Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*
 * Copyright (c) 2018 Kokoon Technology Limited
 * Copyright (c) 2019 Song Qiang <songqiang1304521@gmail.com>
 * Copyright (c) 2019 Endre Karlson
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <errno.h>

#include <drivers/adc.h>
#include <device.h>
#include <kernel.h>
#include <init.h>
#include <soc.h>

#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"

#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_stm32);

#include <drivers/clock_control/stm32_clock_control.h>

#if !defined(CONFIG_SOC_SERIES_STM32F0X) && \
	!defined(CONFIG_SOC_SERIES_STM32L0X)
#define RANK(n)		LL_ADC_REG_RANK_##n
static const u32_t table_rank[] = {
	RANK(1),
	RANK(2),
	RANK(3),
	RANK(4),
	RANK(5),
	RANK(6),
	RANK(7),
	RANK(8),
	RANK(9),
	RANK(10),
	RANK(11),
	RANK(12),
	RANK(13),
	RANK(14),
	RANK(15),
	RANK(16),
};

#define SEQ_LEN(n)	LL_ADC_REG_SEQ_SCAN_ENABLE_##n##RANKS
static const u32_t table_seq_len[] = {
	LL_ADC_REG_SEQ_SCAN_DISABLE,
	SEQ_LEN(2),
	SEQ_LEN(3),
	SEQ_LEN(4),
	SEQ_LEN(5),
	SEQ_LEN(6),
	SEQ_LEN(7),
	SEQ_LEN(8),
	SEQ_LEN(9),
	SEQ_LEN(10),
	SEQ_LEN(11),
	SEQ_LEN(12),
	SEQ_LEN(13),
	SEQ_LEN(14),
	SEQ_LEN(15),
	SEQ_LEN(16),
};
#endif

#define RES(n)		LL_ADC_RESOLUTION_##n##B
static const u32_t table_resolution[] = {
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
	RES(6),
	RES(8),
	RES(10),
#endif
	RES(12),
};

#define SMP_TIME(x, y)		LL_ADC_SAMPLINGTIME_##x##CYCLE##y

/*
 * Conversion time in ADC cycles. Many values should have been 0.5 less,
 * but the adc api system currently does not support describing 'half cycles'.
 * So all half cycles are counted as one.
 */
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32F1X)
static const u16_t acq_time_tbl[8] = {2, 8, 14, 29, 42, 56, 72, 240};
static const u32_t table_samp_time[] = {
	SMP_TIME(1,   _5),
	SMP_TIME(7,   S_5),
	SMP_TIME(13,  S_5),
	SMP_TIME(28,  S_5),
	SMP_TIME(41,  S_5),
	SMP_TIME(55,  S_5),
	SMP_TIME(71,  S_5),
	SMP_TIME(239, S_5),
};
#elif defined(CONFIG_SOC_SERIES_STM32F2X) || \
	defined(CONFIG_SOC_SERIES_STM32F4X) || \
	defined(CONFIG_SOC_SERIES_STM32F7X)
static const u16_t acq_time_tbl[8] = {3, 15, 28, 56, 84, 112, 144, 480};
static const u32_t table_samp_time[] = {
	SMP_TIME(3,   S),
	SMP_TIME(15,  S),
	SMP_TIME(28,  S),
	SMP_TIME(56,  S),
	SMP_TIME(84,  S),
	SMP_TIME(112, S),
	SMP_TIME(144, S),
	SMP_TIME(480, S),
};
#elif defined(CONFIG_SOC_SERIES_STM32F3X)
#ifdef ADC5_V1_1
static const u16_t acq_time_tbl[8] = {2, 3, 5, 8, 20, 62, 182, 602};
static const u32_t table_samp_time[] = {
	SMP_TIME(1,   _5),
	SMP_TIME(2,   S_5),
	SMP_TIME(4,   S_5),
	SMP_TIME(7,   S_5),
	SMP_TIME(19,  S_5),
	SMP_TIME(61,  S_5),
	SMP_TIME(181, S_5),
	SMP_TIME(601, S_5),
};
#else
static const u16_t acq_time_tbl[8] = {2, 8, 14, 29, 42, 56, 72, 240};
static const u32_t table_samp_time[] = {
	SMP_TIME(1,   _5),
	SMP_TIME(7,   S_5),
	SMP_TIME(13,  S_5),
	SMP_TIME(28,  S_5),
	SMP_TIME(41,  S_5),
	SMP_TIME(55,  S_5),
	SMP_TIME(71,  S_5),
	SMP_TIME(239, S_5),
};
#endif /* ADC5_V1_1 */
#elif defined(CONFIG_SOC_SERIES_STM32L0X)
static const u16_t acq_time_tbl[8] = {2, 4, 8, 13, 20, 40, 80, 161};
static const u32_t table_samp_time[] = {
	SMP_TIME(1,   _5),
	SMP_TIME(3,   S_5),
	SMP_TIME(7,   S_5),
	SMP_TIME(12,  S_5),
	SMP_TIME(19,  S_5),
	SMP_TIME(39,  S_5),
	SMP_TIME(79,  S_5),
	SMP_TIME(160, S_5),
};
#elif defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
static const u16_t acq_time_tbl[8] = {3, 7, 13, 25, 48, 93, 248, 641};
static const u32_t table_samp_time[] = {
	SMP_TIME(2,   S_5),
	SMP_TIME(6,   S_5),
	SMP_TIME(12,  S_5),
	SMP_TIME(24,  S_5),
	SMP_TIME(47,  S_5),
	SMP_TIME(92,  S_5),
	SMP_TIME(247, S_5),
	SMP_TIME(640, S_5),
};
#endif

