher traffic class value means higher priority queue. This means * that thread_priorities[7] value should contain the highest priority * for the TX queue handling thread. */ static const u8_t thread_priorities[] = { #if NET_TC_TX_COUNT == 1 7 #endif #if NET_TC_TX_COUNT == 2 8, 7 #endif #if NET_TC_TX_COUNT == 3 8, 7, 6 #endif #if NET_TC_TX_COUNT == 4 8, 7, 6, 5 #endif #if NET_TC_TX_COUNT == 5 8, 7, 6, 5, 4 #endif #if NET_TC_TX_COUNT == 6 8, 7, 6, 5, 4, 3 #endif #if NET_TC_TX_COUNT == 7 8, 7, 6, 5, 4, 3, 2 #endif #if NET_TC_TX_COUNT == 8 8, 7, 6, 5, 4, 3, 2, 1 #endif }; BUILD_ASSERT(NET_TC_TX_COUNT <= CONFIG_NUM_COOP_PRIORITIES, "Too many traffic classes"); NET_ASSERT(tc < ARRAY_SIZE(thread_priorities)); return thread_priorities[tc]; } /* Convert traffic class to thread priority */ static u8_t rx_tc2thread(u8_t tc) { /* Initial implementation just maps the traffic class to certain queue. * If there are less queues than classes, then map them into * some specific queue. In order to make this work same way as before, * the thread priority 7 is used to map the default traffic class so * this system works same way as before when RX thread default priority * was 7. * * Lower value in this table means higher thread priority. The * value is used as a parameter to K_PRIO_COOP() which converts it * to actual thread priority. * * Higher traffic class value means higher priority queue. This means * that thread_priorities[7] value should contain the highest priority * for the RX queue handling thread. */ static const u8_t thread_priorities[] = { #if NET_TC_RX_COUNT == 1 7 #endif #if NET_TC_RX_COUNT == 2 8, 7 #endif #if NET_TC_RX_COUNT == 3 8, 7, 6 #endif #if NET_TC_RX_COUNT == 4 8, 7, 6, 5 #endif #if NET_TC_RX_COUNT == 5 8, 7, 6, 5, 4 #endif #if NET_TC_RX_COUNT == 6 8, 7, 6, 5, 4, 3 #endif #if NET_TC_RX_COUNT == 7 8, 7, 6, 5, 4, 3, 2 #endif #if NET_TC_RX_COUNT == 8 8, 7, 6, 5, 4, 3, 2, 1 #endif }; BUILD_ASSERT(NET_TC_RX_COUNT <= CONFIG_NUM_COOP_PRIORITIES, "Too many traffic classes"); NET_ASSERT(tc < ARRAY_SIZE(thread_priorities)); return thread_priorities[tc]; } #if defined(CONFIG_NET_STATISTICS) /* Fixup the traffic class statistics so that "net stats" shell command will * print output correctly. */ static void tc_tx_stats_priority_setup(struct net_if *iface) { int i; for (i = 0; i < 8; i++) { net_stats_update_tc_sent_priority(iface, net_tx_priority2tc(i), i); } } static void tc_rx_stats_priority_setup(struct net_if *iface) { int i; for (i = 0; i < 8; i++) { net_stats_update_tc_recv_priority(iface, net_rx_priority2tc(i), i); } } static void net_tc_tx_stats_priority_setup(struct net_if *iface, void *user_data) { ARG_UNUSED(user_data); tc_tx_stats_priority_setup(iface); } static void net_tc_rx_stats_priority_setup(struct net_if *iface, void *user_data) { ARG_UNUSED(user_data); tc_rx_stats_priority_setup(iface); } #endif /* Create workqueue for each traffic class we are using. All the network * traffic goes through these classes. There needs to be at least one traffic * class in the system. */ void net_tc_tx_init(void) { int i; BUILD_ASSERT(NET_TC_TX_COUNT > 0); #if defined(CONFIG_NET_STATISTICS) net_if_foreach(net_tc_tx_stats_priority_setup, NULL); #endif for (i = 0; i < NET_TC_TX_COUNT; i++) { u8_t thread_priority; thread_priority = tx_tc2thread(i); tx_classes[i].tc = thread_priority; NET_DBG("[%d] Starting TX queue %p stack size %zd " "prio %d (%d)", i, &tx_classes[i].work_q.queue, K_THREAD_STACK_SIZEOF(tx_stack[i]), thread_priority, K_PRIO_COOP(thread_priority)); k_work_q_start(&tx_classes[i].work_q, tx_stack[i], K_THREAD_STACK_SIZEOF(tx_stack[i]), K_PRIO_COOP(thread_priority)); k_thread_name_set(&tx_classes[i].work_q.thread, "tx_workq"); } } void net_tc_rx_init(void) { int i; BUILD_ASSERT(NET_TC_RX_COUNT > 0); #if defined(CONFIG_NET_STATISTICS) net_if_foreach(net_tc_rx_stats_priority_setup, NULL); #endif for (i = 0; i < NET_TC_RX_COUNT; i++) { u8_t thread_priority; thread_priority = rx_tc2thread(i); rx_classes[i].tc = thread_priority; NET_DBG("[%d] Starting RX queue %p stack size %zd " "prio %d (%d)", i, &rx_classes[i].work_q.queue, K_THREAD_STACK_SIZEOF(rx_stack[i]), thread_priority, K_PRIO_COOP(thread_priority)); k_work_q_start(&rx_classes[i].work_q, rx_stack[i], K_THREAD_STACK_SIZEOF(rx_stack[i]), K_PRIO_COOP(thread_priority)); k_thread_name_set(&rx_classes[i].work_q.thread, "rx_workq"); } } |