Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/*
 * Copyright (c) 2011-2014, Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Misc utilities
 *
 * Misc utilities usable by the kernel and application code.
 */

#ifndef ZEPHYR_INCLUDE_SYS_UTIL_H_
#define ZEPHYR_INCLUDE_SYS_UTIL_H_

#ifndef _ASMLANGUAGE

#include <zephyr/types.h>
#include <stdbool.h>
#include <stddef.h>

/* Helper to pass a int as a pointer or vice-versa. */
#define POINTER_TO_UINT(x) ((uintptr_t) (x))
#define UINT_TO_POINTER(x) ((void *) (uintptr_t) (x))
#define POINTER_TO_INT(x)  ((intptr_t) (x))
#define INT_TO_POINTER(x)  ((void *) (intptr_t) (x))

#if !(defined (__CHAR_BIT__) && defined (__SIZEOF_LONG__))
#	error Missing required predefined macros for BITS_PER_LONG calculation
#endif

#define BITS_PER_LONG	(__CHAR_BIT__ * __SIZEOF_LONG__)
/* Create a contiguous bitmask starting at bit position @l and ending at
 * position @h.
 */
#define GENMASK(h, l) \
	(((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h))))

/* Evaluates to 0 if cond is true-ish; compile error otherwise */
#define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1)

/* Evaluates to 0 if array is an array; compile error if not array (e.g.
 * pointer)
 */
#define IS_ARRAY(array) \
	ZERO_OR_COMPILE_ERROR( \
		!__builtin_types_compatible_p(__typeof__(array), \
					      __typeof__(&(array)[0])))

#if defined(__cplusplus)
template < class T, size_t N >
#if __cplusplus >= 201103L
constexpr
#endif /* >= C++11 */
size_t ARRAY_SIZE(T(&)[N]) { return N; }

#else
/* Evaluates to number of elements in an array; compile error if not
 * an array (e.g. pointer)
 */
#define ARRAY_SIZE(array) \
	((long) (IS_ARRAY(array) + (sizeof(array) / sizeof((array)[0]))))
#endif

/* Evaluates to 1 if ptr is part of array, 0 otherwise; compile error if
 * "array" argument is not an array (e.g. "ptr" and "array" mixed up)
 */
#define PART_OF_ARRAY(array, ptr) \
	((ptr) && ((ptr) >= &array[0] && (ptr) < &array[ARRAY_SIZE(array)]))

#define CONTAINER_OF(ptr, type, field) \
	((type *)(((char *)(ptr)) - offsetof(type, field)))

/* round "x" up/down to next multiple of "align" (which must be a power of 2) */
#define ROUND_UP(x, align)                                   \
	(((unsigned long)(x) + ((unsigned long)(align) - 1)) & \
	 ~((unsigned long)(align) - 1))
#define ROUND_DOWN(x, align)                                 \
	((unsigned long)(x) & ~((unsigned long)(align) - 1))

/* round up/down to the next word boundary */
#define WB_UP(x) ROUND_UP(x, sizeof(void *))
#define WB_DN(x) ROUND_DOWN(x, sizeof(void *))

#define ceiling_fraction(numerator, divider) \
	(((numerator) + ((divider) - 1)) / (divider))

#ifdef INLINED
#define INLINE inline
#else
#define INLINE
#endif

/** @brief Return larger value of two provided expressions.
 *
 * @note Arguments are evaluated twice. See Z_MAX for GCC only, single
 * evaluation version.
 */
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif

/** @brief Return smaller value of two provided expressions.
 *
 * @note Arguments are evaluated twice. See Z_MIN for GCC only, single
 * evaluation version.
 */
#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif

static inline bool is_power_of_two(unsigned int x)
{
	return (x != 0U) && ((x & (x - 1)) == 0U);
}

static inline s64_t arithmetic_shift_right(s64_t value, u8_t shift)
{
	s64_t sign_ext;

	if (shift == 0U) {
		return value;
	}

	/* extract sign bit */
	sign_ext = (value >> 63) & 1;

	/* make all bits of sign_ext be the same as the value's sign bit */
	sign_ext = -sign_ext;

	/* shift value and fill opened bit positions with sign bit */
	return (value >> shift) | (sign_ext << (64 - shift));
}

/**
 * @brief      Convert a single character into a hexadecimal nibble.
 *
 * @param[in]  c     The character to convert
 * @param      x     The address of storage for the converted number.
 *
 *  @return Zero on success or (negative) error code otherwise.
 */
int char2hex(char c, u8_t *x);

/**
 * @brief      Convert a single hexadecimal nibble into a character.
 *
 * @param[in]  c     The number to convert
 * @param      x     The address of storage for the converted character.
 *
 *  @return Zero on success or (negative) error code otherwise.
 */
int hex2char(u8_t x, char *c);

