Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 | /* * Copyright (c) 2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Pipes */ #include <kernel.h> #include <kernel_structs.h> #include <debug/object_tracing_common.h> #include <toolchain.h> #include <linker/sections.h> #include <ksched.h> #include <wait_q.h> #include <sys/dlist.h> #include <init.h> #include <syscall_handler.h> #include <kernel_internal.h> #include <sys/check.h> struct k_pipe_desc { unsigned char *buffer; /* Position in src/dest buffer */ size_t bytes_to_xfer; /* # bytes left to transfer */ #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) struct k_mem_block *block; /* Pointer to memory block */ struct k_mem_block copy_block; /* For backwards compatibility */ struct k_sem *sem; /* Semaphore to give if async */ #endif }; struct k_pipe_async { struct _thread_base thread; /* Dummy thread object */ struct k_pipe_desc desc; /* Pipe message descriptor */ }; #ifdef CONFIG_OBJECT_TRACING struct k_pipe *_trace_list_k_pipe; #endif /* CONFIG_OBJECT_TRACING */ #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) /* stack of unused asynchronous message descriptors */ K_STACK_DEFINE(pipe_async_msgs, CONFIG_NUM_PIPE_ASYNC_MSGS); /* Allocate an asynchronous message descriptor */ static void pipe_async_alloc(struct k_pipe_async **async) { (void)k_stack_pop(&pipe_async_msgs, (stack_data_t *)async, K_FOREVER); } /* Free an asynchronous message descriptor */ static void pipe_async_free(struct k_pipe_async *async) { k_stack_push(&pipe_async_msgs, (stack_data_t)async); } /* Finish an asynchronous operation */ static void pipe_async_finish(struct k_pipe_async *async_desc) { /* * An asynchronous operation is finished with the scheduler locked * to prevent the called routines from scheduling a new thread. */ k_mem_pool_free(async_desc->desc.block); if (async_desc->desc.sem != NULL) { k_sem_give(async_desc->desc.sem); } pipe_async_free(async_desc); } #endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */ #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) || \ defined(CONFIG_OBJECT_TRACING) /* * Do run-time initialization of pipe object subsystem. */ static int init_pipes_module(struct device *dev) { ARG_UNUSED(dev); /* Array of asynchronous message descriptors */ static struct k_pipe_async __noinit async_msg[CONFIG_NUM_PIPE_ASYNC_MSGS]; #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) /* * Create pool of asynchronous pipe message descriptors. * * A dummy thread requires minimal initialization, since it never gets * to execute. The _THREAD_DUMMY flag is sufficient to distinguish a * dummy thread from a real one. The threads are *not* added to the * kernel's list of known threads. * * Once initialized, the address of each descriptor is added to a stack * that governs access to them. */ for (int i = 0; i < CONFIG_NUM_PIPE_ASYNC_MSGS; i++) { async_msg[i].thread.thread_state = _THREAD_DUMMY; async_msg[i].thread.swap_data = &async_msg[i].desc; z_init_thread_timeout(&async_msg[i].thread); k_stack_push(&pipe_async_msgs, (stack_data_t)&async_msg[i]); } #endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */ /* Complete initialization of statically defined mailboxes. */ #ifdef CONFIG_OBJECT_TRACING Z_STRUCT_SECTION_FOREACH(k_pipe, pipe) { SYS_TRACING_OBJ_INIT(k_pipe, pipe); } #endif /* CONFIG_OBJECT_TRACING */ return 0; } SYS_INIT(init_pipes_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_NUM_PIPE_ASYNC_MSGS or CONFIG_OBJECT_TRACING */ void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size) { pipe->buffer = buffer; pipe->size = size; pipe->bytes_used = 0; pipe->read_index = 0; pipe->write_index = 0; pipe->flags = 0; z_waitq_init(&pipe->wait_q.writers); z_waitq_init(&pipe->wait_q.readers); SYS_TRACING_OBJ_INIT(k_pipe, pipe); z_object_init(pipe); } int z_impl_k_pipe_alloc_init(struct k_pipe *pipe, size_t size) { void *buffer; int ret; if (size != 