Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | /* * Copyright (c) 2019 Intel Corporation * SPDX-License-Identifier: Apache-2.0 */ #include <kernel.h> #include <ksched.h> #include <kernel_structs.h> #include <kernel_internal.h> #include <exc_handle.h> #include <logging/log.h> LOG_MODULE_DECLARE(os); #if defined(CONFIG_BOARD_QEMU_X86) || defined(CONFIG_BOARD_QEMU_X86_64) FUNC_NORETURN void arch_system_halt(unsigned int reason) { ARG_UNUSED(reason); /* Causes QEMU to exit. We passed the following on the command line: * -device isa-debug-exit,iobase=0xf4,iosize=0x04 */ sys_out32(0, 0xf4); CODE_UNREACHABLE; } #endif static inline uintptr_t esf_get_sp(const z_arch_esf_t *esf) { #ifdef CONFIG_X86_64 return esf->rsp; #else return esf->esp; #endif } static inline uintptr_t esf_get_code(const z_arch_esf_t *esf) { #ifdef CONFIG_X86_64 return esf->code; #else return esf->errorCode; #endif } #ifdef CONFIG_THREAD_STACK_INFO bool z_x86_check_stack_bounds(uintptr_t addr, size_t size, u16_t cs) { uintptr_t start, end; if (arch_is_in_isr()) { /* We were servicing an interrupt */ start = (uintptr_t)ARCH_THREAD_STACK_BUFFER(_interrupt_stack); end = start + CONFIG_ISR_STACK_SIZE; } else if ((cs & 0x3U) != 0U || (_current->base.user_options & K_USER) == 0) { /* Thread was in user mode, or is not a user mode thread. * The normal stack buffer is what we will check. */ start = _current->stack_info.start; end = STACK_ROUND_DOWN(_current->stack_info.start + _current->stack_info.size); } else { /* User thread was doing a syscall, check kernel stack bounds */ start = _current->stack_info.start - MMU_PAGE_SIZE; end = _current->stack_info.start; } return (addr <= start) || (addr + size > end); } #endif #ifdef CONFIG_EXCEPTION_DEBUG #if defined(CONFIG_X86_EXCEPTION_STACK_TRACE) struct stack_frame { uintptr_t next; uintptr_t ret_addr; #ifndef CONFIG_X86_64 uintptr_t args; #endif }; #define MAX_STACK_FRAMES 8 static void unwind_stack(uintptr_t base_ptr, u16_t cs) { struct stack_frame *frame; int i; if (base_ptr == 0U) { LOG_ERR("NULL base ptr"); return; } for (i = 0; i < MAX_STACK_FRAMES; i++) { if (base_ptr % sizeof(base_ptr) != 0U) { LOG_ERR("unaligned frame ptr"); return; } frame = (struct stack_frame *)base_ptr; if (frame == NULL) { break; } #ifdef CONFIG_THREAD_STACK_INFO /* Ensure the stack frame is within the faulting context's * stack buffer */ if (z_x86_check_stack_bounds((uintptr_t)frame, sizeof(*frame), cs)) { LOG_ERR(" corrupted? (bp=%p)", frame); break; } #endif if (frame->ret_addr == 0U) { break; } #ifdef CONFIG_X86_64 LOG_ERR(" 0x%016lx", frame->ret_addr); #else LOG_ERR(" 0x%08lx (0x%lx)", frame->ret_addr, frame->args); #endif base_ptr = frame->next; } } #endif /* CONFIG_X86_EXCEPTION_STACK_TRACE */ #ifdef CONFIG_X86_64 static void dump_regs(const z_arch_esf_t *esf) { LOG_ERR("RAX: 0x%016lx RBX: 0x%016lx RCX: 0x%016lx