/**
 * @brief      Convert a binary array into string representation.
 *
 * @param[in]  buf     The binary array to convert
 * @param[in]  buflen  The length of the binary array to convert
 * @param[out] hex     Address of where to store the string representation.
 * @param[in]  hexlen  Size of the storage area for string representation.
 *
 * @return     The length of the converted string, or 0 if an error occurred.
 */
size_t bin2hex(const u8_t *buf, size_t buflen, char *hex, size_t hexlen);

/*
 * Convert hex string to byte string
 * Return number of bytes written to buf, or 0 on error
 * @return     The length of the converted array, or 0 if an error occurred.
 */

/**
 * @brief      Convert a hexadecimal string into a binary array.
 *
 * @param[in]  hex     The hexadecimal string to convert
 * @param[in]  hexlen  The length of the hexadecimal string to convert.
 * @param[out] buf     Address of where to store the binary data
 * @param[in]  buflen  Size of the storage area for binary data
 *
 * @return     The length of the binary array , or 0 if an error occurred.
 */
size_t hex2bin(const char *hex, size_t hexlen, u8_t *buf, size_t buflen);

/**
 * @brief      Convert a u8_t into decimal string representation.
 *
 * Convert a u8_t value into ASCII decimal string representation.
 * The string is terminated if there is enough space in buf.
 *
 * @param[out] buf     Address of where to store the string representation.
 * @param[in]  buflen  Size of the storage area for string representation.
 * @param[in]  value   The value to convert to decimal string
 *
 * @return     The length of the converted string (excluding terminator if
 *             any), or 0 if an error occurred.
 */
u8_t u8_to_dec(char *buf, u8_t buflen, u8_t value);

#endif /* !_ASMLANGUAGE */

/* KB, MB, GB */
#define KB(x) ((x) << 10)
#define MB(x) (KB(x) << 10)
#define GB(x) (MB(x) << 10)

/* KHZ, MHZ */
#define KHZ(x) ((x) * 1000)
#define MHZ(x) (KHZ(x) * 1000)

#ifndef BIT
#if defined(_ASMLANGUAGE)
#define BIT(n)  (1 << (n))
#else
#define BIT(n)  (1UL << (n))
#endif
#endif

/** 64-bit unsigned integer with bit position _n set */
#define BIT64(_n) (1ULL << (_n))

/**
 * @brief Macro sets or clears bit depending on boolean value
 *
 * @param var Variable to be altered
 * @param bit Bit number
 * @param set Value 0 clears bit, any other value sets bit
 */
#define WRITE_BIT(var, bit, set) \
	((var) = (set) ? ((var) | BIT(bit)) : ((var) & ~BIT(bit)))

#define BIT_MASK(n) (BIT(n) - 1)

/**
 * @brief Check for macro definition in compiler-visible expressions
 *
 * This trick was pioneered in Linux as the config_enabled() macro.
 * The madness has the effect of taking a macro value that may be
 * defined to "1" (e.g. CONFIG_MYFEATURE), or may not be defined at
 * all and turning it into a literal expression that can be used at
 * "runtime".  That is, it works similarly to
 * "defined(CONFIG_MYFEATURE)" does except that it is an expansion
 * that can exist in a standard expression and be seen by the compiler
 * and optimizer.  Thus much ifdef usage can be replaced with cleaner
 * expressions like:
 *
 *     if (IS_ENABLED(CONFIG_MYFEATURE))
 *             myfeature_enable();
 *
 * INTERNAL
 * First pass just to expand any existing macros, we need the macro
 * value to be e.g. a literal "1" at expansion time in the next macro,
 * not "(1)", etc...  Standard recursive expansion does not work.
 */
#define IS_ENABLED(config_macro) Z_IS_ENABLED1(config_macro)

/* Now stick on a "_XXXX" prefix, it will now be "_XXXX1" if config_macro
 * is "1", or just "_XXXX" if it's undefined.
 *   ENABLED:   Z_IS_ENABLED2(_XXXX1)
 *   DISABLED   Z_IS_ENABLED2(_XXXX)
 */
#define Z_IS_ENABLED1(config_macro) Z_IS_ENABLED2(_XXXX##config_macro)

/* Here's the core trick, we map "_XXXX1" to "_YYYY," (i.e. a string
 * with a trailing comma), so it has the effect of making this a
 * two-argument tuple to the preprocessor only in the case where the
 * value is defined to "1"
 *   ENABLED:    _YYYY,    <--- note comma!
 *   DISABLED:   _XXXX
 */
#define _XXXX1 _YYYY,

/* Then we append an extra argument to fool the gcc preprocessor into
 * accepting it as a varargs macro.
 *                         arg1   arg2  arg3
 *   ENABLED:   Z_IS_ENABLED3(_YYYY,    1,    0)
 *   DISABLED   Z_IS_ENABLED3(_XXXX 1,  0)
 */
#define Z_IS_ENABLED2(one_or_two_args) Z_IS_ENABLED3(one_or_two_args true, false)