0) { buffer = z_thread_malloc(size); if (buffer != NULL) { k_pipe_init(pipe, buffer, size); pipe->flags = K_PIPE_FLAG_ALLOC; ret = 0; } else { ret = -ENOMEM; } } else { k_pipe_init(pipe, NULL, 0); ret = 0; } return ret; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_pipe_alloc_init(struct k_pipe *pipe, size_t size) { Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(pipe, K_OBJ_PIPE)); return z_impl_k_pipe_alloc_init(pipe, size); } #include <syscalls/k_pipe_alloc_init_mrsh.c> #endif int k_pipe_cleanup(struct k_pipe *pipe) { CHECKIF(z_waitq_head(&pipe->wait_q.readers) != NULL || z_waitq_head(&pipe->wait_q.writers) != NULL) { return -EAGAIN; } if ((pipe->flags & K_PIPE_FLAG_ALLOC) != 0) { k_free(pipe->buffer); pipe->buffer = NULL; pipe->flags &= ~K_PIPE_FLAG_ALLOC; } return 0; } /** * @brief Copy bytes from @a src to @a dest * * @return Number of bytes copied */ static size_t pipe_xfer(unsigned char *dest, size_t dest_size, const unsigned char *src, size_t src_size) { size_t num_bytes = MIN(dest_size, src_size); const unsigned char *end = src + num_bytes; while (src != end) { *dest = *src; dest++; src++; } return num_bytes; } /** * @brief Put data from @a src into the pipe's circular buffer * * Modifies the following fields in @a pipe: * buffer, bytes_used, write_index * * @return Number of bytes written to the pipe's circular buffer */ static size_t pipe_buffer_put(struct k_pipe *pipe, const unsigned char *src, size_t src_size) { size_t bytes_copied; size_t run_length; size_t num_bytes_written = 0; int i; for (i = 0; i < 2; i++) { run_length = MIN(pipe->size - pipe->bytes_used, pipe->size - pipe->write_index); bytes_copied = pipe_xfer(pipe->buffer + pipe->write_index, run_length, src + num_bytes_written, src_size - num_bytes_written); num_bytes_written += bytes_copied; pipe->bytes_used += bytes_copied; pipe->write_index += bytes_copied; if (pipe->write_index == pipe->size) { pipe->write_index = 0; } } return num_bytes_written; } /** * @brief Get data from the pipe's circular buffer * * Modifies the following fields in @a pipe: * bytes_used, read_index * * @return Number of bytes read from the pipe's circular buffer */ static size_t pipe_buffer_get(struct k_pipe *pipe, unsigned char *dest, size_t dest_size) { size_t bytes_copied; size_t run_length; size_t num_bytes_read = 0; int i; for (i = 0; i < 2; i++) { run_length = MIN(pipe->bytes_used, pipe->size - pipe->read_index); bytes_copied = pipe_xfer(dest + num_bytes_read, dest_size - num_bytes_read, pipe->buffer + pipe->read_index, run_length); num_bytes_read += bytes_copied; pipe->bytes_used -= bytes_copied; pipe->read_index += bytes_copied; if (pipe->read_index == pipe->size) { pipe->read_index = 0; } } return num_bytes_read; } /** * @brief Prepare a working set of readers/writers * * Prepare a list of "working threads" into/from which the data * will be directly copied. This list is useful as it is used to ... * * 1. avoid double copying * 2. minimize interrupt latency as interrupts are unlocked * while copying data * 3. ensure a timeout can not make the request impossible to satisfy * * The list is populated with previously pended threads that will be ready to * run after the pipe call is complete. * * Important things to remember when reading from the pipe ... * 1. If there are writers int @a wait_q, then the pipe's buffer is full. * 2. Conversely if the pipe's buffer is not full, there are no writers. * 3. The amount of available data in the pipe is the sum the bytes used in * the pipe (@a pipe_space) and all the requests from the waiting writers. * 4. Since data is read from the pipe's buffer first, the working set must * include writers that will (try to) re-fill the pipe's buffer afterwards. * * Important things to remember when writing to the pipe ... * 1. If there are readers in @a wait_q, then the pipe's buffer is empty. * 2. Conversely if the pipe's buffer is not empty, then