Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*
 * Copyright (c) 2018 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <ztest.h>
#include <kernel.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/util.h>

#define N_THR_E 3
#define N_THR_T 4
#define BOUNCES 64
#define STACKS (1024 + CONFIG_TEST_EXTRA_STACKSIZE)
#define THREAD_PRIORITY 3
#define ONE_SECOND 1

/* Macros to test invalid states */
#define PTHREAD_CANCEL_INVALID -1
#define SCHED_INVALID -1
#define PRIO_INVALID -1

K_THREAD_STACK_ARRAY_DEFINE(stack_e, N_THR_E, STACKS);
K_THREAD_STACK_ARRAY_DEFINE(stack_t, N_THR_T, STACKS);

void *thread_top_exec(void *p1);
void *thread_top_term(void *p1);

PTHREAD_MUTEX_DEFINE(lock);

PTHREAD_COND_DEFINE(cvar0);

PTHREAD_COND_DEFINE(cvar1);

PTHREAD_BARRIER_DEFINE(barrier, N_THR_E);

sem_t main_sem;

static int bounce_failed;
static int bounce_done[N_THR_E];

static int curr_bounce_thread;

static int barrier_failed;
static int barrier_done[N_THR_E];
static int barrier_return[N_THR_E];

/* First phase bounces execution between two threads using a condition
 * variable, continuously testing that no other thread is mucking with
 * the protected state.  This ends with all threads going back to
 * sleep on the condition variable and being woken by main() for the
 * second phase.
 *
 * Second phase simply lines up all the threads on a barrier, verifies
 * that none run until the last one enters, and that all run after the
 * exit.
 *
 * Test success is signaled to main() using a traditional semaphore.
 */

void *thread_top_exec(void *p1)
{
	int i, j, id = (int) POINTER_TO_INT(p1);
	int policy;
	struct sched_param schedparam;

	pthread_getschedparam(pthread_self(), &policy, &schedparam);
	printk("Thread %d starting with scheduling policy %d & priority %d\n",
		 id, policy, schedparam.sched_priority);
	/* Try a double-lock here to exercise the failing case of
	 * trylock.  We don't support RECURSIVE locks, so this is
	 * guaranteed to fail.
	 */
	pthread_mutex_lock(&lock);

	if (!pthread_mutex_trylock(&lock)) {
		printk("pthread_mutex_trylock inexplicably succeeded\n");
		bounce_failed = 1;
	}

	pthread_mutex_unlock(&lock);

	for (i = 0; i < BOUNCES; i++) {

		pthread_mutex_lock(&lock);

		/* Wait for the current owner to signal us, unless we
		 * are the very first thread, in which case we need to
		 * wait a bit to be sure the other threads get
		 * scheduled and wait on cvar0.
		 */
		if (!(id == 0 && i == 0)) {
			pthread_cond_wait(&cvar0, &lock);
		} else {
			pthread_mutex_unlock(&lock);
			usleep(USEC_PER_MSEC * 500U);
			pthread_mutex_lock(&lock);
		}

		/* Claim ownership, then try really hard to give someone
		 * else a shot at hitting this if they are racing.
		 */
		curr_bounce_thread = id;
		for (j = 0; j < 1000; j++) {
			if (curr_bounce_thread != id) {
				printk("Racing bounce threads\n");
				bounce_failed = 1;
				sem_post(&main_sem);
				pthread_mutex_unlock(&lock);
				return NULL;
			}
			sched_yield();
		}

		/* Next one's turn, go back to the top and wait.  */
		pthread_cond_signal(&cvar0);
		pthread_mutex_unlock(&lock);
	}

	/* Signal we are complete to main(), then let it wake us up.  Note
	 * that we are using the same mutex with both cvar0 and cvar1,
	 * which is non-standard but kosher per POSIX (and it works fine
	 * in our implementation
	 */
	pthread_mutex_lock(&lock);
	bounce_done[id] = 1;
	sem_post(&main_sem);
	pthread_cond_wait(&cvar1, &lock);
	pthread_mutex_unlock(&lock);

	/* Now just wait on the barrier.  Make sure no one else finished
	 * before we wait on it, then signal that we're done
	 */
	for (i = 0; i < N_THR_E; i++) {
		if (barrier_done[i]) {
			printk("Barrier exited early\n");
			barrier_failed = 1;
			sem_post(&main_sem);
		}
	}
	barrier_return[id] = pthread_barrier_wait(&barrier);
	barrier_done[id] = 1;
	sem_post(&main_sem);
	pthread_exit(p1);

	return NULL;
}

int bounce_test_done(void)
{
	int i;

	if (bounce_failed) {
		return 1;
	}

	for (i = 0; i < N_THR_E; i++) {
		if (!bounce_done[i]) {
			return 0;
		}
	}

	return 1;
}

int barrier_test_done(void)
{
	int i;

	if (barrier_failed) {
		return 1;
	}

	for (i = 0; i < N_THR_E; i++) {
		if (!barrier_done[i]) {
			return 0;
		}
	}

	return 1;
}

void *thread_top_term(void *p1)
{
	pthread_t self;
	int oldstate, policy, ret;
	int id = POINTER_TO_INT(p1);
	struct sched_param param, getschedparam;

	param.sched_priority = N_THR_T - id;

	self = pthread_self();