/* And our second argument is thus now cooked to be 1 in the case
 * where the value is defined to 1, and 0 if not:
 */
#define Z_IS_ENABLED3(ignore_this, val, ...) val

/**
 * @brief Insert code depending on result of flag evaluation.
 *
 * This is based on same idea as @ref IS_ENABLED macro but as the result of
 * flag evaluation provided code is injected. Because preprocessor interprets
 * each comma as an argument boundary, code must be provided in the brackets.
 * Brackets are stripped away during macro processing.
 *
 * Usage example:
 *
 * \#define MACRO(x) COND_CODE_1(CONFIG_FLAG, (u32_t x;), ())
 *
 * It can be considered as alternative to:
 *
 * \#if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1)
 * \#define MACRO(x) u32_t x;
 * \#else
 * \#define MACRO(x)
 * \#endif
 *
 * However, the advantage of that approach is that code is resolved in place
 * where it is used while \#if method resolves given macro when header is
 * included and product is fixed in the given scope.
 *
 * @note Flag can also be a result of preprocessor output e.g.
 *	 product of NUM_VA_ARGS_LESS_1(...).
 *
 * @param _flag		Evaluated flag
 * @param _if_1_code	Code used if flag exists and equal 1. Argument must be
 *			in brackets.
 * @param _else_code	Code used if flag doesn't exists or isn't equal 1.
 *
 */
#define COND_CODE_1(_flag, _if_1_code, _else_code) \
	Z_COND_CODE_1(_flag, _if_1_code, _else_code)

#define Z_COND_CODE_1(_flag, _if_1_code, _else_code) \
	__COND_CODE(_XXXX##_flag, _if_1_code, _else_code)

/**
 * @brief Insert code if flag is defined and equals 1.
 *
 * Usage example:
 *
 * IF_ENABLED(CONFIG_FLAG, (u32_t foo;))
 *
 * It can be considered as more compact alternative to:
 *
 * \#if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1)
 *	u32_t foo;
 * \#endif
 *
 * @param _flag		Evaluated flag
 * @param _code		Code used if flag exists and equal 1. Argument must be
 *			in brackets.
 */
#define IF_ENABLED(_flag, _code) \
	COND_CODE_1(_flag, _code, ())
/**
 * @brief Insert code depending on result of flag evaluation.
 *
 * See @ref COND_CODE_1 for details.
 *
 * @param _flag		Evaluated flag
 * @param _if_0_code	Code used if flag exists and equal 0. Argument must be
 *			in brackets.
 * @param _else_code	Code used if flag doesn't exists or isn't equal 0.
 *
 */
#define COND_CODE_0(_flag, _if_0_code, _else_code) \
	Z_COND_CODE_0(_flag, _if_0_code, _else_code)

#define Z_COND_CODE_0(_flag, _if_0_code, _else_code) \
	__COND_CODE(_ZZZZ##_flag, _if_0_code, _else_code)

#define _ZZZZ0 _YYYY,

/* Macro used internally by @ref COND_CODE_1 and @ref COND_CODE_0. */
#define __COND_CODE(one_or_two_args, _if_code, _else_code) \
	__GET_ARG2_DEBRACKET(one_or_two_args _if_code, _else_code)

/* Macro used internally to remove brackets from argument. */
#define __DEBRACKET(...) __VA_ARGS__

/* Macro used internally for getting second argument and removing brackets
 * around that argument. It is expected that parameter is provided in brackets
 */
#define __GET_ARG2_DEBRACKET(ignore_this, val, ...) __DEBRACKET val

/**
 * @brief Get first argument from variable list of arguments
 */
#define GET_ARG1(arg1, ...) arg1

/**
 * @brief Get second argument from variable list of arguments
 */
#define GET_ARG2(arg1, arg2, ...) arg2

/**
 * @brief Get all arguments except the first one.
 */
#define GET_ARGS_LESS_1(val, ...) __VA_ARGS__

/**
 * Macros for doing code-generation with the preprocessor.
 *
 * Generally it is better to generate code with the preprocessor than
 * to copy-paste code or to generate code with the build system /
 * python script's etc.
 *
 * http://stackoverflow.com/a/12540675
 */
#define UTIL_EMPTY(...)
#define UTIL_DEFER(...) __VA_ARGS__ UTIL_EMPTY()
#define UTIL_OBSTRUCT(...) __VA_ARGS__ UTIL_DEFER(UTIL_EMPTY)()
#define UTIL_EXPAND(...) __VA_ARGS__

