Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | /* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <drivers/timer/system_timer.h> #include <sys_clock.h> #include <spinlock.h> #include <soc.h> #define CYC_PER_TICK ((u32_t)((u64_t)sys_clock_hw_cycles_per_sec() \ / (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC)) #define MAX_CYC 0xffffffffu #define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK) #define MIN_DELAY 1000 #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && \ !IS_ENABLED(CONFIG_QEMU_TICKLESS_WORKAROUND)) static struct k_spinlock lock; static u64_t last_count; static void set_mtimecmp(u64_t time) { #ifdef CONFIG_64BIT *(volatile u64_t *)RISCV_MTIMECMP_BASE = time; #else volatile u32_t *r = (u32_t *)RISCV_MTIMECMP_BASE; /* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit, * but are NOT internally latched for multiword transfers. So * we have to be careful about sequencing to avoid triggering * spurious interrupts: always set the high word to a max * value first. */ r[1] = 0xffffffff; r[0] = (u32_t)time; r[1] = (u32_t)(time >> 32); #endif } static u64_t mtime(void) { #ifdef CONFIG_64BIT return *(volatile u64_t *)RISCV_MTIME_BASE; #else volatile u32_t *r = (u32_t *)RISCV_MTIME_BASE; u32_t lo, hi; /* Likewise, must guard against rollover when reading */ do { hi = r[1]; lo = r[0]; } while (r[1] != hi); return (((u64_t)hi) << 32) | lo; #endif } static void timer_isr(void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); u64_t now = mtime(); u32_t dticks = (u32_t)((now - last_count) / CYC_PER_TICK); last_count += dticks * CYC_PER_TICK; if (!TICKLESS) { u64_t next = last_count + CYC_PER_TICK; if ((s64_t)(next - now) < MIN_DELAY) { next += CYC_PER_TICK; } set_mtimecmp(next); } k_spin_unlock(&lock, key); z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1); } int z_clock_driver_init(struct device *device) { IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0, timer_isr, NULL, 0); last_count = mtime(); set_mtimecmp(last_count + CYC_PER_TICK); irq_enable(RISCV_MACHINE_TIMER_IRQ); return 0; } void z_clock_set_timeout(s32_t ticks, bool idle) { ARG_UNUSED(idle); #if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_QEMU_TICKLESS_WORKAROUND) /* RISCV has no idle handler yet, so if we try to spin on the * logic below to reset the comparator, we'll always bump it * forward to the "next tick" due to MIN_DELAY handling and * the interrupt will never fire! Just rely on the fact that * the OS gave us the proper timeout already. */ if (idle) { return; } ticks = ticks == K_FOREVER ? MAX_TICKS : ticks; ticks = MAX(MIN(ticks - 1, (s32_t)MAX_TICKS), 0); k_spinlock_key_t key = k_spin_lock(&lock); u64_t now = mtime(); u32_t adj, cyc = ticks * CYC_PER_TICK; /* Round up to next tick boundary. */ adj = (u32_t)(now - last_count) + (CYC_PER_TICK - 1); if (cyc <= MAX_CYC - adj) { cyc += adj; } else { cyc = MAX_CYC; } cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; if ((s32_t)(cyc + last_count - now) < MIN_DELAY) { cyc += CYC_PER_TICK; } set_mtimecmp(cyc + last_count); k_spin_unlock(&lock, key); #endif } u32_t z_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); u32_t ret = ((u32_t)mtime() - (u32_t)last_count) / CYC_PER_TICK; k_spin_unlock(&lock, key); return ret; } u32_t z_timer_cycle_get_32(void) { return (u32_t)mtime(); } |