there are no readers. * 3. The amount of space available in the pipe is the sum of the bytes unused * in the pipe (@a pipe_space) and all the requests from the waiting readers. * * @return false if request is unsatisfiable, otherwise true */ static bool pipe_xfer_prepare(sys_dlist_t *xfer_list, struct k_thread **waiter, _wait_q_t *wait_q, size_t pipe_space, size_t bytes_to_xfer, size_t min_xfer, s32_t timeout) { struct k_thread *thread; struct k_pipe_desc *desc; size_t num_bytes = 0; if (timeout == K_NO_WAIT) { _WAIT_Q_FOR_EACH(wait_q, thread) { desc = (struct k_pipe_desc *)thread->base.swap_data; num_bytes += desc->bytes_to_xfer; if (num_bytes >= bytes_to_xfer) { break; } } if (num_bytes + pipe_space < min_xfer) { return false; } } /* * Either @a timeout is not K_NO_WAIT (so the thread may pend) or * the entire request can be satisfied. Generate the working list. */ sys_dlist_init(xfer_list); num_bytes = 0; while ((thread = z_waitq_head(wait_q)) != NULL) { desc = (struct k_pipe_desc *)thread->base.swap_data; num_bytes += desc->bytes_to_xfer; if (num_bytes > bytes_to_xfer) { /* * This request can not be fully satisfied. * Do not remove it from the wait_q. * Do not abort its timeout (if applicable). * Do not add it to the transfer list */ break; } /* * This request can be fully satisfied. * Remove it from the wait_q. * Abort its timeout. * Add it to the transfer list. */ z_unpend_thread(thread); sys_dlist_append(xfer_list, &thread->base.qnode_dlist); } *waiter = (num_bytes > bytes_to_xfer) ? thread : NULL; return true; } /** * @brief Determine the correct return code * * Bytes Xferred No Wait Wait * >= Minimum 0 0 * < Minimum -EIO* -EAGAIN * * * The "-EIO No Wait" case was already checked when the "working set" * was created in _pipe_xfer_prepare(). * * @return See table above */ static int pipe_return_code(size_t min_xfer, size_t bytes_remaining, size_t bytes_requested) { if (bytes_requested - bytes_remaining >= min_xfer) { /* * At least the minimum number of requested * bytes have been transferred. */ return 0; } return -EAGAIN; } /** * @brief Ready a pipe thread * * If the pipe thread is a real thread, then add it to the ready queue. * If it is a dummy thread, then finish the asynchronous work. * * @return N/A */ static void pipe_thread_ready(struct k_thread *thread) { #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) if ((thread->base.thread_state & _THREAD_DUMMY) != 0U) { pipe_async_finish((struct k_pipe_async *)thread); return; } #endif z_ready_thread(thread); } /** * @brief Internal API used to send data to a pipe */ int z_pipe_put_internal(struct k_pipe *pipe, struct k_pipe_async *async_desc, unsigned char *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, s32_t timeout) { struct k_thread *reader; struct k_pipe_desc *desc; sys_dlist_t xfer_list; size_t num_bytes_written = 0; size_t bytes_copied; #if (CONFIG_NUM_PIPE_ASYNC_MSGS == 0) ARG_UNUSED(async_desc); #endif CHECKIF((min_xfer > bytes_to_write) || bytes_written == NULL) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&pipe->lock); /* * Create a list of "working readers" into which the data will be * directly copied. */ if (!pipe_xfer_prepare(&xfer_list, &reader, &pipe->wait_q.readers, pipe->size - pipe->bytes_used, bytes_to_write, min_xfer, timeout)) { k_spin_unlock(&pipe->lock, key); *bytes_written = 0; return -EIO; } z_sched_lock(); k_spin_unlock(&pipe->lock, key); /* * 1. 'xfer_list' currently contains a list of reader threads that can * have their read requests fulfilled by the current call. * 2. 