Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | /* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <ztest.h> #include <kernel.h> #include <pthread.h> #include <semaphore.h> #include <sys/util.h> #define N_THR_E 3 #define N_THR_T 4 #define BOUNCES 64 #define STACKS (1024 + CONFIG_TEST_EXTRA_STACKSIZE) #define THREAD_PRIORITY 3 #define ONE_SECOND 1 /* Macros to test invalid states */ #define PTHREAD_CANCEL_INVALID -1 #define SCHED_INVALID -1 #define PRIO_INVALID -1 K_THREAD_STACK_ARRAY_DEFINE(stack_e, N_THR_E, STACKS); K_THREAD_STACK_ARRAY_DEFINE(stack_t, N_THR_T, STACKS); void *thread_top_exec(void *p1); void *thread_top_term(void *p1); PTHREAD_MUTEX_DEFINE(lock); PTHREAD_COND_DEFINE(cvar0); PTHREAD_COND_DEFINE(cvar1); PTHREAD_BARRIER_DEFINE(barrier, N_THR_E); sem_t main_sem; static int bounce_failed; static int bounce_done[N_THR_E]; static int curr_bounce_thread; static int barrier_failed; static int barrier_done[N_THR_E]; static int barrier_return[N_THR_E]; /* First phase bounces execution between two threads using a condition * variable, continuously testing that no other thread is mucking with * the protected state. This ends with all threads going back to * sleep on the condition variable and being woken by main() for the * second phase. * * Second phase simply lines up all the threads on a barrier, verifies * that none run until the last one enters, and that all run after the * exit. * * Test success is signaled to main() using a traditional semaphore. */ void *thread_top_exec(void *p1) { int i, j, id = (int) POINTER_TO_INT(p1); int policy; struct sched_param schedparam; pthread_getschedparam(pthread_self(), &policy, &schedparam); printk("Thread %d starting with scheduling policy %d & priority %d\n", id, policy, schedparam.sched_priority); /* Try a double-lock here to exercise the failing case of * trylock. We don't support RECURSIVE locks, so this is * guaranteed to fail. */ pthread_mutex_lock(&lock); if (!pthread_mutex_trylock(&lock)) { printk("pthread_mutex_trylock inexplicably succeeded\n"); bounce_failed = 1; } pthread_mutex_unlock(&lock); for (i = 0; i < BOUNCES; i++) { pthread_mutex_lock(&lock); /* Wait for the current owner to signal us, unless we * are the very first thread, in which case we need to * wait a bit to be sure the other threads get * scheduled and wait on cvar0. */ if (!(id == 0 && i == 0)) { pthread_cond_wait(&cvar0, &lock); } else { pthread_mutex_unlock(&lock); usleep(USEC_PER_MSEC * 500U); pthread_mutex_lock(&lock); } /* Claim ownership, then try really hard to give someone * else a shot at hitting this if they are racing. */ curr_bounce_thread = id; for (j = 0; j < 1000; j++) { if (curr_bounce_thread != id) { printk("Racing bounce threads\n"); bounce_failed = 1; sem_post(&main_sem); pthread_mutex_unlock(&lock); return NULL; } sched_yield(); } /* Next one's turn, go back to the top and wait. */ pthread_cond_signal(&cvar0); pthread_mutex_unlock(&lock); } /* Signal we are complete to main(), then let it wake us up. Note * that we are using the same mutex with both cvar0 and cvar1, * which is non-standard but kosher per POSIX (and it works fine * in our implementation */ pthread_mutex_lock(&lock); bounce_done[id] = 1; sem_post(&main_sem); pthread_cond_wait(&cvar1, &lock); pthread_mutex_unlock(&lock); /* Now just wait on the barrier. Make sure no one else finished * before we wait on it, then signal that we're done */ for (i = 0; i < N_THR_E; i++) { if (barrier_done[i]) { printk("Barrier exited early\n"); barrier_failed = 1; sem_post(&main_sem); } } barrier_return[id] = pthread_barrier_wait(&barrier); barrier_done[id] = 1; sem_post(&main_sem); pthread_exit(p1); return NULL; } int bounce_test_done(void) { int i; if (bounce_failed) { return 1; } for (i = 0; i < N_THR_E; i++) { if (!bounce_done[i]) { return 0; } } return 1; } int barrier_test_done(void) { int i; if (barrier_failed) { return 1; } for (i = 0; i < N_THR_E; i++) { if (!barrier_done[i]) { return 0; } } return 1; } void *thread_top_term(void *p1) { pthread_t self; int oldstate, policy, ret; int id = POINTER_TO_INT(p1); struct sched_param param, getschedparam; param.sched_priority = N_THR_T - id; self = pthread_self(); /* Change priority of thread */ zassert_false(pthread_setschedparam(self, SCHED_RR, ¶m), "Unable to set thread priority!"); zassert_false(pthread_getschedparam(self, &policy, &getschedparam), "Unable to get thread priority!"); printk("Thread %d starting with a priority of %d\n", id, getschedparam.sched_priority); if (id % 2) { ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate); zassert_false(ret, "Unable to set cancel state!"); } if (id >= 2) { ret = pthread_detach(self); if (id == 2) { zassert_equal(ret, EINVAL, "re-detached thread!"); } } printk("Cancelling thread %d\n", id); pthread_cancel(self); printk("Thread %d could not be cancelled\n", id); sleep(ONE_SECOND); pthread_exit(p1); return NULL; } void test_posix_pthread_execution(void) { int i, ret, min_prio, max_prio; int dstate, policy; pthread_attr_t attr[N_THR_E] = {}; struct sched_param schedparam, getschedparam; pthread_t newthread[N_THR_E]; int schedpolicy = SCHED_FIFO; void *retval, *stackaddr; size_t stacksize; int serial_threads = 0; sem_init(&main_sem, 0, 1); schedparam.sched_priority = CONFIG_NUM_COOP_PRIORITIES - 1; min_prio = sched_get_priority_min(schedpolicy); max_prio = sched_get_priority_max(schedpolicy); ret = (min_prio < 0 || max_prio < 0 || schedparam.sched_priority < min_prio || schedparam.sched_priority > max_prio); /* TESTPOINT: Check if scheduling priority is valid */ zassert_false(ret, "Scheduling priority outside valid priority range"); /* TESTPOINTS: Try setting attributes before init */ ret = pthread_attr_setschedparam(&attr[0], &schedparam); zassert_equal(ret, EINVAL, "uninitialized attr set!"); ret = pthread_attr_setdetachstate(&attr[0], PTHREAD_CREATE_JOINABLE); zassert_equal(ret, EINVAL, "uninitialized attr set!"); ret = pthread_attr_setschedpolicy(&attr[0], schedpolicy); zassert_equal(ret, EINVAL, "uninitialized attr set!"); /* TESTPOINT: Try setting attribute with empty stack */ ret = pthread_attr_setstack(&attr[0], 0, STACKS); zassert_equal(ret, EACCES, "empty stack set!"); /* TESTPOINTS: Try getting attributes before init */ ret = pthread_attr_getschedparam(&attr[0], &getschedparam); zassert_equal(ret, EINVAL, "uninitialized attr retrieved!"); ret = pthread_attr_getdetachstate(&attr[0], &dstate); zassert_equal(ret, EINVAL, "uninitialized attr retrieved!"); ret = pthread_attr_getschedpolicy(&attr[0], &policy); zassert_equal(ret, EINVAL, "uninitialized attr retrieved!"); ret = pthread_attr_getstack(&attr[0], &stackaddr, &stacksize); zassert_equal(ret, EINVAL, "uninitialized attr retrieved!"); ret = pthread_attr_getstacksize(&attr[0], &stacksize); zassert_equal(ret, EINVAL, "uninitialized attr retrieved!"); /* TESTPOINT: Try destroying attr before init */ ret = pthread_attr_destroy(&attr[0]); zassert_equal(ret, EINVAL, "uninitialized attr destroyed!"); /* TESTPOINT: Try creating thread before attr init */ ret = pthread_create(&newthread[0], &attr[0], thread_top_exec, NULL); zassert_equal(ret, EINVAL, "thread created before attr init!"); for (i = 0; i < N_THR_E; i++) { ret = pthread_attr_init(&attr[i]); if (ret != 0) { zassert_false(pthread_attr_destroy(&attr[i]), "Unable to destroy pthread object attrib"); zassert_false(pthread_attr_init(&attr[i]), "Unable to create pthread object attrib"); } /* TESTPOINTS: Retrieve set stack attributes and compare */ pthread_attr_setstack(&attr[i], &stack_e[i][0], STACKS); pthread_attr_getstack(&attr[i], &stackaddr, &stacksize); zassert_equal_ptr(attr[i].stack, stackaddr, "stack attribute addresses do not match!"); zassert_equal(STACKS, stacksize, "stack sizes do not match!"); pthread_attr_getstacksize(&attr[i], &stacksize); zassert_equal(STACKS, stacksize, "stack sizes do not match!"); pthread_attr_setschedpolicy(&attr[i], schedpolicy); pthread_attr_getschedpolicy(&attr[i], &policy); zassert_equal(schedpolicy, policy, "scheduling policies do not match!"); pthread_attr_setschedparam(&attr[i], &schedparam); pthread_attr_getschedparam(&attr[i], &getschedparam); zassert_equal(schedparam.sched_priority, getschedparam.sched_priority, "scheduling priorities do not match!"); ret = pthread_create(&newthread[i], &attr[i], thread_top_exec, INT_TO_POINTER(i)); /* TESTPOINT: Check if thread is created successfully */ zassert_false(ret, "Number of threads exceed max limit"); } while (!bounce_test_done()) { sem_wait(&main_sem); } /* TESTPOINT: Check if bounce test passes */ zassert_false(bounce_failed, "Bounce test failed"); printk("Bounce test OK\n"); /* Wake up the worker threads */ pthread_mutex_lock(&lock); pthread_cond_broadcast(&cvar1); pthread_mutex_unlock(&lock); while (!barrier_test_done()) { sem_wait(&main_sem); } /* TESTPOINT: Check if barrier test passes */ zassert_false(barrier_failed, "Barrier test failed"); for (i = 0; i < N_THR_E; i++) { pthread_join(newthread[i], &retval); } for (i = 0; i < N_THR_E; i++) { if (barrier_return[i] == PTHREAD_BARRIER_SERIAL_THREAD) { ++serial_threads; } } /* TESTPOINT: Check only one PTHREAD_BARRIER_SERIAL_THREAD returned. */ zassert_true(serial_threads == 1, "Bungled barrier return value(s)"); printk("Barrier test OK\n"); } void test_posix_pthread_termination(void) { s32_t i, ret; int oldstate, policy; pthread_attr_t attr[N_THR_T]; struct sched_param schedparam; pthread_t newthread[N_THR_T]; void *retval; /* Creating 4 threads with lowest application priority */ for (i = 0; i < N_THR_T; i++) { ret = pthread_attr_init(&attr[i]); if (ret != 0) { zassert_false(pthread_attr_destroy(&attr[i]), "Unable to destroy pthread object attrib"); zassert_false(pthread_attr_init(&attr[i]), "Unable to create pthread object attrib"); } if (i == 2) { pthread_attr_setdetachstate(&attr[i], PTHREAD_CREATE_DETACHED); } schedparam.sched_priority = 2; pthread_attr_setschedparam(&attr[i], &schedparam); pthread_attr_setstack(&attr[i], &stack_t[i][0], STACKS); ret = pthread_create(&newthread[i], &attr[i], thread_top_term, INT_TO_POINTER(i)); zassert_false(ret, "Not enough space to create new thread"); } /* TESTPOINT: Try setting invalid cancel state to current thread */ ret = pthread_setcancelstate(PTHREAD_CANCEL_INVALID, &oldstate); zassert_equal(ret, EINVAL, "invalid cancel state set!"); /* TESTPOINT: Try setting invalid policy */ ret = pthread_setschedparam(newthread[0], SCHED_INVALID, &schedparam); zassert_equal(ret, EINVAL, "invalid policy set!"); /* TESTPOINT: Try setting invalid priority */ schedparam.sched_priority = PRIO_INVALID; ret = pthread_setschedparam(newthread[0], SCHED_RR, &schedparam); zassert_equal(ret, EINVAL, "invalid priority set!"); for (i = 0; i < N_THR_T; i++) { pthread_join(newthread[i], &retval); } /* TESTPOINT: Test for deadlock */ ret = pthread_join(pthread_self(), &retval); zassert_equal(ret, EDEADLK, "thread joined with self inexplicably!"); /* TESTPOINT: Try canceling a terminated thread */ ret = pthread_cancel(newthread[N_THR_T/2]); zassert_equal(ret, ESRCH, "cancelled a terminated thread!"); /* TESTPOINT: Try getting scheduling info from terminated thread */ ret = pthread_getschedparam(newthread[N_THR_T/2], &policy, &schedparam); zassert_equal(ret, ESRCH, "got attr from terminated thread!"); } |