#define UTIL_EVAL(...)  UTIL_EVAL1(UTIL_EVAL1(UTIL_EVAL1(__VA_ARGS__)))
#define UTIL_EVAL1(...) UTIL_EVAL2(UTIL_EVAL2(UTIL_EVAL2(__VA_ARGS__)))
#define UTIL_EVAL2(...) UTIL_EVAL3(UTIL_EVAL3(UTIL_EVAL3(__VA_ARGS__)))
#define UTIL_EVAL3(...) UTIL_EVAL4(UTIL_EVAL4(UTIL_EVAL4(__VA_ARGS__)))
#define UTIL_EVAL4(...) UTIL_EVAL5(UTIL_EVAL5(UTIL_EVAL5(__VA_ARGS__)))
#define UTIL_EVAL5(...) __VA_ARGS__

#define UTIL_CAT(a, ...) UTIL_PRIMITIVE_CAT(a, __VA_ARGS__)
#define UTIL_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__

#define UTIL_INC(x) UTIL_PRIMITIVE_CAT(UTIL_INC_, x)
#define UTIL_INC_0 1
#define UTIL_INC_1 2
#define UTIL_INC_2 3
#define UTIL_INC_3 4
#define UTIL_INC_4 5
#define UTIL_INC_5 6
#define UTIL_INC_6 7
#define UTIL_INC_7 8
#define UTIL_INC_8 9
#define UTIL_INC_9 10
#define UTIL_INC_10 11
#define UTIL_INC_11 12
#define UTIL_INC_12 13
#define UTIL_INC_13 14
#define UTIL_INC_14 15
#define UTIL_INC_15 16
#define UTIL_INC_16 17
#define UTIL_INC_17 18
#define UTIL_INC_18 19
#define UTIL_INC_19 19