RDX: 0x%016lx", esf->rax, esf->rbx, esf->rcx, esf->rdx); LOG_ERR("RSI: 0x%016lx RDI: 0x%016lx RBP: 0x%016lx RSP: 0x%016lx", esf->rsi, esf->rdi, esf->rbp, esf->rsp); LOG_ERR(" R8: 0x%016lx R9: 0x%016lx R10: 0x%016lx R11: 0x%016lx", esf->r8, esf->r9, esf->r10, esf->r11); LOG_ERR("R12: 0x%016lx R13: 0x%016lx R14: 0x%016lx R15: 0x%016lx", esf->r12, esf->r13, esf->r14, esf->r15); LOG_ERR("RSP: 0x%016lx RFLAGS: 0x%016lx CS: 0x%04lx CR3: %p", esf->rsp, esf->rflags, esf->cs & 0xFFFFU, z_x86_page_tables_get()); #ifdef CONFIG_X86_EXCEPTION_STACK_TRACE LOG_ERR("call trace:"); #endif LOG_ERR("RIP: 0x%016lx", esf->rip); #ifdef CONFIG_X86_EXCEPTION_STACK_TRACE unwind_stack(esf->rbp, esf->cs); #endif } #else /* 32-bit */ static void dump_regs(const z_arch_esf_t *esf) { LOG_ERR("EAX: 0x%08x, EBX: 0x%08x, ECX: 0x%08x, EDX: 0x%08x", esf->eax, esf->ebx, esf->ecx, esf->edx); LOG_ERR("ESI: 0x%08x, EDI: 0x%08x, EBP: 0x%08x, ESP: 0x%08x", esf->esi, esf->edi, esf->ebp, esf->esp); LOG_ERR("EFLAGS: 0x%08x CS: 0x%04x CR3: %p", esf->eflags, esf->cs & 0xFFFFU, z_x86_page_tables_get()); #ifdef CONFIG_X86_EXCEPTION_STACK_TRACE LOG_ERR("call trace:"); #endif LOG_ERR("EIP: 0x%08x", esf->eip); #ifdef CONFIG_X86_EXCEPTION_STACK_TRACE unwind_stack(esf->ebp, esf->cs); #endif } #endif /* CONFIG_X86_64 */ static void log_exception(uintptr_t vector, uintptr_t code) { switch (vector) { case IV_DIVIDE_ERROR: LOG_ERR("Divide by zero"); break; case IV_DEBUG: LOG_ERR("Debug"); break; case IV_NON_MASKABLE_INTERRUPT: LOG_ERR("Non-maskable interrupt"); break; case IV_BREAKPOINT: LOG_ERR("Breakpoint"); break; case IV_OVERFLOW: LOG_ERR("Overflow"); break; case IV_BOUND_RANGE: LOG_ERR("Bound range exceeded"); break; case IV_INVALID_OPCODE: LOG_ERR("Invalid opcode"); break; case IV_DEVICE_NOT_AVAILABLE: LOG_ERR("Floating point unit device not available"); break; case IV_DOUBLE_FAULT: LOG_ERR("Double fault (code 0x%lx)", code); break; case IV_COPROC_SEGMENT_OVERRUN: LOG_ERR("Co-processor segment overrun"); break; case IV_INVALID_TSS: LOG_ERR("Invalid TSS (code 0x%lx)", code); break; case IV_SEGMENT_NOT_PRESENT: LOG_ERR("Segment not present (code 0x%lx)", code); break; case IV_STACK_FAULT: LOG_ERR("Stack segment fault"); break; case IV_GENERAL_PROTECTION: LOG_ERR("General protection fault (code 0x%lx)", code); break; /* IV_PAGE_FAULT skipped, we have a dedicated handler */ case IV_X87_FPU_FP_ERROR: LOG_ERR("x87 floating point exception"); break; case IV_ALIGNMENT_CHECK: LOG_ERR("Alignment check (code 0x%lx)", code); break; case IV_MACHINE_CHECK: LOG_ERR("Machine check"); break; case IV_SIMD_FP: LOG_ERR("SIMD floating point exception"); break; case IV_VIRT_EXCEPTION: LOG_ERR("Virtualization exception"); break; case IV_SECURITY_EXCEPTION: LOG_ERR("Security exception"); break; default: break; } } /* Page fault error code flags */ #define PRESENT BIT(0) #define