/* 16 external channels. */
#define STM32_CHANNEL_COUNT		16

struct adc_stm32_data {
	struct adc_context ctx;
	struct device *dev;
	u16_t *buffer;
	u16_t *repeat_buffer;

	u8_t resolution;
	u8_t channel_count;
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X)
	s8_t acq_time_index;
#endif
};

struct adc_stm32_cfg {
	ADC_TypeDef *base;

	void (*irq_cfg_func)(void);

	struct stm32_pclken pclken;
	struct device *p_dev;
};

static int check_buffer_size(const struct adc_sequence *sequence,
			     u8_t active_channels)
{
	size_t needed_buffer_size;

	needed_buffer_size = active_channels * sizeof(u16_t);

	if (sequence->options) {
		needed_buffer_size *= (1 + sequence->options->extra_samplings);
	}

	if (sequence->buffer_size < needed_buffer_size) {
		LOG_ERR("Provided buffer is too small (%u/%u)",
				sequence->buffer_size, needed_buffer_size);
		return -ENOMEM;
	}

	return 0;
}

static void adc_stm32_start_conversion(struct device *dev)
{
	const struct adc_stm32_cfg *config = dev->config->config_info;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	LOG_DBG("Starting conversion");

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	LL_ADC_REG_StartConversion(adc);
#else
	LL_ADC_REG_StartConversionSWStart(adc);
#endif
}

static int start_read(struct device *dev, const struct adc_sequence *sequence)
{
	const struct adc_stm32_cfg *config = dev->config->config_info;
	struct adc_stm32_data *data = dev->driver_data;
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;
	u8_t resolution;
	int err;

	switch (sequence->resolution) {
#if !defined(CONFIG_SOC_SERIES_STM32F1X)
	case 6:
		resolution = table_resolution[0];
		break;
	case 8:
		resolution = table_resolution[1];
		break;
	case 10:
		resolution = table_resolution[2];
		break;
	case 12:
		resolution = table_resolution[3];
		break;
#else
	case 12:
		resolution = table_resolution[0];
		break;
#endif
	default:
		LOG_ERR("Invalid resolution");
		return -EINVAL;
	}

	u32_t channels = sequence->channels;

	data->buffer = sequence->buffer;
	u8_t index;

	index = find_lsb_set(channels) - 1;
	u32_t channel = __LL_ADC_DECIMAL_NB_TO_CHANNEL(index);
#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X)
	LL_ADC_REG_SetSequencerChannels(adc, channel);
#else
	LL_ADC_REG_SetSequencerRanks(adc, table_rank[0], channel);
	LL_ADC_REG_SetSequencerLength(adc, table_seq_len[0]);
#endif
	data->channel_count = 1;

	err = check_buffer_size(sequence, data->channel_count);
	if (err) {
		return err;
	}