#define UTIL_DEC(x) UTIL_PRIMITIVE_CAT(UTIL_DEC_, x)
#define UTIL_DEC_0 0
#define UTIL_DEC_1 0
#define UTIL_DEC_2 1
#define UTIL_DEC_3 2
#define UTIL_DEC_4 3
#define UTIL_DEC_5 4
#define UTIL_DEC_6 5
#define UTIL_DEC_7 6
#define UTIL_DEC_8 7
#define UTIL_DEC_9 8
#define UTIL_DEC_10 9
#define UTIL_DEC_11 10
#define UTIL_DEC_12 11
#define UTIL_DEC_13 12
#define UTIL_DEC_14 13
#define UTIL_DEC_15 14
#define UTIL_DEC_16 15
#define UTIL_DEC_17 16
#define UTIL_DEC_18 17
#define UTIL_DEC_19 18
#define UTIL_DEC_20 19
#define UTIL_DEC_21 20
#define UTIL_DEC_22 21
#define UTIL_DEC_23 22
#define UTIL_DEC_24 23
#define UTIL_DEC_25 24
#define UTIL_DEC_26 25
#define UTIL_DEC_27 26
#define UTIL_DEC_28 27
#define UTIL_DEC_29 28
#define UTIL_DEC_30 29
#define UTIL_DEC_31 30
#define UTIL_DEC_32 31
#define UTIL_DEC_33 32
#define UTIL_DEC_34 33
#define UTIL_DEC_35 34
#define UTIL_DEC_36 35
#define UTIL_DEC_37 36
#define UTIL_DEC_38 37
#define UTIL_DEC_39 38
#define UTIL_DEC_40 39
#define UTIL_DEC_41 40
#define UTIL_DEC_42 41
#define UTIL_DEC_43 42
#define UTIL_DEC_44 43
#define UTIL_DEC_45 44
#define UTIL_DEC_46 45
#define UTIL_DEC_47 46
#define UTIL_DEC_48 47
#define UTIL_DEC_49 48
#define UTIL_DEC_50 49
#define UTIL_DEC_51 50
#define UTIL_DEC_52 51
#define UTIL_DEC_53 52
#define UTIL_DEC_54 53
#define UTIL_DEC_55 54
#define UTIL_DEC_56 55
#define UTIL_DEC_57 56
#define UTIL_DEC_58 57
#define UTIL_DEC_59 58
#define UTIL_DEC_60 59
#define UTIL_DEC_61 60
#define UTIL_DEC_62 61
#define UTIL_DEC_63 62
#define UTIL_DEC_64 63
#define UTIL_DEC_65 64
#define UTIL_DEC_66 65
#define UTIL_DEC_67 66
#define UTIL_DEC_68 67
#define UTIL_DEC_69 68
#define UTIL_DEC_70 69
#define UTIL_DEC_71 70
#define UTIL_DEC_72 71
#define UTIL_DEC_73 72
#define UTIL_DEC_74 73
#define UTIL_DEC_75 74
#define UTIL_DEC_76 75
#define UTIL_DEC_77 76
#define UTIL_DEC_78 77
#define UTIL_DEC_79 78
#define UTIL_DEC_80 79
#define UTIL_DEC_81 80
#define UTIL_DEC_82 81
#define UTIL_DEC_83 82
#define UTIL_DEC_84 83
#define UTIL_DEC_85 84
#define UTIL_DEC_86 85
#define UTIL_DEC_87 86
#define UTIL_DEC_88 87
#define UTIL_DEC_89 88
#define UTIL_DEC_90 89
#define UTIL_DEC_91 90
#define UTIL_DEC_92 91
#define UTIL_DEC_93 92
#define UTIL_DEC_94 93
#define UTIL_DEC_95 94
#define UTIL_DEC_96 95
#define UTIL_DEC_97 96
#define UTIL_DEC_98 97
#define UTIL_DEC_99 98
#define UTIL_DEC_100 99
#define UTIL_DEC_101 100
#define UTIL_DEC_102 101
#define UTIL_DEC_103 102
#define UTIL_DEC_104 103
#define UTIL_DEC_105 104
#define UTIL_DEC_106 105
#define UTIL_DEC_107 106
#define UTIL_DEC_108 107
#define UTIL_DEC_109 108
#define UTIL_DEC_110 109
#define UTIL_DEC_111 110
#define UTIL_DEC_112 111
#define UTIL_DEC_113 112
#define UTIL_DEC_114 113
#define UTIL_DEC_115 114
#define UTIL_DEC_116 115
#define UTIL_DEC_117 116
#define UTIL_DEC_118 117
#define UTIL_DEC_119 118
#define UTIL_DEC_120 119
#define UTIL_DEC_121 120
#define UTIL_DEC_122 121
#define UTIL_DEC_123 122
#define UTIL_DEC_124 123
#define UTIL_DEC_125 124
#define UTIL_DEC_126 125
#define UTIL_DEC_127 126
#define UTIL_DEC_128 127
#define UTIL_DEC_129 128
#define UTIL_DEC_130 129
#define UTIL_DEC_131 130
#define UTIL_DEC_132 131
#define UTIL_DEC_133 132
#define UTIL_DEC_134 133
#define UTIL_DEC_135 134
#define UTIL_DEC_136 135
#define UTIL_DEC_137 136
#define UTIL_DEC_138 137
#define UTIL_DEC_139 138
#define UTIL_DEC_140 139
#define UTIL_DEC_141 140
#define UTIL_DEC_142 141
#define UTIL_DEC_143 142
#define UTIL_DEC_144 143
#define UTIL_DEC_145 144
#define UTIL_DEC_146 145
#define UTIL_DEC_147 146
#define UTIL_DEC_148 147
#define UTIL_DEC_149 148
#define UTIL_DEC_150 149
#define UTIL_DEC_151 150
#define UTIL_DEC_152 151
#define UTIL_DEC_153 152
#define UTIL_DEC_154 153
#define UTIL_DEC_155 154
#define UTIL_DEC_156 155
#define UTIL_DEC_157 156
#define UTIL_DEC_158 157
#define UTIL_DEC_159 158
#define UTIL_DEC_160 159
#define UTIL_DEC_161 160
#define UTIL_DEC_162 161
#define UTIL_DEC_163 162
#define UTIL_DEC_164 163
#define UTIL_DEC_165 164
#define UTIL_DEC_166 165
#define UTIL_DEC_167 166
#define UTIL_DEC_168 167
#define UTIL_DEC_169 168
#define UTIL_DEC_170 169
#define UTIL_DEC_171 170
#define UTIL_DEC_172 171
#define UTIL_DEC_173 172
#define UTIL_DEC_174 173
#define UTIL_DEC_175 174
#define UTIL_DEC_176 175
#define UTIL_DEC_177 176
#define UTIL_DEC_178 177
#define UTIL_DEC_179 178
#define UTIL_DEC_180 179
#define UTIL_DEC_181 180
#define UTIL_DEC_182 181
#define UTIL_DEC_183 182
#define UTIL_DEC_184 183
#define UTIL_DEC_185 184
#define UTIL_DEC_186 185
#define UTIL_DEC_187 186
#define UTIL_DEC_188 187
#define UTIL_DEC_189 188
#define UTIL_DEC_190 189
#define UTIL_DEC_191 190
#define UTIL_DEC_192 191
#define UTIL_DEC_193 192
#define UTIL_DEC_194 193
#define UTIL_DEC_195 194
#define UTIL_DEC_196 195
#define UTIL_DEC_197 196
#define UTIL_DEC_198 197
#define UTIL_DEC_199 198
#define UTIL_DEC_200 199
#define UTIL_DEC_201 200
#define UTIL_DEC_202 201
#define UTIL_DEC_203 202
#define UTIL_DEC_204 203
#define UTIL_DEC_205 204
#define UTIL_DEC_206 205
#define UTIL_DEC_207 206
#define UTIL_DEC_208 207
#define UTIL_DEC_209 208
#define UTIL_DEC_210 209
#define UTIL_DEC_211 210
#define UTIL_DEC_212 211
#define UTIL_DEC_213 212
#define UTIL_DEC_214 213
#define UTIL_DEC_215 214
#define UTIL_DEC_216 215
#define UTIL_DEC_217 216
#define UTIL_DEC_218 217
#define UTIL_DEC_219 218
#define UTIL_DEC_220 219
#define UTIL_DEC_221 220
#define UTIL_DEC_222 221
#define UTIL_DEC_223 222
#define UTIL_DEC_224 223
#define UTIL_DEC_225 224
#define UTIL_DEC_226 225
#define UTIL_DEC_227 226
#define UTIL_DEC_228 227
#define UTIL_DEC_229 228
#define UTIL_DEC_230 229
#define UTIL_DEC_231 230
#define UTIL_DEC_232 231
#define UTIL_DEC_233 232
#define UTIL_DEC_234 233
#define UTIL_DEC_235 234
#define UTIL_DEC_236 235
#define UTIL_DEC_237 236
#define UTIL_DEC_238 237
#define UTIL_DEC_239 238
#define UTIL_DEC_240 239
#define UTIL_DEC_241 240
#define UTIL_DEC_242 241
#define UTIL_DEC_243 242
#define UTIL_DEC_244 243
#define UTIL_DEC_245 244
#define UTIL_DEC_246 245
#define UTIL_DEC_247 246
#define UTIL_DEC_248 247
#define UTIL_DEC_249 248
#define UTIL_DEC_250 249
#define UTIL_DEC_251 250
#define UTIL_DEC_252 251
#define UTIL_DEC_253 252
#define UTIL_DEC_254 253
#define UTIL_DEC_255 254
#define UTIL_DEC_256 255

