Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
 * Copyright (c) 2018 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/* These assertions are very useful when debugging the tree code
 * itself, but produce significant performance degradation as they are
 * checked many times per operation.  Leave them off unless you're
 * working on the rbtree code itself
 */
#define CHECK(n) /**/
/* #define CHECK(n) __ASSERT_NO_MSG(n) */

#include <kernel.h>
#include <sys/rb.h>
#include <stdbool.h>

enum rb_color { RED = 0, BLACK = 1 };

static struct rbnode *get_child(struct rbnode *n, int side)
{
	CHECK(n);
	if (side != 0) {
		return n->children[1];
	}

	uintptr_t l = (uintptr_t) n->children[0];

	l &= ~1UL;
	return (struct rbnode *) l;
}

static void set_child(struct rbnode *n, int side, void *val)
{
	CHECK(n);
	if (side != 0) {
		n->children[1] = val;
	} else {
		uintptr_t old = (uintptr_t) n->children[0];
		uintptr_t new = (uintptr_t) val;

		n->children[0] = (void *) (new | (old & 1UL));
	}
}

static enum rb_color get_color(struct rbnode *n)
{
	CHECK(n);
	return ((uintptr_t)n->children[0]) & 1UL;
}

static bool is_black(struct rbnode *n)
{
	return get_color(n) == BLACK;
}

static bool is_red(struct rbnode *n)
{
	return get_color(n) == RED;
}

static void set_color(struct rbnode *n, enum rb_color color)
{
	CHECK(n);

	uintptr_t *p = (void *) &n->children[0];

	*p = (*p & ~1UL) | (uint8_t)color;
}

/* Searches the tree down to a node that is either identical with the
 * "node" argument or has an empty/leaf child pointer where "node"
 * should be, leaving all nodes found in the resulting stack.  Note
 * that tree must not be empty and that stack should be allocated to
 * contain at least tree->max_depth entries!  Returns the number of
 * entries pushed onto the stack.
 */
static int find_and_stack(struct rbtree *tree, struct rbnode *node,
			  struct rbnode **stack)
{
	int sz = 0;

	stack[sz++] = tree->root;

	while (stack[sz - 1] != node) {
		int side = tree->lessthan_fn(node, stack[sz - 1]) ? 0 : 1;
		struct rbnode *ch = get_child(stack[sz - 1], side);

		if (ch != NULL) {
			stack[sz++] = ch;
		} else {
			break;
		}
	}

	return sz;
}

struct rbnode *z_rb_get_minmax(struct rbtree *tree, int side)
{
	struct rbnode *n;

	for (n = tree->root; n != NULL && get_child(n, side) != NULL;
			n = get_child(n, side)) {
		;
	}
	return n;
}

static int get_side(struct rbnode *parent, struct rbnode *child)
{
	CHECK(get_child(parent, 0) == child || get_child(parent, 1) == child);

	return get_child(parent, 1) == child ? 1 : 0;
}

/* Swaps the position of the two nodes at the top of the provided
 * stack, modifying the stack accordingly. Does not change the color
 * of either node.  That is, it effects the following transition (or
 * its mirror if N is on the other side of P, of course):
 *
 *    P          N
 *  N  c  -->  a   P
 * a b            b c
 *
 */
static void rotate(struct rbnode **stack, int stacksz)
{
	CHECK(stacksz >= 2);

	struct rbnode *parent = stack[stacksz - 2];
	struct rbnode *child = stack[stacksz - 1];
	int side = get_side(parent, child);
	struct rbnode *a = get_child(child, side);
	struct rbnode *b = get_child(child, side == 0 ? 1 : 0);

	if (stacksz >= 3) {
		struct rbnode *grandparent = stack[stacksz - 3];

		set_child(grandparent, get_side(grandparent, parent), child);
	}

	set_child(child, side, a);
	set_child(child, side == 0 ? 1 : 0, parent);
	set_child(parent, side, b);
	stack[stacksz - 2] = child;
	stack[stacksz - 1] = parent;
}

/* The node at the top of the provided stack is red, and its parent is
 * too.  Iteratively fix the tree so it becomes a valid red black tree
 * again
 */
static void fix_extra_red(struct rbnode **stack, int stacksz)
{
	while (stacksz > 1) {
		struct rbnode *node = stack[stacksz - 1];
		struct rbnode *parent = stack[stacksz - 2];

