Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 | /* * Copyright (c) 2018, Nordic Semiconductor ASA * Copyright (c) 2018 Sundar Subramaniyan <sundar.subramaniyan@gmail.com> * * SPDX-License-Identifier: Apache-2.0 */ /** * @file usb_dc_nrfx.c * @brief Nordic USB device controller driver * * The driver implements the interface between the USBD peripheral * driver from nrfx package and the operating system. */ #include <soc.h> #include <string.h> #include <stdio.h> #include <kernel.h> #include <drivers/usb/usb_dc.h> #include <usb/usb_device.h> #include <drivers/clock_control.h> #include <hal/nrf_power.h> #include <drivers/clock_control/nrf_clock_control.h> #include <nrfx_usbd.h> #define LOG_LEVEL CONFIG_USB_DRIVER_LOG_LEVEL #include <logging/log.h> LOG_MODULE_REGISTER(usb_nrfx); /** * @brief nRF USBD peripheral states */ enum usbd_periph_state { USBD_DETACHED, USBD_ATTACHED, USBD_POWERED, USBD_SUSPENDED, USBD_RESUMED, USBD_DEFAULT, USBD_ADDRESS_SET, USBD_CONFIGURED, }; /** * @brief Endpoint event types. */ enum usbd_ep_event_type { EP_EVT_SETUP_RECV, EP_EVT_RECV_REQ, EP_EVT_RECV_COMPLETE, EP_EVT_WRITE_COMPLETE, }; /** * @brief USBD peripheral event types. */ enum usbd_event_type { USBD_EVT_POWER, USBD_EVT_EP, USBD_EVT_RESET, USBD_EVT_SOF, USBD_EVT_REINIT }; /** * @brief Endpoint configuration. * * @param cb Endpoint callback. * @param max_sz Max packet size supported by endpoint. * @param en Enable/Disable flag. * @param addr Endpoint address. * @param type Endpoint type. */ struct nrf_usbd_ep_cfg { usb_dc_ep_callback cb; u32_t max_sz; bool en; u8_t addr; enum usb_dc_ep_type type; }; /** * @brief Endpoint buffer * * @param len Remaining length to be read/written. * @param block Mempool block, for freeing up buffer after use. * @param data Pointer to the data buffer for the endpoint. * @param curr Pointer to the current offset in the endpoint buffer. */ struct nrf_usbd_ep_buf { u32_t len; struct k_mem_block block; u8_t *data; u8_t *curr; }; /** * @brief Endpoint context * * @param cfg Endpoint configuration * @param buf Endpoint buffer * @param read_complete A flag indicating that DMA read operation * has been completed. * @param read_pending A flag indicating that the Host has requested * a data transfer. * @param write_in_progress A flag indicating that write operation has * been scheduled. * @param write_fragmented A flag indicating that IN transfer has * been fragmented. */ struct nrf_usbd_ep_ctx { struct nrf_usbd_ep_cfg cfg; struct nrf_usbd_ep_buf buf; volatile bool read_complete; volatile bool read_pending; volatile bool write_in_progress; bool write_fragmented; }; /** * @brief Endpoint event structure * * @param ep Endpoint control block pointer * @param evt_type Event type */ struct usbd_ep_event { struct nrf_usbd_ep_ctx *ep; enum usbd_ep_event_type evt_type; }; /** * @brief Power event structure * * @param state New USBD peripheral state. */ struct usbd_pwr_event { enum usbd_periph_state state; }; /** * @brief Endpoint USB event * Used by ISR to send events to work handler * * @param node Used by the kernel for FIFO management * @param block Mempool block pointer for freeing up after use * @param evt Event data field * @param evt_type Type of event that has occurred from the USBD peripheral */ struct usbd_event { sys_snode_t node; struct k_mem_block block; union { struct usbd_ep_event ep_evt; struct usbd_pwr_event pwr_evt; } evt; enum usbd_event_type evt_type; }; /** * @brief Fifo element pool * Used for allocating fifo elements to pass from ISR to work handler * TODO: The number of FIFO elements is an arbitrary number now but it should * be derived from the theoretical number of backlog events possible depending * on the number of endpoints configured. */ #define FIFO_ELEM_MIN_SZ sizeof(struct usbd_event) #define FIFO_ELEM_MAX_SZ sizeof(struct usbd_event) #define FIFO_ELEM_ALIGN sizeof(unsigned int) #if CONFIG_USB_NRFX_EVT_QUEUE_SIZE < 4 #error Invalid USBD event queue size (CONFIG_USB_NRFX_EVT_QUEUE_SIZE). #endif K_MEM_POOL_DEFINE(fifo_elem_pool, FIFO_ELEM_MIN_SZ, FIFO_ELEM_MAX_SZ, CONFIG_USB_NRFX_EVT_QUEUE_SIZE, FIFO_ELEM_ALIGN); /** * @brief Endpoint buffer pool * Used for allocating buffers for the endpoints' data transfer * Max pool size possible: 3072 Bytes (16 EP * 64B + 2 ISO * 1024B) */ /** Number of IN Endpoints configured (including control) */ #define CFG_EPIN_CNT (DT_NORDIC_NRF_USBD_USBD_0_NUM_IN_ENDPOINTS + \ DT_NORDIC_NRF_USBD_USBD_0_NUM_BIDIR_ENDPOINTS) /** Number of OUT Endpoints configured (including control) */ #define CFG_EPOUT_CNT (DT_NORDIC_NRF_USBD_USBD_0_NUM_OUT_ENDPOINTS + \ DT_NORDIC_NRF_USBD_USBD_0_NUM_BIDIR_ENDPOINTS) /** Number of ISO IN Endpoints */ #define CFG_EP_ISOIN_CNT DT_NORDIC_NRF_USBD_USBD_0_NUM_ISOIN_ENDPOINTS /** Number of ISO OUT Endpoints */ #define