Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | /* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Offload to the Kernel offload workqueue * * @defgroup kernel_critical_tests Critical Tests * * @ingroup all_tests * * This test verifies that the kernel offload workqueue operates as * expected. * * This test has two threads that increment a counter. The routine that * increments the counter is invoked from workqueue due to the two threads * calling using it. The final result of the counter is expected * to be the the number of times work item was called to increment * the counter. * * This is done with time slicing both disabled and enabled to ensure that the * result always matches the number of times the workqueue is called. * * @{ * @} */ #include <zephyr.h> #include <linker/sections.h> #include <ztest.h> #define NUM_MILLISECONDS 5000 #define TEST_TIMEOUT 20000 static u32_t critical_var; static u32_t alt_thread_iterations; static struct k_work_q offload_work_q; static K_THREAD_STACK_DEFINE(offload_work_q_stack, CONFIG_OFFLOAD_WORKQUEUE_STACK_SIZE); #define STACK_SIZE (1024 + CONFIG_TEST_EXTRA_STACKSIZE) static K_THREAD_STACK_DEFINE(stack1, STACK_SIZE); static K_THREAD_STACK_DEFINE(stack2, STACK_SIZE); static struct k_thread thread1; static struct k_thread thread2; K_SEM_DEFINE(ALT_SEM, 0, UINT_MAX); K_SEM_DEFINE(REGRESS_SEM, 0, UINT_MAX); K_SEM_DEFINE(TEST_SEM, 0, UINT_MAX); /** * * @brief Routine to be called from a workqueue * * This routine increments the global variable @a critical_var. * * @return 0 */ void critical_rtn(struct k_work *unused) { volatile u32_t x; ARG_UNUSED(unused); x = critical_var; critical_var = x + 1; } /** * * @brief Common code for invoking offload work * * @param tag text identifying the invocation context * * @param count number of critical section calls made thus far * * @return number of critical section calls made by a thread */ u32_t critical_loop(const char *tag, u32_t count) { s64_t now; s64_t last; s64_t mseconds; last = mseconds = k_uptime_get(); TC_PRINT("Start %s at %u\n", tag, (u32_t)last); while (((now = k_uptime_get())) < mseconds + NUM_MILLISECONDS) { struct k_work work_item; if (now < last) { TC_PRINT("Time went backwards: %u < %u\n", (u32_t)now, (u32_t)last); } last = now; k_work_init(&work_item, critical_rtn); k_work_submit_to_queue(&offload_work_q, &work_item); count++; #if defined(CONFIG_ARCH_POSIX) k_busy_wait(50); /* * For the POSIX arch this loop and critical_rtn would otherwise * run in 0 time and therefore would never finish. * => We purposely waste 50us per loop */ #endif } TC_PRINT("End %s at %u\n", tag, (u32_t)now); return count; } /** * * @brief Alternate thread * * This routine invokes the workqueue many times. * * @return N/A */ void alternate_thread(void *arg1, void *arg2, void *arg3) { ARG_UNUSED(arg1); ARG_UNUSED(arg2); ARG_UNUSED(arg3); k_sem_take(&ALT_SEM, K_FOREVER); /* Wait to be activated */ alt_thread_iterations = critical_loop("alt1", alt_thread_iterations); k_sem_give(®RESS_SEM); k_sem_take(&ALT_SEM, K_FOREVER); /* Wait to be re-activated */ alt_thread_iterations = critical_loop("alt2", alt_thread_iterations); k_sem_give(®RESS_SEM); } /** * * @brief Regression thread * * This routine calls invokes the workqueue many times. It also checks to * ensure that the number of times it is called matches the global variable * @a critical_var. * * @return N/A */ void regression_thread(void *arg1, void *arg2, void *arg3) { u32_t ncalls = 0U; ARG_UNUSED(arg1); ARG_UNUSED(arg2); ARG_UNUSED(arg3); k_sem_give(&ALT_SEM); /* Activate alternate_thread() */ ncalls = critical_loop("reg1", ncalls); /* Wait for alternate_thread() to complete */ zassert_true(k_sem_take(®RESS_SEM, TEST_TIMEOUT) == 0, "Timed out waiting for REGRESS_SEM"); zassert_equal(critical_var, ncalls + alt_thread_iterations, "Unexpected value for <critical_var>"); TC_PRINT("Enable timeslicing at %u\n", k_uptime_get_32()); k_sched_time_slice_set(10, 10); k_sem_give(&ALT_SEM); /* Re-activate alternate_thread() */ ncalls = critical_loop("reg2", ncalls); /* Wait for alternate_thread() to finish */ zassert_true(k_sem_take(®RESS_SEM, TEST_TIMEOUT) == 0, "Timed out waiting for REGRESS_SEM"); zassert_equal(critical_var, ncalls + alt_thread_iterations, "Unexpected value for <critical_var>"); k_sem_give(&TEST_SEM); } static void init_objects(void) { critical_var = 0U; alt_thread_iterations = 0U; k_work_q_start(&offload_work_q, offload_work_q_stack, K_THREAD_STACK_SIZEOF(offload_work_q_stack), CONFIG_OFFLOAD_WORKQUEUE_PRIORITY); } static void start_threads(void) { k_thread_create(&thread1, stack1, STACK_SIZE, alternate_thread, NULL, NULL, NULL, K_PRIO_PREEMPT(12), 0, K_NO_WAIT); k_thread_create(&thread2, stack2, STACK_SIZE, regression_thread, NULL, NULL, NULL, K_PRIO_PREEMPT(12), 0, K_NO_WAIT); } /** * @brief Verify thread context * * @details Check whether variable value per-thread is saved * during context switch * * @ingroup kernel_critical_tests */ void test_critical(void) { init_objects(); start_threads(); zassert_true(k_sem_take(&TEST_SEM, TEST_TIMEOUT * 2) == 0, "Timed out waiting for TEST_SEM"); } void test_main(void) { ztest_test_suite(kernel_critical, ztest_1cpu_unit_test(test_critical) ); ztest_run_test_suite(kernel_critical); } |