#define UTIL_CHECK_N(x, n, ...) n
#define UTIL_CHECK(...) UTIL_CHECK_N(__VA_ARGS__, 0,)

#define UTIL_NOT(x) UTIL_CHECK(UTIL_PRIMITIVE_CAT(UTIL_NOT_, x))
#define UTIL_NOT_0 ~, 1,

#define UTIL_COMPL(b) UTIL_PRIMITIVE_CAT(UTIL_COMPL_, b)
#define UTIL_COMPL_0 1
#define UTIL_COMPL_1 0

#define UTIL_BOOL(x) UTIL_COMPL(UTIL_NOT(x))

#define UTIL_IIF(c) UTIL_PRIMITIVE_CAT(UTIL_IIF_, c)
#define UTIL_IIF_0(t, ...) __VA_ARGS__
#define UTIL_IIF_1(t, ...) t

#define UTIL_IF(c) UTIL_IIF(UTIL_BOOL(c))

#define UTIL_EAT(...)
#define UTIL_EXPAND(...) __VA_ARGS__
#define UTIL_WHEN(c) UTIL_IF(c)(UTIL_EXPAND, UTIL_EAT)

#define UTIL_REPEAT(count, macro, ...)			    \
	UTIL_WHEN(count)				    \
	(						    \
		UTIL_OBSTRUCT(UTIL_REPEAT_INDIRECT) ()	    \
		(					    \
			UTIL_DEC(count), macro, __VA_ARGS__ \
		)					    \
		UTIL_OBSTRUCT(macro)			    \
		(					    \
			UTIL_DEC(count), __VA_ARGS__	    \
		)					    \
	)
#define UTIL_REPEAT_INDIRECT() UTIL_REPEAT

/**
 * Generates a sequence of code.
 * Useful for generating code like;
 *
 * NRF_PWM0, NRF_PWM1, NRF_PWM2,
 *
 * @arg LEN: The length of the sequence. Must be defined and less than
 * 20.
 *
 * @arg F(i, F_ARG): A macro function that accepts two arguments.
 *  F is called repeatedly, the first argument
 *  is the index in the sequence, and the second argument is the third
 *  argument given to UTIL_LISTIFY.
 *
 * Example:
 *
 *    \#define FOO(i, _) NRF_PWM ## i ,
 *    { UTIL_LISTIFY(PWM_COUNT, FOO) }
 *    The above two lines will generate the below:
 *    { NRF_PWM0 , NRF_PWM1 , }
 *
 * @note Calling UTIL_LISTIFY with undefined arguments has undefined
 * behavior.
 */
#define UTIL_LISTIFY(LEN, F, F_ARG) UTIL_EVAL(UTIL_REPEAT(LEN, F, F_ARG))

/**@brief Implementation details for NUM_VAR_ARGS */
#define NUM_VA_ARGS_LESS_1_IMPL(				\
	_ignored,						\
	_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10,		\
	_11, _12, _13, _14, _15, _16, _17, _18, _19, _20,	\
	_21, _22, _23, _24, _25, _26, _27, _28, _29, _30,	\
	_31, _32, _33, _34, _35, _36, _37, _38, _39, _40,	\
	_41, _42, _43, _44, _45, _46, _47, _48, _49, _50,	\
	_51, _52, _53, _54, _55, _56, _57, _58, _59, _60,	\
	_61, _62, N, ...) N