CFG_EP_ISOOUT_CNT DT_NORDIC_NRF_USBD_USBD_0_NUM_ISOOUT_ENDPOINTS /** ISO endpoint index */ #define EP_ISOIN_INDEX CFG_EPIN_CNT #define EP_ISOOUT_INDEX (CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + CFG_EPOUT_CNT) #define EP_BUF_MAX_SZ 64UL #define ISO_EP_BUF_MAX_SZ 1024UL /** Minimum endpoint buffer size (minimum block size) */ #define EP_BUF_POOL_BLOCK_MIN_SZ EP_BUF_MAX_SZ /** Maximum endpoint buffer size (maximum block size) */ #if (CFG_EP_ISOIN_CNT || CFG_EP_ISOOUT_CNT) #define EP_BUF_POOL_BLOCK_MAX_SZ ISO_EP_BUF_MAX_SZ #else #define EP_BUF_POOL_BLOCK_MAX_SZ EP_BUF_MAX_SZ #endif /** Total endpoints configured */ #define CFG_EP_CNT (CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + \ CFG_EPOUT_CNT + CFG_EP_ISOOUT_CNT) /** Total buffer size for all endpoints */ #define EP_BUF_TOTAL ((CFG_EPIN_CNT * EP_BUF_MAX_SZ) + \ (CFG_EPOUT_CNT * EP_BUF_MAX_SZ) + \ (CFG_EP_ISOIN_CNT * ISO_EP_BUF_MAX_SZ) + \ (CFG_EP_ISOOUT_CNT * ISO_EP_BUF_MAX_SZ)) /** Total number of maximum sized buffers needed */ #define EP_BUF_POOL_BLOCK_COUNT ((EP_BUF_TOTAL / EP_BUF_POOL_BLOCK_MAX_SZ) + \ ((EP_BUF_TOTAL % EP_BUF_POOL_BLOCK_MAX_SZ) ? 1 : 0)) /** 4 Byte Buffer alignment required by hardware */ #define EP_BUF_POOL_ALIGNMENT sizeof(unsigned int) K_MEM_POOL_DEFINE(ep_buf_pool, EP_BUF_POOL_BLOCK_MIN_SZ, EP_BUF_POOL_BLOCK_MAX_SZ, EP_BUF_POOL_BLOCK_COUNT, EP_BUF_POOL_ALIGNMENT); /** * @brief USBD control structure * * @param status_cb Status callback for USB DC notifications * @param attached USBD Attached flag * @param ready USBD Ready flag set after pullup * @param usb_work USBD work item * @param drv_lock Mutex for thread-safe nrfx driver use * @param ep_ctx Endpoint contexts * @param ctrl_read_len State of control read operation (EP0). */ struct nrf_usbd_ctx { usb_dc_status_callback status_cb; bool attached; bool ready; struct k_work usb_work; struct k_mutex drv_lock; struct nrf_usbd_ep_ctx ep_ctx[CFG_EP_CNT]; u16_t ctrl_read_len; }; /* FIFO used for queuing up events from ISR. */ K_FIFO_DEFINE(usbd_evt_fifo); /* Work queue used for handling the ISR events (i.e. for notifying the USB * device stack, for executing the endpoints callbacks, etc.) out of the ISR * context. * The system work queue cannot be used for this purpose as it might be used in * applications for scheduling USB transfers and this could lead to a deadlock * when the USB device stack would not be notified about certain event because * of a system work queue item waiting for a USB transfer to be finished. */ static struct k_work_q usbd_work_queue; static K_THREAD_STACK_DEFINE(usbd_work_queue_stack, CONFIG_USB_NRFX_WORK_QUEUE_STACK_SIZE); static struct nrf_usbd_ctx usbd_ctx = { .attached = false, .ready = false, }; static inline struct nrf_usbd_ctx *get_usbd_ctx(void) { return &usbd_ctx; } static inline bool dev_attached(void) { return get_usbd_ctx()->attached; } static inline bool dev_ready(void) { return get_usbd_ctx()->ready; } static inline nrfx_usbd_ep_t ep_addr_to_nrfx(uint8_t ep) { return (nrfx_usbd_ep_t)ep; } static inline uint8_t nrfx_addr_to_ep(nrfx_usbd_ep_t ep) { return (uint8_t)ep; } static inline bool ep_is_valid(const u8_t ep) { u8_t ep_num = ep & ~USB_EP_DIR_MASK; if (NRF_USBD_EPIN_CHECK(ep)) { if (unlikely(ep_num == NRF_USBD_EPISO_FIRST)) { if (CFG_EP_ISOIN_CNT == 0) { return false; } } else { if (ep_num >= CFG_EPIN_CNT) { return false; } } } else { if (unlikely(ep_num == NRF_USBD_EPISO_FIRST)) { if (CFG_EP_ISOOUT_CNT == 0) { return false; } } else { if (ep_num >= CFG_EPOUT_CNT) { return false; } } } return true; } static struct nrf_usbd_ep_ctx *endpoint_ctx(const u8_t ep) { struct nrf_usbd_ctx *ctx; u8_t ep_num; if (!ep_is_valid(ep)) { return NULL; } ctx = get_usbd_ctx(); ep_num = NRF_USBD_EP_NR_GET(ep); if (NRF_USBD_EPIN_CHECK(ep)) { if (unlikely(NRF_USBD_EPISO_CHECK(ep))) { return &ctx->ep_ctx[EP_ISOIN_INDEX]; } else { return &ctx->ep_ctx[ep_num]; } } else { if (unlikely(NRF_USBD_EPISO_CHECK(ep))) { return &ctx->ep_ctx[EP_ISOOUT_INDEX]; } else { return &ctx->ep_ctx[CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + ep_num]; } } return NULL; } static struct nrf_usbd_ep_ctx *in_endpoint_ctx(const u8_t ep) { return endpoint_ctx(NRF_USBD_EPIN(ep)); } static struct nrf_usbd_ep_ctx *out_endpoint_ctx(const u8_t ep) { return endpoint_ctx(NRF_USBD_EPOUT(ep)); } /** * @brief Schedule USBD event processing. * * Should be called after usbd_evt_put(). */ static inline void usbd_work_schedule(void) { k_work_submit_to_queue(&usbd_work_queue, &get_usbd_ctx()->usb_work); } /** * @brief Free previously allocated USBD event. * * Should be called after usbd_evt_get(). * * @param Pointer to the USBD event structure. */ static inline void usbd_evt_free(struct usbd_event *ev) { k_mem_pool_free(&ev->block); } /** * @brief Enqueue USBD