'reader' if not NULL points to a thread on the reader wait_q * that can get some of its requested data. * 3. Interrupts are unlocked but the scheduler is locked to allow * ticks to be delivered but no scheduling to occur * 4. If 'reader' times out while we are copying data, not only do we * still have a pointer to it, but it can not execute until this call * is complete so it is still safe to copy data to it. */ struct k_thread *thread = (struct k_thread *) sys_dlist_get(&xfer_list); while (thread != NULL) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer, data + num_bytes_written, bytes_to_write - num_bytes_written); num_bytes_written += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* The thread's read request has been satisfied. Ready it. */ z_ready_thread(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } /* * Copy any data to the reader that we left on the wait_q. * It is possible no data will be copied. */ if (reader != NULL) { desc = (struct k_pipe_desc *)reader->base.swap_data; bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer, data + num_bytes_written, bytes_to_write - num_bytes_written); num_bytes_written += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } /* * As much data as possible has been directly copied to any waiting * readers. Add as much as possible to the pipe's circular buffer. */ num_bytes_written += pipe_buffer_put(pipe, data + num_bytes_written, bytes_to_write - num_bytes_written); if (num_bytes_written == bytes_to_write) { *bytes_written = num_bytes_written; #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) if (async_desc != NULL) { pipe_async_finish(async_desc); } #endif k_sched_unlock(); return 0; } /* Not all data was copied. */ #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) if (async_desc != NULL) { /* * Lock interrupts and unlock the scheduler before * manipulating the writers wait_q. */ k_spinlock_key_t key = k_spin_lock(&pipe->lock); z_sched_unlock_no_reschedule(); async_desc->desc.buffer = data + num_bytes_written; async_desc->desc.bytes_to_xfer = bytes_to_write - num_bytes_written; z_pend_thread((struct k_thread *) &async_desc->thread, &pipe->wait_q.writers, K_FOREVER); z_reschedule(&pipe->lock, key); return 0; } #endif struct k_pipe_desc pipe_desc; pipe_desc.buffer = data + num_bytes_written; pipe_desc.bytes_to_xfer = bytes_to_write - num_bytes_written; if (timeout != K_NO_WAIT) { _current->base.swap_data = &pipe_desc; /* * Lock interrupts and unlock the scheduler before * manipulating the writers wait_q. */ k_spinlock_key_t key = k_spin_lock(&pipe->lock); z_sched_unlock_no_reschedule(); (void)z_pend_curr(&pipe->lock, key, &pipe->wait_q.writers, timeout); } else { k_sched_unlock(); } *bytes_written = bytes_to_write - pipe_desc.bytes_to_xfer; return pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, bytes_to_write); } int z_impl_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, s32_t timeout) { struct k_thread *writer; struct k_pipe_desc *desc; sys_dlist_t xfer_list; size_t num_bytes_read = 0; size_t bytes_copied; CHECKIF((min_xfer > bytes_to_read) || bytes_read == NULL) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&pipe->lock); /* * Create a list of "working readers" into which the data will be * directly copied. */ if (!pipe_xfer_prepare(&xfer_list, &writer, &pipe->wait_q.writers, pipe->bytes_used, bytes_to_read, min_xfer, timeout)) { k_spin_unlock(&pipe->lock, key); *bytes_read = 0; return -EIO; } z_sched_lock(); k_spin_unlock(&pipe->lock, key); num_bytes_read = pipe_buffer_get(pipe, data, bytes_to_read); /* * 1. 'xfer_list' currently contains a list of writer threads that can * have their write requests fulfilled by the current call. * 2. 