	/* Change priority of thread */
	zassert_false(pthread_setschedparam(self, SCHED_RR, &param),
		      "Unable to set thread priority!");

	zassert_false(pthread_getschedparam(self, &policy, &getschedparam),
			"Unable to get thread priority!");

	printk("Thread %d starting with a priority of %d\n",
			id,
			getschedparam.sched_priority);

	if (id % 2) {
		ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);
		zassert_false(ret, "Unable to set cancel state!");
	}

	if (id >= 2) {
		ret = pthread_detach(self);
		if (id == 2) {
			zassert_equal(ret, EINVAL, "re-detached thread!");
		}
	}

	printk("Cancelling thread %d\n", id);
	pthread_cancel(self);
	printk("Thread %d could not be cancelled\n", id);
	sleep(ONE_SECOND);
	pthread_exit(p1);
	return NULL;
}

void test_posix_pthread_execution(void)
{
	int i, ret, min_prio, max_prio;
	int dstate, policy;
	pthread_attr_t attr[N_THR_E] = {};
	struct sched_param schedparam, getschedparam;
	pthread_t newthread[N_THR_E];
	int schedpolicy = SCHED_FIFO;
	void *retval, *stackaddr;
	size_t stacksize;
	int serial_threads = 0;

	sem_init(&main_sem, 0, 1);
	schedparam.sched_priority = CONFIG_NUM_COOP_PRIORITIES - 1;
	min_prio = sched_get_priority_min(schedpolicy);
	max_prio = sched_get_priority_max(schedpolicy);

	ret = (min_prio < 0 || max_prio < 0 ||
			schedparam.sched_priority < min_prio ||
			schedparam.sched_priority > max_prio);

	/* TESTPOINT: Check if scheduling priority is valid */
	zassert_false(ret,
			"Scheduling priority outside valid priority range");

	/* TESTPOINTS: Try setting attributes before init */
	ret = pthread_attr_setschedparam(&attr[0], &schedparam);
	zassert_equal(ret, EINVAL, "uninitialized attr set!");

	ret = pthread_attr_setdetachstate(&attr[0], PTHREAD_CREATE_JOINABLE);
	zassert_equal(ret, EINVAL, "uninitialized attr set!");

	ret = pthread_attr_setschedpolicy(&attr[0], schedpolicy);
	zassert_equal(ret, EINVAL, "uninitialized attr set!");

	/* TESTPOINT: Try setting attribute with empty stack */
	ret = pthread_attr_setstack(&attr[0], 0, STACKS);
	zassert_equal(ret, EACCES, "empty stack set!");

	/* TESTPOINTS: Try getting attributes before init */
	ret = pthread_attr_getschedparam(&attr[0], &getschedparam);
	zassert_equal(ret, EINVAL, "uninitialized attr retrieved!");

	ret = pthread_attr_getdetachstate(&attr[0], &dstate);
	zassert_equal(ret, EINVAL, "uninitialized attr retrieved!");

	ret = pthread_attr_getschedpolicy(&attr[0], &policy);
	zassert_equal(ret, EINVAL, "uninitialized attr retrieved!");

	ret = pthread_attr_getstack(&attr[0], &stackaddr, &stacksize);
	zassert_equal(ret, EINVAL, "uninitialized attr retrieved!");

	ret = pthread_attr_getstacksize(&attr[0], &stacksize);
	zassert_equal(ret, EINVAL, "uninitialized attr retrieved!");

	/* TESTPOINT: Try destroying attr before init */
	ret = pthread_attr_destroy(&attr[0]);
	zassert_equal(ret, EINVAL, "uninitialized attr destroyed!");

	/* TESTPOINT: Try creating thread before attr init */
	ret = pthread_create(&newthread[0], &attr[0],
				thread_top_exec, NULL);
	zassert_equal(ret, EINVAL, "thread created before attr init!");

	for (i = 0; i < N_THR_E; i++) {
		ret = pthread_attr_init(&attr[i]);
		if (ret != 0) {
			zassert_false(pthread_attr_destroy(&attr[i]),
				      "Unable to destroy pthread object attrib");
			zassert_false(pthread_attr_init(&attr[i]),
				      "Unable to create pthread object attrib");
		}