event. * * @param Pointer to the previously allocated and filled event structure. */ static inline void usbd_evt_put(struct usbd_event *ev) { k_fifo_put(&usbd_evt_fifo, ev); } /** * @brief Get next enqueued USBD event if present. */ static inline struct usbd_event *usbd_evt_get(void) { return k_fifo_get(&usbd_evt_fifo, K_NO_WAIT); } /** * @brief Drop all enqueued events. */ static inline void usbd_evt_flush(void) { struct usbd_event *ev; do { ev = usbd_evt_get(); if (ev) { usbd_evt_free(ev); } } while (ev != NULL); } /** * @brief Allocate USBD event. * * This function should be called prior to usbd_evt_put(). * * @returns Pointer to the allocated event or NULL if there was no space left. */ static inline struct usbd_event *usbd_evt_alloc(void) { int ret; struct usbd_event *ev; struct k_mem_block block; ret = k_mem_pool_alloc(&fifo_elem_pool, &block, sizeof(struct usbd_event), K_NO_WAIT); if (ret < 0) { LOG_ERR("USBD event allocation failed!"); /* * Allocation may fail if workqueue thread is starved or event * queue size is too small (CONFIG_USB_NRFX_EVT_QUEUE_SIZE). * Wipe all events, free the space and schedule * reinitialization. */ usbd_evt_flush(); ret = k_mem_pool_alloc(&fifo_elem_pool, &block, sizeof(struct usbd_event), K_NO_WAIT); if (ret < 0) { LOG_ERR("USBD event memory corrupted"); __ASSERT_NO_MSG(0); return NULL; } ev = (struct usbd_event *)block.data; ev->block = block; ev->evt_type = USBD_EVT_REINIT; usbd_evt_put(ev); usbd_work_schedule(); return NULL; } ev = (struct usbd_event *)block.data; ev->block = block; return ev; } void usb_dc_nrfx_power_event_callback(nrf_power_event_t event) { enum usbd_periph_state new_state; switch (event) { case NRF_POWER_EVENT_USBDETECTED: new_state = USBD_ATTACHED; break; case NRF_POWER_EVENT_USBPWRRDY: new_state = USBD_POWERED; break; case NRF_POWER_EVENT_USBREMOVED: new_state = USBD_DETACHED; break; default: LOG_ERR("Unknown USB power event"); return; } struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return; } ev->evt_type = USBD_EVT_POWER; ev->evt.pwr_evt.state = new_state; usbd_evt_put(ev); if (usbd_ctx.attached) { usbd_work_schedule(); } } /** * @brief Enable/Disable the HF clock * * Toggle the HF clock. It needs to be enabled for USBD data exchange * * @param on Set true to enable the HF clock, false to disable. * @param blocking Set true to block wait till HF clock stabilizes. * * @return 0 on success, error number otherwise */ static int hf_clock_enable(bool on, bool blocking) { int ret = -ENODEV; struct device *clock; static bool clock_requested; clock = device_get_binding(DT_INST_0_NORDIC_NRF_CLOCK_LABEL); if (!clock) { LOG_ERR("NRF HF Clock device not found!"); return ret; } if (on) { if (clock_requested) { /* Do not request HFCLK multiple times. */ return 0; } ret = clock_control_on(clock, CLOCK_CONTROL_NRF_SUBSYS_HF); while (blocking && clock_control_get_status(clock, CLOCK_CONTROL_NRF_SUBSYS_HF) != CLOCK_CONTROL_STATUS_ON) { } } else { if (!clock_requested) { /* Cancel the operation if clock has not * been requested by this driver before. */ return 0; } ret = clock_control_off(clock, CLOCK_CONTROL_NRF_SUBSYS_HF); } if (ret && (blocking || (ret != -EINPROGRESS))) { LOG_ERR("HF clock %s fail: %d", on ? "start" : "stop", ret); return ret; } clock_requested = on; LOG_DBG("HF clock %s success (%d)", on ? "start" : "stop", ret); /* NOTE: Non-blocking HF clock enable can return -EINPROGRESS * if HF clock start was already requested. Such error code * does not need to be propagated, hence returned value is 0. */ return 0; } static void usbd_enable_endpoints(struct nrf_usbd_ctx *ctx) { struct nrf_usbd_ep_ctx *ep_ctx; int i; for (i = 0; i < CFG_EPIN_CNT; i++) { ep_ctx = in_endpoint_ctx(i); __ASSERT_NO_MSG(ep_ctx); if (ep_ctx->cfg.en) { nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); } } if (CFG_EP_ISOIN_CNT) { ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8)); __ASSERT_NO_MSG(ep_ctx); if (ep_ctx->cfg.en) { nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); } } for (i = 0; i < CFG_EPOUT_CNT; i++) { ep_ctx = out_endpoint_ctx(i); __ASSERT_NO_MSG(ep_ctx); if (ep_ctx->cfg.en) { nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); } } if (CFG_EP_ISOOUT_CNT) { ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8)); __ASSERT_NO_MSG(ep_ctx); if (ep_ctx->cfg.en) { nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr)); } } } /** * @brief Reset endpoint state. * * Resets the internal logic state for a given endpoint. * * @param[in] ep_cts Endpoint structure control block */ static void ep_ctx_reset(struct nrf_usbd_ep_ctx *ep_ctx) { ep_ctx->buf.data = ep_ctx->buf.block.data; ep_ctx->buf.curr = ep_ctx->buf.data; ep_ctx->buf.len = 0U; ep_ctx->read_complete = true; ep_ctx->read_pending = false; ep_ctx->write_in_progress = false; } /** * @brief