'writer' if not NULL points to a thread on the writer wait_q * that can post some of its requested data. * 3. Data will be copied from each writer's buffer to either the * reader's buffer and/or to the pipe's circular buffer. * 4. Interrupts are unlocked but the scheduler is locked to allow * ticks to be delivered but no scheduling to occur * 5. If 'writer' times out while we are copying data, not only do we * still have a pointer to it, but it can not execute until this * call is complete so it is still safe to copy data from it. */ struct k_thread *thread = (struct k_thread *) sys_dlist_get(&xfer_list); while ((thread != NULL) && (num_bytes_read < bytes_to_read)) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = pipe_xfer((u8_t *)data + num_bytes_read, bytes_to_read - num_bytes_read, desc->buffer, desc->bytes_to_xfer); num_bytes_read += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* * It is expected that the write request will be satisfied. * However, if the read request was satisfied before the * write request was satisfied, then the write request must * finish later when writing to the pipe's circular buffer. */ if (num_bytes_read == bytes_to_read) { break; } pipe_thread_ready(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } if ((writer != NULL) && (num_bytes_read < bytes_to_read)) { desc = (struct k_pipe_desc *)writer->base.swap_data; bytes_copied = pipe_xfer((u8_t *)data + num_bytes_read, bytes_to_read - num_bytes_read, desc->buffer, desc->bytes_to_xfer); num_bytes_read += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } /* * Copy as much data as possible from the writers (if any) * into the pipe's circular buffer. */ while (thread != NULL) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = pipe_buffer_put(pipe, desc->buffer, desc->bytes_to_xfer); desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* Write request has been satisfied */ pipe_thread_ready(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } if (writer != NULL) { desc = (struct k_pipe_desc *)writer->base.swap_data; bytes_copied = pipe_buffer_put(pipe, desc->buffer, desc->bytes_to_xfer); desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } if (num_bytes_read == bytes_to_read) { k_sched_unlock(); *bytes_read = num_bytes_read; return 0; } /* Not all data was read. */ struct k_pipe_desc pipe_desc; pipe_desc.buffer = (u8_t *)data + num_bytes_read; pipe_desc.bytes_to_xfer = bytes_to_read - num_bytes_read; if (timeout != K_NO_WAIT) { _current->base.swap_data = &pipe_desc; k_spinlock_key_t key = k_spin_lock(&pipe->lock); z_sched_unlock_no_reschedule(); (void)z_pend_curr(&pipe->lock, key, &pipe->wait_q.readers, timeout); } else { k_sched_unlock(); } *bytes_read = bytes_to_read - pipe_desc.bytes_to_xfer; return pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, bytes_to_read); } #ifdef CONFIG_USERSPACE int z_vrfy_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, s32_t timeout) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_read, sizeof(*bytes_read))); Z_OOPS(Z_SYSCALL_MEMORY_WRITE((void *)data, bytes_to_read)); return z_impl_k_pipe_get((struct k_pipe *)pipe, (void *)data, bytes_to_read, bytes_read, min_xfer, timeout); } #include <syscalls/k_pipe_get_mrsh.c> #endif int z_impl_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, s32_t timeout) { return z_pipe_put_internal(pipe, NULL, data, bytes_to_write, bytes_written, min_xfer, timeout); } #ifdef CONFIG_USERSPACE int z_vrfy_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, s32_t timeout) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_written, sizeof(*bytes_written))); Z_OOPS(Z_SYSCALL_MEMORY_READ((void *)data, bytes_to_write)); return z_impl_k_pipe_put((struct k_pipe *)pipe, (void *)data, bytes_to_write, bytes_written, min_xfer, timeout); } #include <syscalls/k_pipe_put_mrsh.c> #endif #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block, size_t bytes_to_write, struct k_sem *sem) { struct k_pipe_async *async_desc; size_t dummy_bytes_written; /* For simplicity, always allocate an asynchronous descriptor */ pipe_async_alloc(&async_desc); async_desc->desc.block = &async_desc->desc.copy_block; async_desc->desc.copy_block = *block; async_desc->desc.sem = sem; async_desc->thread.prio = k_thread_priority_get(_current); #ifdef CONFIG_SMP async_desc->thread.is_idle = 0; #endif (void) z_pipe_put_internal(pipe, async_desc, block->data, bytes_to_write, &dummy_bytes_written, bytes_to_write, K_FOREVER); } #endif |