#if !defined(CONFIG_SOC_SERIES_STM32F1X)
	LL_ADC_SetResolution(adc, resolution);
#endif

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	LL_ADC_EnableIT_EOC(adc);
#elif defined(CONFIG_SOC_SERIES_STM32F1X)
	LL_ADC_EnableIT_EOS(adc);
#else
	LL_ADC_EnableIT_EOCS(adc);
#endif

	adc_context_start_read(&data->ctx, sequence);

	return adc_context_wait_for_completion(&data->ctx);
}

static void adc_context_start_sampling(struct adc_context *ctx)
{
	struct adc_stm32_data *data =
		CONTAINER_OF(ctx, struct adc_stm32_data, ctx);

	data->repeat_buffer = data->buffer;

	adc_stm32_start_conversion(data->dev);
}

static void adc_context_update_buffer_pointer(struct adc_context *ctx,
					      bool repeat_sampling)
{
	struct adc_stm32_data *data =
		CONTAINER_OF(ctx, struct adc_stm32_data, ctx);

	if (repeat_sampling) {
		data->buffer = data->repeat_buffer;
	}
}

static void adc_stm32_isr(void *arg)
{
	struct device *dev = (struct device *)arg;
	struct adc_stm32_data *data = (struct adc_stm32_data *)dev->driver_data;
	struct adc_stm32_cfg *config =
		(struct adc_stm32_cfg *)dev->config->config_info;
	ADC_TypeDef *adc = config->base;

	*data->buffer++ = LL_ADC_REG_ReadConversionData32(adc);

	adc_context_on_sampling_done(&data->ctx, dev);

	LOG_DBG("ISR triggered.");
}

static int adc_stm32_read(struct device *dev,
			  const struct adc_sequence *sequence)
{
	struct adc_stm32_data *data = dev->driver_data;
	int error;

	adc_context_lock(&data->ctx, false, NULL);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}

#ifdef CONFIG_ADC_ASYNC
static int adc_stm32_read_async(struct device *dev,
				 const struct adc_sequence *sequence,
				 struct k_poll_signal *async)
{
	struct adc_stm32_data *data = dev->driver_data;
	int error;

	adc_context_lock(&data->ctx, true, async);
	error = start_read(dev, sequence);
	adc_context_release(&data->ctx, error);

	return error;
}
#endif

static int adc_stm32_check_acq_time(u16_t acq_time)
{
	for (int i = 0; i < 8; i++) {
		if (acq_time == ADC_ACQ_TIME(ADC_ACQ_TIME_TICKS,
					     acq_time_tbl[i])) {
			return i;
		}
	}

	if (acq_time == ADC_ACQ_TIME_DEFAULT) {
		return 0;
	}

	LOG_ERR("Conversion time not supportted.");
	return -EINVAL;
}

static void adc_stm32_setup_speed(struct device *dev, u8_t id,
				  u8_t acq_time_index)
{
	struct adc_stm32_cfg *config =
		(struct adc_stm32_cfg *)dev->config->config_info;
	ADC_TypeDef *adc = config->base;

#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X)
	LL_ADC_SetSamplingTimeCommonChannels(adc,
		table_samp_time[acq_time_index]);
#else
	LL_ADC_SetChannelSamplingTime(adc,
		__LL_ADC_DECIMAL_NB_TO_CHANNEL(id),
		table_samp_time[acq_time_index]);
#endif
}

static int adc_stm32_channel_setup(struct device *dev,
			    const struct adc_channel_cfg *channel_cfg)
{
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X)
	struct adc_stm32_data *data = dev->driver_data;
#endif
	int acq_time_index;

	if (channel_cfg->channel_id >= STM32_CHANNEL_COUNT) {
		LOG_ERR("Channel %d is not valid", channel_cfg->channel_id);
		return -EINVAL;
	}

	acq_time_index = adc_stm32_check_acq_time(
				channel_cfg->acquisition_time);
	if (acq_time_index < 0) {
		return acq_time_index;
	}
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X)
	if (data->acq_time_index == -1) {
		data->acq_time_index = acq_time_index;
	} else {
		/* All channels of F0/L0 must have identical acquisition time.*/
		if (acq_time_index != data->acq_time_index) {
			return -EINVAL;
		}
	}
#endif

	if (channel_cfg->differential) {
		LOG_ERR("Differential channels are not supported");
		return -EINVAL;
	}

	if (channel_cfg->gain != ADC_GAIN_1) {
		LOG_ERR("Invalid channel gain");
		return -EINVAL;
	}

	if (channel_cfg->reference != ADC_REF_INTERNAL) {
		LOG_ERR("Invalid channel reference");
		return -EINVAL;
	}

	adc_stm32_setup_speed(dev, channel_cfg->channel_id,
				  acq_time_index);

