Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | /* * Copyright (c) 2019 Intel Corporation * SPDX-License-Identifier: Apache-2.0 */ #include <drivers/timer/system_timer.h> #include <sys_clock.h> #include <spinlock.h> #include <drivers/interrupt_controller/loapic.h> BUILD_ASSERT_MSG(!IS_ENABLED(CONFIG_SMP), "APIC timer doesn't support SMP"); /* * Overview: * * This driver enables the local APIC as the Zephyr system timer. It supports * both legacy ("tickful") mode as well as TICKLESS_KERNEL. The driver will * work with any APIC that has the ARAT "always running APIC timer" feature * (CPUID 0x06, EAX bit 2); for the more accurate z_timer_cycle_get_32(), * the invariant TSC feature (CPUID 0x80000007: EDX bit 8) is also required. * (Ultimately systems with invariant TSCs should use a TSC-based driver, * and the TSC-related parts should be stripped from this implementation.) * * Configuration: * * CONFIG_APIC_TIMER=y enables this timer driver. * CONFIG_APIC_TIMER_IRQ=<irq> which IRQ to configure for the timer. * CONFIG_APIC_TIMER_IRQ_PRIORITY=<p> priority for IRQ_CONNECT() * * CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must contain the frequency seen * by the local APIC timer block (before it gets to the timer divider). * * CONFIG_APIC_TIMER_TSC=y enables the more accurate TSC-based cycle counter * for z_timer_cycle_get_32(). This also requires the next options be set. * * CONFIG_APIC_TIMER_TSC_N=<n> * CONFIG_APIC_TIMER_TSC_M=<m> * When CONFIG_APIC_TIMER_TSC=y, these are set to indicate the ratio of * the TSC frequency to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC. This can be * found via CPUID 0x15 (n = EBX, m = EAX) on most CPUs. */ /* These should be merged into include/drivers/interrupt_controller/loapic.h. */ #define DCR_DIVIDER_MASK 0x0000000F /* divider bits */ #define DCR_DIVIDER 0x0000000B /* divide by 1 */ #define LVT_MODE_MASK 0x00060000 /* timer mode bits */ #define LVT_MODE 0x00000000 /* one-shot */ /* * CYCLES_PER_TICK must always be at least '2', otherwise MAX_TICKS * will overflow s32_t, which is how 'ticks' are currently represented. */ #define CYCLES_PER_TICK \ (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC) BUILD_ASSERT_MSG(CYCLES_PER_TICK >= 2, "APIC timer: bad CYCLES_PER_TICK"); /* max number of ticks we can load into the timer in one shot */ #define MAX_TICKS (0xFFFFFFFFU / CYCLES_PER_TICK) /* * The spinlock protects all access to the local APIC timer registers, * as well as 'total_cycles', 'last_announcement', and 'cached_icr'. * * One important invariant that must be observed: `total_cycles` + `cached_icr` * is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts * are only ever scheduled to occur at tick boundaries. */ static struct k_spinlock lock; static u64_t total_cycles; static u32_t cached_icr = CYCLES_PER_TICK; #ifdef CONFIG_TICKLESS_KERNEL static u64_t last_announcement; /* last time we called z_clock_announce() */ void z_clock_set_timeout(s32_t n, bool idle) { ARG_UNUSED(idle); u32_t ccr; int full_ticks; /* number of complete ticks we'll wait */ u32_t full_cycles; /* full_ticks represented as cycles */ u32_t partial_cycles; /* number of cycles to first tick boundary */ if (n < 1) { full_ticks = 0; } else if ((n == K_FOREVER) || (n > MAX_TICKS)) { full_ticks = MAX_TICKS - 1; } else { full_ticks = n - 1; } full_cycles = full_ticks * CYCLES_PER_TICK; /* * There's a wee race condition here. The timer may expire while * we're busy reprogramming it; an interrupt will be queued at the * local APIC and the ISR will be called too early, roughly right * after we unlock, and not because the count we just programmed has * counted down. Luckily this situation is easy to detect, which is * why the ISR actually checks to be sure the CCR is 0 before acting. */ k_spinlock_key_t key = k_spin_lock(&lock); ccr = x86_read_loapic(LOAPIC_TIMER_CCR); total_cycles += (cached_icr - ccr); partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK); cached_icr = full_cycles + partial_cycles; x86_write_loapic(LOAPIC_TIMER_ICR, cached_icr); k_spin_unlock(&lock, key); } u32_t z_clock_elapsed(void) { u32_t ccr; u32_t ticks; k_spinlock_key_t key = k_spin_lock(&lock); ccr = x86_read_loapic(LOAPIC_TIMER_CCR); ticks = total_cycles - last_announcement; ticks += cached_icr - ccr; k_spin_unlock(&lock, key); ticks /= CYCLES_PER_TICK; return ticks; } static void isr(void *arg) { ARG_UNUSED(arg); u32_t cycles; s32_t ticks; k_spinlock_key_t key = k_spin_lock(&lock); /* * If we get here and the CCR isn't zero, then this interrupt is * stale: it was queued while z_clock_set_timeout() was setting * a new counter. Just ignore it. See above for more info. */ if (x86_read_loapic(LOAPIC_TIMER_CCR) != 0) { k_spin_unlock(&lock, key); return; } /* Restart the timer as early as possible to minimize drift... */ x86_write_loapic(LOAPIC_TIMER_ICR, MAX_TICKS * CYCLES_PER_TICK); cycles = cached_icr; cached_icr = MAX_TICKS * CYCLES_PER_TICK; total_cycles += cycles; ticks = (total_cycles - last_announcement) / CYCLES_PER_TICK; last_announcement = total_cycles; k_spin_unlock(&lock, key); z_clock_announce(ticks); } #else static void isr(void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); total_cycles += CYCLES_PER_TICK; x86_write_loapic(LOAPIC_TIMER_ICR, cached_icr); k_spin_unlock(&lock, key); z_clock_announce(1); } u32_t z_clock_elapsed(void) { return 0U; } #endif /* CONFIG_TICKLESS_KERNEL */ #ifdef CONFIG_APIC_TIMER_TSC u32_t z_timer_cycle_get_32(void) { u64_t tsc = z_tsc_read(); u32_t cycles; cycles = (tsc * CONFIG_APIC_TIMER_TSC_M) / CONFIG_APIC_TIMER_TSC_N; return cycles; } #else u32_t z_timer_cycle_get_32(void) { u32_t ret; u32_t ccr; k_spinlock_key_t key = k_spin_lock(&lock); ccr = x86_read_loapic(LOAPIC_TIMER_CCR); ret = total_cycles + (cached_icr - ccr); k_spin_unlock(&lock, key); return ret; } #endif int z_clock_driver_init(struct device *device) { u32_t val; val = x86_read_loapic(LOAPIC_TIMER_CONFIG); /* set divider */ val &= ~DCR_DIVIDER_MASK; val |= DCR_DIVIDER; x86_write_loapic(LOAPIC_TIMER_CONFIG, val); val = x86_read_loapic(LOAPIC_TIMER); /* set timer mode */ val &= ~LVT_MODE_MASK; val |= LVT_MODE; x86_write_loapic(LOAPIC_TIMER, val); /* remember, wiring up the interrupt will mess with the LVT, too */ IRQ_CONNECT(CONFIG_APIC_TIMER_IRQ, CONFIG_APIC_TIMER_IRQ_PRIORITY, isr, 0, 0); x86_write_loapic(LOAPIC_TIMER_ICR, cached_icr); irq_enable(CONFIG_APIC_TIMER_IRQ); return 0; } |