WR BIT(1) #define US BIT(2) #define RSVD BIT(3) #define ID BIT(4) #define PK BIT(5) #define SGX BIT(15) static void dump_page_fault(z_arch_esf_t *esf) { uintptr_t err, cr2; /* See Section 6.15 of the IA32 Software Developer's Manual vol 3 */ __asm__ ("mov %%cr2, %0" : "=r" (cr2)); err = esf_get_code(esf); LOG_ERR("Page fault at address 0x%lx (error code 0x%lx)", cr2, err); if ((err & RSVD) != 0) { LOG_ERR("Reserved bits set in page tables"); } else if ((err & PRESENT) == 0) { LOG_ERR("Linear address not present in page tables"); } else { LOG_ERR("Access violation: %s thread not allowed to %s", (err & US) != 0U ? "user" : "supervisor", (err & ID) != 0U ? "execute" : ((err & WR) != 0U ? "write" : "read")); if ((err & PK) != 0) { LOG_ERR("Protection key disallowed"); } else if ((err & SGX) != 0) { LOG_ERR("SGX access control violation"); } } #ifdef CONFIG_X86_MMU z_x86_dump_mmu_flags(z_x86_thread_page_tables_get(_current), cr2); #endif /* CONFIG_X86_MMU */ } #endif /* CONFIG_EXCEPTION_DEBUG */ FUNC_NORETURN void z_x86_fatal_error(unsigned int reason, const z_arch_esf_t *esf) { #ifdef CONFIG_EXCEPTION_DEBUG if (esf != NULL) { dump_regs(esf); } #endif z_fatal_error(reason, esf); CODE_UNREACHABLE; } FUNC_NORETURN void z_x86_unhandled_cpu_exception(uintptr_t vector, const z_arch_esf_t *esf) { #ifdef CONFIG_EXCEPTION_DEBUG log_exception(vector, esf_get_code(esf)); #else ARG_UNUSED(vector); #endif z_x86_fatal_error(K_ERR_CPU_EXCEPTION, esf); } #ifdef CONFIG_USERSPACE Z_EXC_DECLARE(z_x86_user_string_nlen); static const struct z_exc_handle exceptions[] = { Z_EXC_HANDLE(z_x86_user_string_nlen) }; #endif void z_x86_page_fault_handler(z_arch_esf_t *esf) { #ifdef CONFIG_USERSPACE int i; for (i = 0; i < ARRAY_SIZE(exceptions); i++) { #ifdef CONFIG_X86_64 if ((void *)esf->rip >= exceptions[i].start && (void *)esf->rip < exceptions[i].end) { esf->rip = (u64_t)(exceptions[i].fixup); return; } #else if ((void *)esf->eip >= exceptions[i].start && (void *)esf->eip < exceptions[i].end) { esf->eip = (unsigned int)(exceptions[i].fixup); return; } #endif /* CONFIG_X86_64 */ } #endif #ifdef CONFIG_EXCEPTION_DEBUG dump_page_fault(esf); #endif #ifdef CONFIG_THREAD_STACK_INFO if (z_x86_check_stack_bounds(esf_get_sp(esf), 0, esf->cs)) { z_x86_fatal_error(K_ERR_STACK_CHK_FAIL, esf); } #endif z_x86_fatal_error(K_ERR_CPU_EXCEPTION, esf); CODE_UNREACHABLE; } void z_x86_do_kernel_oops(const z_arch_esf_t *esf) { uintptr_t reason; #ifdef CONFIG_X86_64 reason = esf->rax; #else uintptr_t *stack_ptr = (uintptr_t *)esf->esp; reason = *stack_ptr; #endif #ifdef CONFIG_USERSPACE /* User mode is only allowed to induce oopses and stack check * failures via this software interrupt */ if ((esf->cs & 0x3) != 0 && !(reason == K_ERR_KERNEL_OOPS || reason == K_ERR_STACK_CHK_FAIL)) { reason = K_ERR_KERNEL_OOPS; } #endif z_x86_fatal_error(reason, esf); } |