		/* Correct child colors are a precondition of the loop */
		CHECK(!get_child(node, 0) || is_black(get_child(node, 0)));
		CHECK(!get_child(node, 1) || is_black(get_child(node, 1)));

		if (is_black(parent)) {
			return;
		}

		/* We are guaranteed to have a grandparent if our
		 * parent is red, as red nodes cannot be the root
		 */
		CHECK(stacksz >= 2);

		struct rbnode *grandparent = stack[stacksz - 3];
		int side = get_side(grandparent, parent);
		struct rbnode *aunt = get_child(grandparent,
				side == 0 ? 1 : 0);

		if ((aunt != NULL) && is_red(aunt)) {
			set_color(grandparent, RED);
			set_color(parent, BLACK);
			set_color(aunt, BLACK);

			/* We colored the grandparent red, which might
			 * have a red parent, so continue iterating
			 * from there.
			 */
			stacksz -= 2;
			continue;
		}

		/* We can rotate locally to fix the whole tree.  First
		 * make sure that node is on the same side of parent
		 * as parent is of grandparent.
		 */
		int parent_side = get_side(parent, node);

		if (parent_side != side) {
			rotate(stack, stacksz);
			node = stack[stacksz - 1];
		}

		/* Rotate the grandparent with parent, swapping colors */
		rotate(stack, stacksz - 1);
		set_color(stack[stacksz - 3], BLACK);
		set_color(stack[stacksz - 2], RED);
		return;
	}

	/* If we exit the loop, it's because our node is now the root,
	 * which must be black.
	 */
	set_color(stack[0], BLACK);
}

void rb_insert(struct rbtree *tree, struct rbnode *node)
{
	set_child(node, 0, NULL);
	set_child(node, 1, NULL);

	if (tree->root == NULL) {
		tree->root = node;
		tree->max_depth = 1;
		set_color(node, BLACK);
		return;
	}

#ifdef CONFIG_MISRA_SANE
	struct rbnode **stack = &tree->iter_stack[0];
#else
	struct rbnode *stack[tree->max_depth + 1];
#endif

	int stacksz = find_and_stack(tree, node, stack);

	struct rbnode *parent = stack[stacksz - 1];

	int side = tree->lessthan_fn(node, parent) ? 0 : 1;

	set_child(parent, side, node);
	set_color(node, RED);

	stack[stacksz++] = node;
	fix_extra_red(stack, stacksz);

	if (stacksz > tree->max_depth) {
		tree->max_depth = stacksz;
	}

	/* We may have rotated up into the root! */
	tree->root = stack[0];
	CHECK(is_black(tree->root));
}

/* Called for a node N (at the top of the stack) which after a
 * deletion operation is "missing a black" in its subtree.  By
 * construction N must be black (because if it was red it would be
 * trivially fixed by recoloring and we wouldn't be here).  Fixes up
 * the tree to preserve red/black rules.  The "null_node" pointer is
 * for situations where we are removing a childless black node.  The
 * tree munging needs a real node for simplicity, so we use it and
 * then clean it up (replace it with a simple NULL child in the
 * parent) when finished.
 */
static void fix_missing_black(struct rbnode **stack, int stacksz,
			      struct rbnode *null_node)
{
	/* Loop upward until we reach the root */
	while (stacksz > 1) {
		struct rbnode *c0, *c1, *inner, *outer;
		struct rbnode *n = stack[stacksz - 1];
		struct rbnode *parent = stack[stacksz - 2];
		int n_side = get_side(parent, n);
		struct rbnode *sib = get_child(parent, n_side == 0 ? 1 : 0);

		CHECK(is_black(n));

		/* Guarantee the sibling is black, rotating N down a
		 * level if needed (after rotate() our parent is the
		 * child of our previous-sibling, so N is lower in the
		 * tree)
		 */
		if (!is_black(sib)) {
			stack[stacksz - 1] = sib;
			rotate(stack, stacksz);
			set_color(parent, RED);
			set_color(sib, BLACK);
			stack[stacksz++] = n;

			parent = stack[stacksz - 2];
			sib = get_child(parent, n_side == 0 ? 1 : 0);
		}

		CHECK(sib);