/**@brief Macro to get the number of arguments in a call variadic macro call.
 * First argument is not counted.
 *
 * param[in]    ...     List of arguments
 *
 * @retval  Number of variadic arguments in the argument list
 */
#define NUM_VA_ARGS_LESS_1(...) \
	NUM_VA_ARGS_LESS_1_IMPL(__VA_ARGS__, 63, 62, 61, \
	60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		 \
	50, 49, 48, 47, 46, 45, 44, 43, 42, 41,		 \
	40, 39, 38, 37, 36, 35, 34, 33, 32, 31,		 \
	30, 29, 28, 27, 26, 25, 24, 23, 22, 21,		 \
	20, 19, 18, 17, 16, 15, 14, 13, 12, 11,		 \
	10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, ~)

/**
 * @brief Mapping macro
 *
 * Macro that process all arguments using given macro
 *
 * @param ... Macro name to be used for argument processing followed by
 *            arguments to process. Macro should have following
 *            form: MACRO(argument).
 *
 * @return All arguments processed by given macro
 */
#define MACRO_MAP(...) MACRO_MAP_(__VA_ARGS__)
#define MACRO_MAP_(...)							\
	/* To make sure it works also for 2 arguments in total */	\
	MACRO_MAP_N(NUM_VA_ARGS_LESS_1(__VA_ARGS__), __VA_ARGS__)

/**
 * @brief Mapping N arguments macro
 *
 * Macro similar to @ref MACRO_MAP but maps exact number of arguments.
 * If there is more arguments given, the rest would be ignored.
 *
 * @param N   Number of arguments to map
 * @param ... Macro name to be used for argument processing followed by
 *            arguments to process. Macro should have following
 *            form: MACRO(argument).
 *
 * @return Selected number of arguments processed by given macro
 */
#define MACRO_MAP_N(N, ...) MACRO_MAP_N_(N, __VA_ARGS__)
#define MACRO_MAP_N_(N, ...) UTIL_CAT(MACRO_MAP_, N)(__VA_ARGS__,)

#define MACRO_MAP_0(...)
#define MACRO_MAP_1(macro, a, ...)  macro(a)
#define MACRO_MAP_2(macro, a, ...)  macro(a)MACRO_MAP_1(macro, __VA_ARGS__,)
#define MACRO_MAP_3(macro, a, ...)  macro(a)MACRO_MAP_2(macro, __VA_ARGS__,)
#define MACRO_MAP_4(macro, a, ...)  macro(a)MACRO_MAP_3(macro, __VA_ARGS__,)
#define MACRO_MAP_5(macro, a, ...)  macro(a)MACRO_MAP_4(macro, __VA_ARGS__,)
#define MACRO_MAP_6(macro, a, ...)  macro(a)MACRO_MAP_5(macro, __VA_ARGS__,)
#define MACRO_MAP_7(macro, a, ...)  macro(a)MACRO_MAP_6(macro, __VA_ARGS__,)
#define MACRO_MAP_8(macro, a, ...)  macro(a)MACRO_MAP_7(macro, __VA_ARGS__,)
#define MACRO_MAP_9(macro, a, ...)  macro(a)MACRO_MAP_8(macro, __VA_ARGS__,)
#define MACRO_MAP_10(macro, a, ...) macro(a)MACRO_MAP_9(macro, __VA_ARGS__,)
#define MACRO_MAP_11(macro, a, ...) macro(a)MACRO_MAP_10(macro, __VA_ARGS__,)
#define MACRO_MAP_12(macro, a, ...) macro(a)MACRO_MAP_11(macro, __VA_ARGS__,)
#define MACRO_MAP_13(macro, a, ...) macro(a)MACRO_MAP_12(macro, __VA_ARGS__,)
#define MACRO_MAP_14(macro, a, ...) macro(a)MACRO_MAP_13(macro, __VA_ARGS__,)
#define MACRO_MAP_15(macro, a, ...) macro(a)MACRO_MAP_14(macro, __VA_ARGS__,)
/*
 * The following provides variadic preprocessor macro support to
 * help eliminate multiple, repetitive function/macro calls.  This
 * allows up to 10 "arguments" in addition to z_call .
 * Note - derived from work on:
 * https://codecraft.co/2014/11/25/variadic-macros-tricks/
 */