Initialize all endpoint structures. * * Endpoint buffers are allocated during the first call of this function. * This function may also be called again on every USB reset event * to reinitialize the state of all endpoints. */ static int eps_ctx_init(void) { struct nrf_usbd_ep_ctx *ep_ctx; int err; u32_t i; for (i = 0U; i < CFG_EPIN_CNT; i++) { ep_ctx = in_endpoint_ctx(i); __ASSERT_NO_MSG(ep_ctx); if (!ep_ctx->buf.block.data) { err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, EP_BUF_MAX_SZ, K_NO_WAIT); if (err < 0) { LOG_ERR("Buffer alloc failed for EP 0x%02x", i); return -ENOMEM; } } ep_ctx_reset(ep_ctx); } for (i = 0U; i < CFG_EPOUT_CNT; i++) { ep_ctx = out_endpoint_ctx(i); __ASSERT_NO_MSG(ep_ctx); if (!ep_ctx->buf.block.data) { err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, EP_BUF_MAX_SZ, K_NO_WAIT); if (err < 0) { LOG_ERR("Buffer alloc failed for EP 0x%02x", i); return -ENOMEM; } } ep_ctx_reset(ep_ctx); } if (CFG_EP_ISOIN_CNT) { ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8)); __ASSERT_NO_MSG(ep_ctx); if (!ep_ctx->buf.block.data) { err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, ISO_EP_BUF_MAX_SZ, K_NO_WAIT); if (err < 0) { LOG_ERR("EP buffer alloc failed for ISOIN"); return -ENOMEM; } } ep_ctx_reset(ep_ctx); } if (CFG_EP_ISOOUT_CNT) { ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8)); __ASSERT_NO_MSG(ep_ctx); if (!ep_ctx->buf.block.data) { err = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block, ISO_EP_BUF_MAX_SZ, K_NO_WAIT); if (err < 0) { LOG_ERR("EP buffer alloc failed for ISOOUT"); return -ENOMEM; } } ep_ctx_reset(ep_ctx); } return 0; } static void eps_ctx_uninit(void) { struct nrf_usbd_ep_ctx *ep_ctx; u32_t i; for (i = 0U; i < CFG_EPIN_CNT; i++) { ep_ctx = in_endpoint_ctx(i); __ASSERT_NO_MSG(ep_ctx); k_mem_pool_free(&ep_ctx->buf.block); memset(ep_ctx, 0, sizeof(*ep_ctx)); } for (i = 0U; i < CFG_EPOUT_CNT; i++) { ep_ctx = out_endpoint_ctx(i); __ASSERT_NO_MSG(ep_ctx); k_mem_pool_free(&ep_ctx->buf.block); memset(ep_ctx, 0, sizeof(*ep_ctx)); } if (CFG_EP_ISOIN_CNT) { ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8)); __ASSERT_NO_MSG(ep_ctx); k_mem_pool_free(&ep_ctx->buf.block); memset(ep_ctx, 0, sizeof(*ep_ctx)); } if (CFG_EP_ISOOUT_CNT) { ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8)); __ASSERT_NO_MSG(ep_ctx); k_mem_pool_free(&ep_ctx->buf.block); memset(ep_ctx, 0, sizeof(*ep_ctx)); } } static inline void usbd_work_process_pwr_events(struct usbd_pwr_event *pwr_evt) { struct nrf_usbd_ctx *ctx = get_usbd_ctx(); switch (pwr_evt->state) { case USBD_ATTACHED: if (!nrfx_usbd_is_enabled()) { LOG_DBG("USB detected"); nrfx_usbd_enable(); (void) hf_clock_enable(true, false); } /* No callback here. * Stack will be notified when the peripheral is ready. */ break; case USBD_POWERED: usbd_enable_endpoints(ctx); nrfx_usbd_start(true); ctx->ready = true; LOG_DBG("USB Powered"); if (ctx->status_cb) { ctx->status_cb(USB_DC_CONNECTED, NULL); } break; case USBD_DETACHED: ctx->ready = false; nrfx_usbd_disable(); (void) hf_clock_enable(false, false); LOG_DBG("USB Removed"); if (ctx->status_cb) { ctx->status_cb(USB_DC_DISCONNECTED, NULL); } break; case USBD_SUSPENDED: if (dev_ready()) { nrfx_usbd_suspend(); LOG_DBG("USB Suspend state"); if (ctx->status_cb) { ctx->status_cb(USB_DC_SUSPEND, NULL); } } break; case USBD_RESUMED: if (ctx->status_cb && dev_ready()) { LOG_DBG("USB resume"); ctx->status_cb(USB_DC_RESUME, NULL); } break; default: break; } } static inline void usbd_work_process_setup(struct nrf_usbd_ep_ctx *ep_ctx) { __ASSERT_NO_MSG(ep_ctx); __ASSERT(ep_ctx->cfg.type == USB_DC_EP_CONTROL, "Invalid event on CTRL EP."); struct usb_setup_packet *usbd_setup; /* SETUP packets are handled by USBD hardware. * For compatibility with the USB stack, * SETUP packet must be reassembled. */ usbd_setup = (struct usb_setup_packet *)ep_ctx->buf.data; memset(usbd_setup, 0, sizeof(struct usb_setup_packet)); usbd_setup->bmRequestType = nrf_usbd_setup_bmrequesttype_get(NRF_USBD); usbd_setup->bRequest = nrf_usbd_setup_brequest_get(NRF_USBD); usbd_setup->wValue = nrf_usbd_setup_wvalue_get(NRF_USBD); usbd_setup->wIndex = nrf_usbd_setup_windex_get(NRF_USBD); usbd_setup->wLength = nrf_usbd_setup_wlength_get(NRF_USBD); ep_ctx->buf.len = sizeof(struct usb_setup_packet); LOG_DBG("SETUP: r:%d rt:%d v:%d i:%d l:%d", (u32_t)usbd_setup->bRequest, (u32_t)usbd_setup->bmRequestType, (u32_t)usbd_setup->wValue, (u32_t)usbd_setup->wIndex, (u32_t)usbd_setup->wLength); /* Inform the stack. */ ep_ctx->cfg.cb(ep_ctx->cfg.addr, USB_DC_EP_SETUP); struct nrf_usbd_ctx *ctx = get_usbd_ctx(); if ((REQTYPE_GET_DIR(usbd_setup->bmRequestType) == REQTYPE_DIR_TO_DEVICE) && (usbd_setup->wLength)) { struct nrf_usbd_ctx *ctx = get_usbd_ctx(); ctx->ctrl_read_len -= usbd_setup->wLength; nrfx_usbd_setup_data_clear(); } else { ctx->ctrl_read_len = 0U; } } static inline void usbd_work_process_recvreq(struct nrf_usbd_ctx *ctx, struct nrf_usbd_ep_ctx *ep_ctx) { if (!ep_ctx->read_pending) { return; } if (!ep_ctx->read_complete) { return; } ep_ctx->read_pending = false; ep_ctx->read_complete = false; k_mutex_lock(&ctx->drv_lock, K_FOREVER); NRFX_USBD_TRANSFER_OUT(transfer, ep_ctx->buf.data, ep_ctx->cfg.max_sz); nrfx_err_t err = nrfx_usbd_ep_transfer( ep_addr_to_nrfx(ep_ctx->cfg.addr), &transfer); if (err != NRFX_SUCCESS) { LOG_ERR("nRF USBD transfer error (OUT): 0x%02x", err); } k_mutex_unlock(&ctx->drv_lock); } static inline void usbd_work_process_ep_events(struct usbd_ep_event *ep_evt) { struct nrf_usbd_ctx *ctx = get_usbd_ctx(); struct nrf_usbd_ep_ctx *ep_ctx = ep_evt->ep; __ASSERT_NO_MSG(ep_ctx); switch (ep_evt->evt_type) { case EP_EVT_SETUP_RECV: usbd_work_process_setup(ep_ctx); break; case EP_EVT_RECV_REQ: usbd_work_process_recvreq(ctx, ep_ctx); break; case EP_EVT_RECV_COMPLETE: ep_ctx->cfg.cb(ep_ctx->cfg.addr, USB_DC_EP_DATA_OUT); break; case EP_EVT_WRITE_COMPLETE: if ((ep_ctx->cfg.type == USB_DC_EP_CONTROL) && (!ep_ctx->write_fragmented)) { /* Trigger the hardware to perform * status stage, but only if there is * no more data to send (IN transfer * has not beed fragmented). */ k_mutex_lock(&ctx->drv_lock, K_FOREVER); nrfx_usbd_setup_clear(); k_mutex_unlock(&ctx->drv_lock); } ep_ctx->cfg.cb(ep_ctx->cfg.addr, USB_DC_EP_DATA_IN); break; default: break; } } static void usbd_event_transfer_ctrl(nrfx_usbd_evt_t const *const p_event) { struct nrf_usbd_ep_ctx *ep_ctx = endpoint_ctx(p_event->data.eptransfer.ep); if (NRF_USBD_EPIN_CHECK(p_event->data.eptransfer.ep)) { switch (p_event->data.eptransfer.status) { case NRFX_USBD_EP_OK: { struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return; } ep_ctx->write_in_progress = false; ev->evt_type = USBD_EVT_EP; ev->evt.ep_evt.evt_type = EP_EVT_WRITE_COMPLETE; ev->evt.ep_evt.ep = ep_ctx; LOG_DBG("ctrl write complete"); usbd_evt_put(ev); usbd_work_schedule(); } break; default: { LOG_ERR("Unexpected event (nrfx_usbd): %d, ep 0x%02x", p_event->data.eptransfer.status, p_event->data.eptransfer.ep); } break; } } else { switch (p_event->data.eptransfer.status) { case NRFX_USBD_EP_WAITING: { struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return; } LOG_DBG("ctrl read request"); ep_ctx->read_pending = true; ev->evt_type = USBD_EVT_EP; ev->evt.ep_evt.evt_type = EP_EVT_RECV_REQ; ev->evt.ep_evt.ep = ep_ctx; usbd_evt_put(ev); usbd_work_schedule(); } break; case NRFX_USBD_EP_OK: { struct nrf_usbd_ctx *ctx = get_usbd_ctx(); struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return; } nrfx_usbd_ep_status_t err_code; ev->evt_type = USBD_EVT_EP; ev->evt.ep_evt.evt_type = EP_EVT_RECV_COMPLETE; ev->evt.ep_evt.ep = ep_ctx; err_code = nrfx_usbd_ep_status_get( p_event->data.eptransfer.ep, &ep_ctx->buf.len); if (err_code != NRFX_USBD_EP_OK) { LOG_ERR("_ep_status_get failed! Code: %d", err_code); __ASSERT_NO_MSG(0); } LOG_DBG("ctrl read done: %d", ep_ctx->buf.len); if (ctx->ctrl_read_len > ep_ctx->buf.len) { ctx->ctrl_read_len -= ep_ctx->buf.len; nrfx_usbd_setup_data_clear(); } else { ctx->ctrl_read_len = 0U; } usbd_evt_put(ev); usbd_work_schedule(); } break; default: { LOG_ERR("Unexpected event (nrfx_usbd): %d, ep 0x%02x", p_event->data.eptransfer.status, p_event->data.eptransfer.ep); } break; } } } static void usbd_event_transfer_data(nrfx_usbd_evt_t const *const p_event) { struct nrf_usbd_ep_ctx *ep_ctx = endpoint_ctx(p_event->data.eptransfer.ep); if (NRF_USBD_EPIN_CHECK(p_event->data.eptransfer.ep)) { switch (p_event->data.eptransfer.status) { case NRFX_USBD_EP_OK: { struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return; } LOG_DBG("write complete, ep 0x%02x", (u32_t)p_event->data.eptransfer.ep); ep_ctx->write_in_progress = false; ev->evt_type = USBD_EVT_EP; ev->evt.ep_evt.evt_type = EP_EVT_WRITE_COMPLETE; ev->evt.ep_evt.ep = ep_ctx; usbd_evt_put(ev); usbd_work_schedule(); } break; default: { LOG_ERR("Unexpected event (nrfx_usbd): %d, ep 0x%02x", p_event->data.eptransfer.status, p_event->data.eptransfer.ep); } break; } } else { switch (p_event->data.eptransfer.status) { case NRFX_USBD_EP_WAITING: { struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return; } LOG_DBG("read request, ep 0x%02x", (u32_t)p_event->data.eptransfer.ep); ep_ctx->read_pending = true; ev->evt_type = USBD_EVT_EP; ev->evt.ep_evt.evt_type = EP_EVT_RECV_REQ; ev->evt.ep_evt.ep = ep_ctx; usbd_evt_put(ev); usbd_work_schedule(); } break; case NRFX_USBD_EP_OK: { struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return; } ep_ctx->buf.len = nrf_usbd_ep_amount_get(NRF_USBD, p_event->data.eptransfer.ep); LOG_DBG("read complete, ep 0x%02x, len %d", (u32_t)p_event->data.eptransfer.ep, ep_ctx->buf.len); ev->evt_type = USBD_EVT_EP; ev->evt.ep_evt.evt_type = EP_EVT_RECV_COMPLETE; ev->evt.ep_evt.ep = ep_ctx; usbd_evt_put(ev); usbd_work_schedule(); } break; default: { LOG_ERR("Unexpected event (nrfx_usbd): %d, ep 0x%02x", p_event->data.eptransfer.status, p_event->data.eptransfer.ep); } break; } } } /** * @brief nRFx USBD driver event handler function. */ static void usbd_event_handler(nrfx_usbd_evt_t const *const p_event) { struct nrf_usbd_ep_ctx *ep_ctx; struct usbd_event evt = {0}; bool put_evt = false; switch (p_event->type) { case NRFX_USBD_EVT_SUSPEND: LOG_DBG("SUSPEND state detected"); evt.evt_type = USBD_EVT_POWER; evt.evt.pwr_evt.state = USBD_SUSPENDED; put_evt = true; break; case NRFX_USBD_EVT_RESUME: LOG_DBG("RESUMING from suspend"); evt.evt_type = USBD_EVT_POWER; evt.evt.pwr_evt.state = USBD_RESUMED; put_evt = true; break; case NRFX_USBD_EVT_WUREQ: LOG_DBG("RemoteWU initiated"); break; case NRFX_USBD_EVT_RESET: evt.evt_type = USBD_EVT_RESET; put_evt = true; break; case NRFX_USBD_EVT_SOF: if (IS_ENABLED(CONFIG_USB_DEVICE_SOF)) { evt.evt_type = USBD_EVT_SOF; put_evt = true; } break; case NRFX_USBD_EVT_EPTRANSFER: ep_ctx = endpoint_ctx(p_event->data.eptransfer.ep); switch (ep_ctx->cfg.type) { case USB_DC_EP_CONTROL: usbd_event_transfer_ctrl(p_event); break; case USB_DC_EP_BULK: case USB_DC_EP_INTERRUPT: usbd_event_transfer_data(p_event); break; case USB_DC_EP_ISOCHRONOUS: usbd_event_transfer_data(p_event); break; default: break; } break; case NRFX_USBD_EVT_SETUP: { nrfx_usbd_setup_t drv_setup; nrfx_usbd_setup_get(&drv_setup); if ((drv_setup.bRequest != REQ_SET_ADDRESS) || (REQTYPE_GET_TYPE(drv_setup.bmRequestType) != REQTYPE_TYPE_STANDARD)) { /* SetAddress is habdled by USBD hardware. * No software action required. */ struct nrf_usbd_ep_ctx *ep_ctx = endpoint_ctx(NRF_USBD_EPOUT(0)); evt.evt_type = USBD_EVT_EP; evt.evt.ep_evt.ep = ep_ctx; evt.evt.ep_evt.evt_type = EP_EVT_SETUP_RECV; put_evt = true; } break; } default: break; } if (put_evt) { struct usbd_event *ev; ev = usbd_evt_alloc(); if (!ev) { return; } ev->evt_type = evt.evt_type; ev->evt = evt.evt; usbd_evt_put(ev); usbd_work_schedule(); } } static inline void usbd_reinit(void) { int ret; nrfx_err_t err; nrf5_power_usb_power_int_enable(false); nrfx_usbd_disable(); nrfx_usbd_uninit(); usbd_evt_flush(); ret = eps_ctx_init(); __ASSERT_NO_MSG(ret == 0); nrf5_power_usb_power_int_enable(true); err = nrfx_usbd_init(usbd_event_handler); if (err != NRFX_SUCCESS) { LOG_DBG("nRF USBD driver reinit failed. Code: %d", (u32_t)err); __ASSERT_NO_MSG(0); } } /* Work handler */ static void usbd_work_handler(struct k_work *item) { struct nrf_usbd_ctx *ctx; struct usbd_event *ev; ctx = CONTAINER_OF(item, struct nrf_usbd_ctx, usb_work); while ((ev = usbd_evt_get()) != NULL) { if (!dev_ready() && ev->evt_type != USBD_EVT_POWER) { /* Drop non-power events when cable is detached. */ usbd_evt_free(ev); continue; } switch (ev->evt_type) { case USBD_EVT_EP: if (!ctx->attached) { LOG_ERR("not attached, EP 0x%02x event dropped", (u32_t)ev->evt.ep_evt.ep->cfg.addr); } usbd_work_process_ep_events(&ev->evt.ep_evt); break; case USBD_EVT_POWER: usbd_work_process_pwr_events(&ev->evt.pwr_evt); break; case USBD_EVT_RESET: LOG_DBG("USBD reset event"); k_mutex_lock(&ctx->drv_lock, K_FOREVER); eps_ctx_init(); k_mutex_unlock(&ctx->drv_lock); if (ctx->status_cb) { ctx->status_cb(USB_DC_RESET, NULL); } break; case USBD_EVT_SOF: if (ctx->status_cb) { ctx->status_cb(USB_DC_SOF, NULL); } break; case USBD_EVT_REINIT: { /* * Reinitialize the peripheral after queue * overflow. */ LOG_ERR("USBD event queue full!"); usbd_reinit(); break; } default: LOG_ERR("Unknown USBD event: %"PRId16, ev->evt_type); break; } usbd_evt_free(ev); } } int usb_dc_attach(void) { struct nrf_usbd_ctx *ctx = get_usbd_ctx(); nrfx_err_t err; int ret; if (ctx->attached) { return 0; } k_work_q_start(&usbd_work_queue, usbd_work_queue_stack, K_THREAD_STACK_SIZEOF(usbd_work_queue_stack), CONFIG_SYSTEM_WORKQUEUE_PRIORITY); k_work_init(&ctx->usb_work, usbd_work_handler); k_mutex_init(&ctx->drv_lock); IRQ_CONNECT(DT_NORDIC_NRF_USBD_USBD_0_IRQ_0, DT_NORDIC_NRF_USBD_USBD_0_IRQ_0_PRIORITY, nrfx_isr, nrfx_usbd_irq_handler, 0); err = nrfx_usbd_init(usbd_event_handler); if (err != NRFX_SUCCESS) { LOG_DBG("nRF USBD driver init failed. Code: %d", (u32_t)err); return -EIO; } nrf5_power_usb_power_int_enable(true); ret = eps_ctx_init(); if (ret == 0) { ctx->attached = true; } if (!k_fifo_is_empty(&usbd_evt_fifo)) { usbd_work_schedule(); } if (nrf_power_usbregstatus_vbusdet_get(NRF_POWER)) { /* USBDETECTED event is be generated on cable attachment and * when cable is already attached during reset, but not when * the peripheral is re-enabled. * When USB-enabled bootloader is used, target application * will not receive this event and it needs to be generated * again here. */ usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBDETECTED); } return ret; } int usb_dc_detach(void) { struct nrf_usbd_ctx *ctx = get_usbd_ctx(); k_mutex_lock(&ctx->drv_lock, K_FOREVER); usbd_evt_flush(); eps_ctx_uninit(); if (nrfx_usbd_is_enabled()) { nrfx_usbd_disable(); } if (nrfx_usbd_is_initialized()) { nrfx_usbd_uninit(); } (void) hf_clock_enable(false, false); nrf5_power_usb_power_int_enable(false); ctx->attached = false; k_mutex_unlock(&ctx->drv_lock); return 0; } int usb_dc_reset(void) { int ret; if (!dev_attached() || !dev_ready()) { return -ENODEV; } LOG_DBG("USBD Reset"); ret = usb_dc_detach(); if (ret) { return ret; } ret = usb_dc_attach(); if (ret) { return ret; } return 0; } int usb_dc_set_address(const u8_t addr) { struct nrf_usbd_ctx *ctx; if (!dev_attached() || !dev_ready()) { return -ENODEV; } /** * Nothing to do here. The USBD HW already takes care of initiating * STATUS stage. Just double check the address for sanity. */ __ASSERT(addr == (u8_t)NRF_USBD->USBADDR, "USB Address incorrect!"); ctx = get_usbd_ctx(); LOG_DBG("Address set to: %d", addr); return 0; } int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data *const ep_cfg) { u8_t ep_idx = NRF_USBD_EP_NR_GET(ep_cfg->ep_addr); LOG_DBG("ep 0x%02x, mps %d, type %d", ep_cfg->ep_addr, ep_cfg->ep_mps, ep_cfg->ep_type); if ((ep_cfg->ep_type == USB_DC_EP_CONTROL) && ep_idx) { LOG_ERR("invalid endpoint configuration"); return -1; } if (!NRF_USBD_EP_VALIDATE(ep_cfg->ep_addr)) { LOG_ERR("invalid endpoint index/address"); return -1; } if ((ep_cfg->ep_type == USB_DC_EP_ISOCHRONOUS) && (!NRF_USBD_EPISO_CHECK(ep_cfg->ep_addr))) { LOG_WRN("invalid endpoint type"); return -1; } return 0; } int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const ep_cfg) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached()) { return -ENODEV; } /** * TODO: * For ISO endpoints, application has to use EPIN/OUT 8 * but right now there's no standard way of knowing the * ISOIN/ISOOUT endpoint number in advance to configure * accordingly. So either this needs to be chosen in the * menuconfig in application area or perhaps in device tree * at compile time or introduce a new API to read the endpoint * configuration at runtime before configuring them. */ ep_ctx = endpoint_ctx(ep_cfg->ep_addr); if (!ep_ctx) { return -EINVAL; } ep_ctx->cfg.addr = ep_cfg->ep_addr; ep_ctx->cfg.type = ep_cfg->ep_type; ep_ctx->cfg.max_sz = ep_cfg->ep_mps; if ((ep_cfg->ep_mps & (ep_cfg->ep_mps - 1)) != 0U) { LOG_ERR("EP max packet size must be a power of 2"); return -EINVAL; } nrfx_usbd_ep_max_packet_size_set(ep_addr_to_nrfx(ep_cfg->ep_addr), ep_cfg->ep_mps); return 0; } int usb_dc_ep_set_stall(const u8_t ep) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached() || !dev_ready()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } switch (ep_ctx->cfg.type) { case USB_DC_EP_CONTROL: nrfx_usbd_setup_stall(); break; case USB_DC_EP_BULK: case USB_DC_EP_INTERRUPT: nrfx_usbd_ep_stall(ep_addr_to_nrfx(ep)); break; case USB_DC_EP_ISOCHRONOUS: LOG_ERR("STALL unsupported on ISO endpoint"); return -EINVAL; } ep_ctx->buf.len = 0U; ep_ctx->buf.curr = ep_ctx->buf.data; LOG_DBG("STALL on EP 0x%02x", ep); return 0; } int usb_dc_ep_clear_stall(const u8_t ep) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached() || !dev_ready()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } nrfx_usbd_ep_stall_clear(ep_addr_to_nrfx(ep)); LOG_DBG("Unstall on EP 0x%02x", ep); return 0; } int usb_dc_ep_halt(const u8_t ep) { return usb_dc_ep_set_stall(ep); } int usb_dc_ep_is_stalled(const u8_t ep, u8_t *const stalled) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached() || !dev_ready()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } if (!stalled) { return -EINVAL; } *stalled = (u8_t) nrfx_usbd_ep_stall_check(ep_addr_to_nrfx(ep)); return 0; } int usb_dc_ep_enable(const u8_t ep) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } if (ep_ctx->cfg.en) { return -EALREADY; } LOG_DBG("EP enable: 0x%02x", ep); ep_ctx->cfg.en = true; /* Defer the endpoint enable if USBD is not ready yet. */ if (dev_ready()) { nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep)); } return 0; } int usb_dc_ep_disable(const u8_t ep) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached() || !dev_ready()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } if (!ep_ctx->cfg.en) { return -EALREADY; } LOG_DBG("EP disable: 0x%02x", ep); nrfx_usbd_ep_disable(ep_addr_to_nrfx(ep)); ep_ctx->cfg.en = false; return 0; } int usb_dc_ep_flush(const u8_t ep) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached() || !dev_ready()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } ep_ctx->buf.len = 0U; ep_ctx->buf.curr = ep_ctx->buf.data; nrfx_usbd_transfer_out_drop(ep_addr_to_nrfx(ep)); return 0; } int usb_dc_ep_write(const u8_t ep, const u8_t *const data, const u32_t data_len, u32_t *const ret_bytes) { LOG_DBG("ep_write: ep 0x%02x, len %d", ep, data_len); struct nrf_usbd_ctx *ctx = get_usbd_ctx(); struct nrf_usbd_ep_ctx *ep_ctx; u32_t bytes_to_copy; int result = 0; if (!dev_attached() || !dev_ready()) { return -ENODEV; } if (NRF_USBD_EPOUT_CHECK(ep)) { return -EINVAL; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } if (!ep_ctx->cfg.en) { LOG_ERR("Endpoint 0x%02x is not enabled", ep); return -EINVAL; } k_mutex_lock(&ctx->drv_lock, K_FOREVER); /* USBD driver does not allow scheduling multiple DMA transfers * for one EP at a time. Next USB transfer on this endpoint can be * triggered after the completion of previous one. */ if (ep_ctx->write_in_progress) { k_mutex_unlock(&ctx->drv_lock); return -EAGAIN; } /* NRFX driver performs the fragmentation if buffer length exceeds * maximum packet size, however in current implementation, data is * copied to the internal buffer and must me fragmented here. * In case of fragmentation, a flag is set to prevent triggering * status stage which is handled by hardware, because there will be * another write coming. */ if (data_len > ep_ctx->cfg.max_sz) { bytes_to_copy = ep_ctx->cfg.max_sz; ep_ctx->write_fragmented = true; } else { bytes_to_copy = data_len; ep_ctx->write_fragmented = false; } memcpy(ep_ctx->buf.data, data, bytes_to_copy); ep_ctx->buf.len = bytes_to_copy; if (ret_bytes) { *ret_bytes = bytes_to_copy; } /* Setup stage is handled by hardware. * Detect the setup stage initiated by the stack * and perform appropriate action. */ if ((ep_ctx->cfg.type == USB_DC_EP_CONTROL) && (nrfx_usbd_last_setup_dir_get() != ep)) { nrfx_usbd_setup_clear(); k_mutex_unlock(&ctx->drv_lock); return 0; } ep_ctx->write_in_progress = true; NRFX_USBD_TRANSFER_IN(transfer, ep_ctx->buf.data, ep_ctx->buf.len, 0); nrfx_err_t err = nrfx_usbd_ep_transfer(ep_addr_to_nrfx(ep), &transfer); if (err != NRFX_SUCCESS) { ep_ctx->write_in_progress = false; result = -EIO; LOG_ERR("nRF USBD write error: %d", (u32_t)err); } k_mutex_unlock(&ctx->drv_lock); return result; } int usb_dc_ep_read_wait(u8_t ep, u8_t *data, u32_t max_data_len, u32_t *read_bytes) { struct nrf_usbd_ep_ctx *ep_ctx; struct nrf_usbd_ctx *ctx = get_usbd_ctx(); u32_t bytes_to_copy; if (!dev_attached() || !dev_ready()) { return -ENODEV; } if (NRF_USBD_EPIN_CHECK(ep)) { return -EINVAL; } if (!data && max_data_len) { return -EINVAL; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } if (!ep_ctx->cfg.en) { LOG_ERR("Endpoint 0x%02x is not enabled", ep); return -EINVAL; } k_mutex_lock(&ctx->drv_lock, K_FOREVER); bytes_to_copy = MIN(max_data_len, ep_ctx->buf.len); if (!data && !max_data_len) { if (read_bytes) { *read_bytes = ep_ctx->buf.len; } k_mutex_unlock(&ctx->drv_lock); return 0; } memcpy(data, ep_ctx->buf.curr, bytes_to_copy); ep_ctx->buf.curr += bytes_to_copy; ep_ctx->buf.len -= bytes_to_copy; if (read_bytes) { *read_bytes = bytes_to_copy; } k_mutex_unlock(&ctx->drv_lock); return 0; } int usb_dc_ep_read_continue(u8_t ep) { struct nrf_usbd_ep_ctx *ep_ctx; struct nrf_usbd_ctx *ctx = get_usbd_ctx(); if (!dev_attached() || !dev_ready()) { return -ENODEV; } if (NRF_USBD_EPIN_CHECK(ep)) { return -EINVAL; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } if (!ep_ctx->cfg.en) { LOG_ERR("Endpoint 0x%02x is not enabled", ep); return -EINVAL; } k_mutex_lock(&ctx->drv_lock, K_FOREVER); if (!ep_ctx->buf.len) { ep_ctx->buf.curr = ep_ctx->buf.data; ep_ctx->read_complete = true; if (ep_ctx->read_pending) { struct usbd_event *ev = usbd_evt_alloc(); if (!ev) { return -ENOMEM; } ev->evt_type = USBD_EVT_EP; ev->evt.ep_evt.ep = ep_ctx; ev->evt.ep_evt.evt_type = EP_EVT_RECV_REQ; usbd_evt_put(ev); usbd_work_schedule(); } } k_mutex_unlock(&ctx->drv_lock); return 0; } int usb_dc_ep_read(const u8_t ep, u8_t *const data, const u32_t max_data_len, u32_t *const read_bytes) { LOG_DBG("ep_read: ep 0x%02x, maxlen %d", ep, max_data_len); int ret; ret = usb_dc_ep_read_wait(ep, data, max_data_len, read_bytes); if (ret) { return ret; } if (!data && !max_data_len) { return ret; } ret = usb_dc_ep_read_continue(ep); return ret; } int usb_dc_ep_set_callback(const u8_t ep, const usb_dc_ep_callback cb) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } ep_ctx->cfg.cb = cb; return 0; } void usb_dc_set_status_callback(const usb_dc_status_callback cb) { get_usbd_ctx()->status_cb = cb; } int usb_dc_ep_mps(const u8_t ep) { struct nrf_usbd_ep_ctx *ep_ctx; if (!dev_attached()) { return -ENODEV; } ep_ctx = endpoint_ctx(ep); if (!ep_ctx) { return -EINVAL; } return ep_ctx->cfg.max_sz; } int usb_dc_wakeup_request(void) { bool res = nrfx_usbd_wakeup_req(); if (!res) { return -EAGAIN; } return 0; } |