		/* Cases where the sibling has only black children
		 * have simple resolutions
		 */
		c0 = get_child(sib, 0);
		c1 = get_child(sib, 1);
		if ((c0 == NULL || is_black(c0)) && (c1 == NULL ||
					is_black(c1))) {
			if (n == null_node) {
				set_child(parent, n_side, NULL);
			}

			set_color(sib, RED);
			if (is_black(parent)) {
				/* Balance the sibling's subtree by
				 * coloring it red, then our parent
				 * has a missing black so iterate
				 * upward
				 */
				stacksz--;
				continue;
			} else {
				/* Recoloring makes the whole tree OK */
				set_color(parent, BLACK);
				return;
			}
		}

		CHECK((c0 && is_red(c0)) || (c1 && is_red(c1)));

		/* We know sibling has at least one red child.  Fix it
		 * so that the far/outer position (i.e. on the
		 * opposite side from N) is definitely red.
		 */
		outer = get_child(sib, n_side == 0 ? 1 : 0);
		if (!(outer != NULL && is_red(outer))) {
			inner = get_child(sib, n_side);

			stack[stacksz - 1] = sib;
			stack[stacksz++] = inner;
			rotate(stack, stacksz);
			set_color(sib, RED);
			set_color(inner, BLACK);

			/* Restore stack state to have N on the top
			 * and make sib reflect the new sibling
			 */
			sib = stack[stacksz - 2];
			outer = get_child(sib, n_side == 0 ? 1 : 0);
			stack[stacksz - 2] = n;
			stacksz--;
		}

		/* Finally, the sibling must have a red child in the
		 * far/outer slot.  We can rotate sib with our parent
		 * and recolor to produce a valid tree.
		 */
		CHECK(is_red(outer));
		set_color(sib, get_color(parent));
		set_color(parent, BLACK);
		set_color(outer, BLACK);
		stack[stacksz - 1] = sib;
		rotate(stack, stacksz);
		if (n == null_node) {
			set_child(parent, n_side, NULL);
		}
		return;
	}
}

void rb_remove(struct rbtree *tree, struct rbnode *node)
{
	struct rbnode *tmp;
#ifdef CONFIG_MISRA_SANE
	struct rbnode **stack = &tree->iter_stack[0];
#else
	struct rbnode *stack[tree->max_depth + 1];
#endif

	int stacksz = find_and_stack(tree, node, stack);

	if (node != stack[stacksz - 1]) {
		return;
	}

	/* We can only remove a node with zero or one child, if we
	 * have two then pick the "biggest" child of side 0 (smallest
	 * of 1 would work too) and swap our spot in the tree with
	 * that one
	 */
	if (get_child(node, 0) != NULL && get_child(node, 1) != NULL) {
		int stacksz0 = stacksz;
		struct rbnode *hiparent, *loparent;
		struct rbnode *node2 = get_child(node, 0);

		hiparent = stacksz > 1 ? stack[stacksz - 2] : NULL;
		stack[stacksz++] = node2;
		while (get_child(node2, 1)) {
			node2 = get_child(node2, 1);
			stack[stacksz++] = node2;
		}

		loparent = stack[stacksz - 2];

		/* Now swap the position of node/node2 in the tree.
		 * Design note: this is a spot where being an
		 * intrusive data structure hurts us fairly badly.
		 * The trees you see in textbooks do this by swapping
		 * the "data" pointers between the two nodes, but we
		 * have a few special cases to check.  In principle
		 * this works by swapping the child pointers between
		 * the nodes and retargetting the nodes pointing to
		 * them from their parents, but: (1) the upper node
		 * may be the root of the tree and not have a parent,
		 * and (2) the lower node may be a direct child of the
		 * upper node.  Remember to swap the color bits of the
		 * two nodes also.  And of course we don't have parent
		 * pointers, so the stack tracking this structure
		 * needs to be swapped too!
		 */
		if (hiparent != NULL) {
			set_child(hiparent, get_side(hiparent, node), node2);
		} else {
			tree->root = node2;
		}

		if (loparent == node) {
			set_child(node, 0, get_child(node2, 0));
			set_child(node2, 0, node);
		} else {
			set_child(loparent, get_side(loparent, node2), node);
			tmp = get_child(node, 0);
			set_child(node, 0, get_child(node2, 0));
			set_child(node2, 0, tmp);
		}

		set_child(node2, 1, get_child(node, 1));
		set_child(node, 1, NULL);

		tmp = stack[stacksz0 - 1];
		stack[stacksz0 - 1] = stack[stacksz - 1];
		stack[stacksz - 1] = tmp;

		int ctmp = get_color(node);

		set_color(node, get_color(node2));
		set_color(node2, ctmp);
	}

	CHECK(!get_child(node, 0) || !get_child(node, 1));

	struct rbnode *child = get_child(node, 0);

	if (child == NULL) {
		child = get_child(node, 1);
	}

	/* Removing the root */
	if (stacksz < 2) {
		tree->root = child;
		if (child != NULL) {
			set_color(child, BLACK);
		} else {
			tree->max_depth = 0;
		}
		return;
	}

	struct rbnode *parent = stack[stacksz - 2];