#define Z_GET_ARG(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N

#define _for_0(z_call, ...)
#define _for_1(z_call, x) z_call(x)
#define _for_2(z_call, x, ...) z_call(x) _for_1(z_call, ##__VA_ARGS__)
#define _for_3(z_call, x, ...) z_call(x) _for_2(z_call, ##__VA_ARGS__)
#define _for_4(z_call, x, ...) z_call(x) _for_3(z_call, ##__VA_ARGS__)
#define _for_5(z_call, x, ...) z_call(x) _for_4(z_call, ##__VA_ARGS__)
#define _for_6(z_call, x, ...) z_call(x) _for_5(z_call, ##__VA_ARGS__)
#define _for_7(z_call, x, ...) z_call(x) _for_6(z_call, ##__VA_ARGS__)
#define _for_8(z_call, x, ...) z_call(x) _for_7(z_call, ##__VA_ARGS__)
#define _for_9(z_call, x, ...) z_call(x) _for_8(z_call, ##__VA_ARGS__)
#define _for_10(z_call, x, ...) z_call(x) _for_9(z_call, ##__VA_ARGS__)

#define FOR_EACH(x, ...) \
	Z_GET_ARG(__VA_ARGS__, \
	_for_10, _for_9, _for_8, _for_7, _for_6, _for_5, \
	_for_4, _for_3, _for_2, _for_1, _for_0)(x, ##__VA_ARGS__)

/* FOR_EACH_FIXED_ARG is used for calling the same function
 * With one fixed argument and changing 2nd argument.
 */

#define z_rep_0(_fn, f, ...)
#define z_rep_1(_fn, f, x) {_fn(x, f); z_rep_0(_fn, f)}
#define z_rep_2(_fn, f, x, ...) {_fn(x, f); z_rep_1(_fn, f, ##__VA_ARGS__)}
#define z_rep_3(_fn, f, x, ...) {_fn(x, f); z_rep_2(_fn, f, ##__VA_ARGS__)}
#define z_rep_4(_fn, f, x, ...) {_fn(x, f); z_rep_3(_fn, f, ##__VA_ARGS__)}
#define z_rep_5(_fn, f, x, ...) {_fn(x, f); z_rep_4(_fn, f, ##__VA_ARGS__)}
#define z_rep_6(_fn, f, x, ...) {_fn(x, f); z_rep_5(_fn, f, ##__VA_ARGS__)}
#define z_rep_7(_fn, f, x, ...) {_fn(x, f); z_rep_6(_fn, f, ##__VA_ARGS__)}
#define z_rep_8(_fn, f, x, ...) {_fn(x, f); z_rep_7(_fn, f, ##__VA_ARGS__)}
#define z_rep_9(_fn, f, x, ...) {_fn(x, f); z_rep_8(_fn, f, ##__VA_ARGS__)}
#define z_rep_10(_fn, f, x, ...) {_fn(x, f); z_rep_9(_fn, f, ##__VA_ARGS__)}
#define z_rep_11(_fn, f, x, ...) {_fn(x, f); z_rep_10(_fn, f, ##__VA_ARGS__)}
#define z_rep_12(_fn, f, x, ...) {_fn(x, f); z_rep_11(_fn, f, ##__VA_ARGS__)}
#define z_rep_13(_fn, f, x, ...) {_fn(x, f); z_rep_12(_fn, f, ##__VA_ARGS__)}
#define z_rep_14(_fn, f, x, ...) {_fn(x, f); z_rep_13(_fn, f, ##__VA_ARGS__)}
#define z_rep_15(_fn, f, x, ...) {_fn(x, f); z_rep_14(_fn, f, ##__VA_ARGS__)}
#define z_rep_16(_fn, f, x, ...) {_fn(x, f); z_rep_15(_fn, f, ##__VA_ARGS__)}
#define z_rep_17(_fn, f, x, ...) {_fn(x, f); z_rep_16(_fn, f, ##__VA_ARGS__)}
#define z_rep_18(_fn, f, x, ...) {_fn(x, f); z_rep_17(_fn, f, ##__VA_ARGS__)}
#define z_rep_19(_fn, f, x, ...) {_fn(x, f); z_rep_18(_fn, f, ##__VA_ARGS__)}
#define z_rep_20(_fn, f, x, ...) {_fn(x, f); z_rep_19(_fn, f, ##__VA_ARGS__)}


#define Z_GET_ARG_2(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, \
		   _14, _15, _16, _17, _18, _19, _20, N, ...) N

#define FOR_EACH_FIXED_ARG(fixed_arg, x, ...) \
	{Z_GET_ARG_2(__VA_ARGS__,				\
		     z_rep_20, z_rep_19, z_rep_18, z_rep_17, z_rep_16,	\
		     z_rep_15, z_rep_14, z_rep_13, z_rep_12, z_rep_11,	\
		     z_rep_10, z_rep_9, z_rep_8, z_rep_7, z_rep_6,	\
		     z_rep_5, z_rep_4, z_rep_3, z_rep_2, z_rep_1, z_rep_0) \
	 (fixed_arg, x, ##__VA_ARGS__)}

#endif /* ZEPHYR_INCLUDE_SYS_UTIL_H_ */