		/* TESTPOINTS: Retrieve set stack attributes and compare */
		pthread_attr_setstack(&attr[i], &stack_e[i][0], STACKS);
		pthread_attr_getstack(&attr[i], &stackaddr, &stacksize);
		zassert_equal_ptr(attr[i].stack, stackaddr,
				"stack attribute addresses do not match!");
		zassert_equal(STACKS, stacksize, "stack sizes do not match!");

		pthread_attr_getstacksize(&attr[i], &stacksize);
		zassert_equal(STACKS, stacksize, "stack sizes do not match!");

		pthread_attr_setschedpolicy(&attr[i], schedpolicy);
		pthread_attr_getschedpolicy(&attr[i], &policy);
		zassert_equal(schedpolicy, policy,
				"scheduling policies do not match!");

		pthread_attr_setschedparam(&attr[i], &schedparam);
		pthread_attr_getschedparam(&attr[i], &getschedparam);
		zassert_equal(schedparam.sched_priority,
			      getschedparam.sched_priority,
			      "scheduling priorities do not match!");

		ret = pthread_create(&newthread[i], &attr[i], thread_top_exec,
				INT_TO_POINTER(i));

		/* TESTPOINT: Check if thread is created successfully */
		zassert_false(ret, "Number of threads exceed max limit");
	}

	while (!bounce_test_done()) {
		sem_wait(&main_sem);
	}

	/* TESTPOINT: Check if bounce test passes */
	zassert_false(bounce_failed, "Bounce test failed");

	printk("Bounce test OK\n");

	/* Wake up the worker threads */
	pthread_mutex_lock(&lock);
	pthread_cond_broadcast(&cvar1);
	pthread_mutex_unlock(&lock);

	while (!barrier_test_done()) {
		sem_wait(&main_sem);
	}

	/* TESTPOINT: Check if barrier test passes */
	zassert_false(barrier_failed, "Barrier test failed");

	for (i = 0; i < N_THR_E; i++) {
		pthread_join(newthread[i], &retval);
	}

	for (i = 0; i < N_THR_E; i++) {
		if (barrier_return[i] == PTHREAD_BARRIER_SERIAL_THREAD) {
			++serial_threads;
		}
	}

	/* TESTPOINT: Check only one PTHREAD_BARRIER_SERIAL_THREAD returned. */
	zassert_true(serial_threads == 1, "Bungled barrier return value(s)");

	printk("Barrier test OK\n");
}

void test_posix_pthread_termination(void)
{
	s32_t i, ret;
	int oldstate, policy;
	pthread_attr_t attr[N_THR_T];
	struct sched_param schedparam;
	pthread_t newthread[N_THR_T];
	void *retval;

	/* Creating 4 threads with lowest application priority */
	for (i = 0; i < N_THR_T; i++) {
		ret = pthread_attr_init(&attr[i]);
		if (ret != 0) {
			zassert_false(pthread_attr_destroy(&attr[i]),
				      "Unable to destroy pthread object attrib");
			zassert_false(pthread_attr_init(&attr[i]),
				      "Unable to create pthread object attrib");
		}

		if (i == 2) {
			pthread_attr_setdetachstate(&attr[i],
						    PTHREAD_CREATE_DETACHED);
		}

		schedparam.sched_priority = 2;
		pthread_attr_setschedparam(&attr[i], &schedparam);
		pthread_attr_setstack(&attr[i], &stack_t[i][0], STACKS);
		ret = pthread_create(&newthread[i], &attr[i], thread_top_term,
				     INT_TO_POINTER(i));

		zassert_false(ret, "Not enough space to create new thread");
	}

	/* TESTPOINT: Try setting invalid cancel state to current thread */
	ret = pthread_setcancelstate(PTHREAD_CANCEL_INVALID, &oldstate);
	zassert_equal(ret, EINVAL, "invalid cancel state set!");

	/* TESTPOINT: Try setting invalid policy */
	ret = pthread_setschedparam(newthread[0], SCHED_INVALID, &schedparam);
	zassert_equal(ret, EINVAL, "invalid policy set!");

	/* TESTPOINT: Try setting invalid priority */
	schedparam.sched_priority = PRIO_INVALID;
	ret = pthread_setschedparam(newthread[0], SCHED_RR, &schedparam);
	zassert_equal(ret, EINVAL, "invalid priority set!");

	for (i = 0; i < N_THR_T; i++) {
		pthread_join(newthread[i], &retval);
	}

	/* TESTPOINT: Test for deadlock */
	ret = pthread_join(pthread_self(), &retval);
	zassert_equal(ret, EDEADLK, "thread joined with self inexplicably!");

	/* TESTPOINT: Try canceling a terminated thread */
	ret = pthread_cancel(newthread[N_THR_T/2]);
	zassert_equal(ret, ESRCH, "cancelled a terminated thread!");

	/* TESTPOINT: Try getting scheduling info from terminated thread */
	ret = pthread_getschedparam(newthread[N_THR_T/2], &policy, &schedparam);
	zassert_equal(ret, ESRCH, "got attr from terminated thread!");
}