	/* Special case: if the node to be removed is childless, then
	 * we leave it in place while we do the missing black
	 * rotations, which will replace it with a proper NULL when
	 * they isolate it.
	 */
	if (child == NULL) {
		if (is_black(node)) {
			fix_missing_black(stack, stacksz, node);
		} else {
			/* Red childless nodes can just be dropped */
			set_child(parent, get_side(parent, node), NULL);
		}
	} else {
		set_child(parent, get_side(parent, node), child);

		/* Check colors, if one was red (at least one must have been
		 * black in a valid tree), then we're done.  Otherwise we have
		 * a missing black we need to fix
		 */
		if (is_red(node) || is_red(child)) {
			set_color(child, BLACK);
		} else {
			stack[stacksz - 1] = child;
			fix_missing_black(stack, stacksz, NULL);
		}
	}

	/* We may have rotated up into the root! */
	tree->root = stack[0];
}

#ifndef CONFIG_MISRA_SANE
void z_rb_walk(struct rbnode *node, rb_visit_t visit_fn, void *cookie)
{
	if (node != NULL) {
		z_rb_walk(get_child(node, 0), visit_fn, cookie);
		visit_fn(node, cookie);
		z_rb_walk(get_child(node, 1), visit_fn, cookie);
	}
}
#endif

struct rbnode *z_rb_child(struct rbnode *node, int side)
{
	return get_child(node, side);
}

int z_rb_is_black(struct rbnode *node)
{
	return is_black(node);
}

bool rb_contains(struct rbtree *tree, struct rbnode *node)
{
	struct rbnode *n = tree->root;

	while (n != NULL && n != node) {
		n = get_child(n, tree->lessthan_fn(n, node));
	}

	return n == node;
}

/* Pushes the node and its chain of left-side children onto the stack
 * in the foreach struct, returning the last node, which is the next
 * node to iterate.  By construction node will always be a right child
 * or the root, so is_left must be false.
 */
static inline struct rbnode *stack_left_limb(struct rbnode *n,
					     struct _rb_foreach *f)
{
	f->top++;
	f->stack[f->top] = n;
	f->is_left[f->top] = 0;

	while ((n = get_child(n, 0)) != NULL) {
		f->top++;
		f->stack[f->top] = n;
		f->is_left[f->top] = 1;
	}

	return f->stack[f->top];
}

/* The foreach tracking works via a dynamic stack allocated via
 * alloca().  The current node is found in stack[top] (and its parent
 * is thus stack[top-1]).  The side of each stacked node from its
 * parent is stored in is_left[] (i.e. if is_left[top] is true, then
 * node/stack[top] is the left child of stack[top-1]).  The special
 * case of top == -1 indicates that the stack is uninitialized and we
 * need to push an initial stack starting at the root.
 */
struct rbnode *z_rb_foreach_next(struct rbtree *tree, struct _rb_foreach *f)
{
	struct rbnode *n;

	if (tree->root == NULL) {
		return NULL;
	}

	/* Initialization condition, pick the leftmost child of the
	 * root as our first node, initializing the stack on the way.
	 */
	if (f->top == -1) {
		return stack_left_limb(tree->root, f);
	}

	/* The next child from a given node is the leftmost child of
	 * it's right subtree if it has a right child
	 */
	n = get_child(f->stack[f->top], 1);
	if (n != NULL) {
		return stack_left_limb(n, f);
	}

	/* Otherwise if the node is a left child of its parent, the
	 * next node is the parent (note that the root is stacked
	 * above with is_left set to 0, so this condition still works
	 * even if node has no parent).
	 */
	if (f->is_left[f->top] != 0) {
		return f->stack[--f->top];
	}

	/* If we had no left tree and are a right child then our
	 * parent was already walked, so walk up the stack looking for
	 * a left child (whose parent is unwalked, and thus next).
	 */
	while ((f->top > 0) && (f->is_left[f->top] == 0)) {
		f->top--;
	}

	f->top--;
	return f->top >= 0 ? f->stack[f->top] : NULL;
}