Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | /* * Copyright (c) 2016-2017 Nordic Semiconductor ASA * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <soc.h> #include <drivers/clock_control.h> #include <drivers/clock_control/nrf_clock_control.h> #include <drivers/timer/system_timer.h> #include <sys_clock.h> #include <hal/nrf_rtc.h> #include <spinlock.h> #define RTC NRF_RTC1 #define COUNTER_SPAN BIT(24) #define COUNTER_MAX (COUNTER_SPAN - 1U) #define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U) #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define MAX_TICKS ((COUNTER_MAX - CYC_PER_TICK) / CYC_PER_TICK) #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) static struct k_spinlock lock; static u32_t last_count; static u32_t counter_sub(u32_t a, u32_t b) { return (a - b) & COUNTER_MAX; } static void set_comparator(u32_t cyc) { nrf_rtc_cc_set(RTC, 0, cyc & COUNTER_MAX); } static u32_t counter(void) { return nrf_rtc_counter_get(RTC); } /* Note: this function has public linkage, and MUST have this * particular name. The platform architecture itself doesn't care, * but there is a test (tests/arch/arm_irq_vector_table) that needs * to find it to it can set it in a custom vector table. Should * probably better abstract that at some point (e.g. query and reset * it by pointer at runtime, maybe?) so we don't have this leaky * symbol. */ void rtc1_nrf_isr(void *arg) { ARG_UNUSED(arg); RTC->EVENTS_COMPARE[0] = 0; k_spinlock_key_t key = k_spin_lock(&lock); u32_t t = counter(); u32_t dticks = counter_sub(t, last_count) / CYC_PER_TICK; last_count += dticks * CYC_PER_TICK; if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { u32_t next = last_count + CYC_PER_TICK; /* As below: we're guaranteed to get an interrupt as * long as it's set two or more cycles in the future */ if (counter_sub(next, t) < 3) { next += CYC_PER_TICK; } set_comparator(next); } k_spin_unlock(&lock, key); z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1); } int z_clock_driver_init(struct device *device) { struct device *clock; ARG_UNUSED(device); clock = device_get_binding(DT_INST_0_NORDIC_NRF_CLOCK_LABEL); if (!clock) { return -1; } clock_control_on(clock, CLOCK_CONTROL_NRF_SUBSYS_LF); /* TODO: replace with counter driver to access RTC */ nrf_rtc_prescaler_set(RTC, 0); nrf_rtc_cc_set(RTC, 0, CYC_PER_TICK); nrf_rtc_int_enable(RTC, RTC_INTENSET_COMPARE0_Msk); /* Clear the event flag and possible pending interrupt */ nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_COMPARE_0); NVIC_ClearPendingIRQ(RTC1_IRQn); IRQ_CONNECT(RTC1_IRQn, 1, rtc1_nrf_isr, 0, 0); irq_enable(RTC1_IRQn); nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR); nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START); if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { set_comparator(counter() + CYC_PER_TICK); } return 0; } void z_clock_set_timeout(s32_t ticks, bool idle) { ARG_UNUSED(idle); #ifdef CONFIG_TICKLESS_KERNEL ticks = (ticks == K_FOREVER) ? MAX_TICKS : ticks; ticks = MAX(MIN(ticks - 1, (s32_t)MAX_TICKS), 0); k_spinlock_key_t key = k_spin_lock(&lock); u32_t cyc, dt, t = counter(); u32_t unannounced = counter_sub(t, last_count); bool zli_fixup = IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS); /* If we haven't announced for more than half the 24-bit wrap * duration, then force an announce to avoid loss of a wrap * event. This can happen if new timeouts keep being set * before the existing one triggers the interrupt. */ if (unannounced >= COUNTER_HALF_SPAN) { ticks = 0; } /* Get the cycles from last_count to the tick boundary after * the requested ticks have passed starting now. */ cyc = ticks * CYC_PER_TICK + 1 + unannounced; cyc += (CYC_PER_TICK - 1); cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; /* Due to elapsed time the calculation above might produce a * duration that laps the counter. Don't let it. */ if (cyc > MAX_CYCLES) { cyc = MAX_CYCLES; } cyc += last_count; /* Per NRF docs, the RTC is guaranteed to trigger a compare * event if the comparator value to be set is at least two * cycles later than the current value of the counter. So if * we're three or more cycles out, we can set it blindly. If * not, check the time again immediately after setting: it's * possible we "just missed it" and can flag an immediate * interrupt. Or it could be exactly two cycles out, which * will have worked. Otherwise, there's no way to get an * interrupt at the right time and we have to slip the event * by one clock cycle (or we could spin, but this is a slow * clock and spinning for a whole cycle can be thousands of * instructions!) * * You might ask: why not set the comparator first and then * check the timer synchronously to see if we missed it, which * would avoid the need for a slipped cycle. That doesn't * work, the states overlap inside the counter hardware. It's * possible to set a comparator value of "N", issue a DSB * instruction to flush the pipeline, and then immediately * read a counter value of "N-1" (i.e. the comparator is still * in the future), and yet still not receive an interrupt at * least on nRF52. Some experimentation on nrf52840 shows * that you need to be early by about 400 processor cycles * (about 1/5th of a RTC cycle) in order to reliably get the * interrupt. The docs say two cycles, they mean two cycles. */ if (counter_sub(cyc, t) > 2) { set_comparator(cyc); } else { set_comparator(cyc); dt = counter_sub(cyc, counter()); if (dt == 0 || dt > 0x7fffff) { /* Missed it! */ NVIC_SetPendingIRQ(RTC1_IRQn); if (IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS)) { zli_fixup = false; } } else if (dt == 1) { /* Too soon, interrupt won't arrive. */ set_comparator(cyc + 2); } /* Otherwise it was two cycles out, we're fine */ } #ifdef CONFIG_ZERO_LATENCY_IRQS /* Failsafe. ZLIs can preempt us even though interrupts are * masked, blowing up the sensitive timing above. If the * feature is enabled and we haven't recorded the presence of * a pending interrupt then we need a final check (in a loop! * because this too can be interrupted) to confirm that the * comparator is still in the future. Don't bother being * fancy with cycle counting here, just set an interrupt * "soon" that we know will get the timer back to a known * state. This handles (via some hairy modular expressions) * the wraparound cases where we are preempted for as much as * half the counter space. */ if (zli_fixup && counter_sub(cyc, counter()) <= 0x7fffff) { while (counter_sub(cyc, counter() + 2) > 0x7fffff) { cyc = counter() + 3; set_comparator(cyc); } } #endif k_spin_unlock(&lock, key); #endif /* CONFIG_TICKLESS_KERNEL */ } u32_t z_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); u32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK; k_spin_unlock(&lock, key); return ret; } u32_t z_timer_cycle_get_32(void) { k_spinlock_key_t key = k_spin_lock(&lock); u32_t ret = counter_sub(counter(), last_count) + last_count; k_spin_unlock(&lock, key); return ret; } |