	LOG_DBG("Channel setup succeeded!");

	return 0;
}

#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
	!defined(CONFIG_SOC_SERIES_STM32F4X) && \
	!defined(CONFIG_SOC_SERIES_STM32F7X) && \
	!defined(CONFIG_SOC_SERIES_STM32F1X)
static void adc_stm32_calib(struct device *dev)
{
	struct adc_stm32_cfg *config =
		(struct adc_stm32_cfg *)dev->config->config_info;
	ADC_TypeDef *adc = config->base;

#if defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	LL_ADC_StartCalibration(adc, LL_ADC_SINGLE_ENDED);
#elif defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X)
	LL_ADC_StartCalibration(adc);
#endif
	while (LL_ADC_IsCalibrationOnGoing(adc)) {
	}
}
#endif

static int adc_stm32_init(struct device *dev)
{
	struct adc_stm32_data *data = dev->driver_data;
	const struct adc_stm32_cfg *config = dev->config->config_info;
	struct device *clk =
		device_get_binding(STM32_CLOCK_CONTROL_NAME);
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	LOG_DBG("Initializing....");

	data->dev = dev;
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X)
	/*
	 * All conversion time for all channels on one ADC instance for F0 and
	 * L0 series chips has to be the same. This additional variable is for
	 * checking if the conversion time selection of all channels on one ADC
	 * instance is the same.
	 */
	data->acq_time_index = -1;
#endif

	if (clock_control_on(clk,
		(clock_control_subsys_t *) &config->pclken) != 0) {
		return -EIO;
	}

#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	/*
	 * L4, WB and G4 series STM32 needs to be awaken from deep sleep mode,
	 * and restore its calibration parameters if there are some previously
	 * stored calibration parameters.
	 */
	LL_ADC_DisableDeepPowerDown(adc);
#endif
	/*
	 * F3, L4, WB and G4 ADC modules need some time to be stabilized before
	 * performing any enable or calibration actions.
	 */
#if defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	LL_ADC_EnableInternalRegulator(adc);
	k_busy_wait(LL_ADC_DELAY_INTERNAL_REGUL_STAB_US);
#endif

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X)
	LL_ADC_SetClock(adc, LL_ADC_CLOCK_SYNC_PCLK_DIV4);
#elif defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(adc),
			LL_ADC_CLOCK_SYNC_PCLK_DIV4);
#endif

#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
	!defined(CONFIG_SOC_SERIES_STM32F4X) && \
	!defined(CONFIG_SOC_SERIES_STM32F7X) && \
	!defined(CONFIG_SOC_SERIES_STM32F1X)
	/*
	 * Calibration of F1 series has to be started after ADC Module is
	 * enabled.
	 */
	adc_stm32_calib(dev);
#endif

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	if (LL_ADC_IsActiveFlag_ADRDY(adc)) {
		LL_ADC_ClearFlag_ADRDY(adc);
	}

	/*
	 * These two series STM32 has one internal voltage reference source
	 * to be enabled.
	 */
	LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc),
				      LL_ADC_PATH_INTERNAL_VREFINT);
#endif

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	/*
	 * ADC modules on these series have to wait for some cycles to be
	 * enabled.
	 */
	u32_t adc_rate, wait_cycles;

	if (clock_control_get_rate(clk,
		(clock_control_subsys_t *) &config->pclken, &adc_rate) < 0) {
		LOG_ERR("ADC clock rate get error.");
	}

	wait_cycles = SystemCoreClock / adc_rate *
		      LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES;

	for (int i = wait_cycles; i >= 0; i--) {
	}
#endif

	LL_ADC_Enable(adc);

#if defined(CONFIG_SOC_SERIES_STM32L4X) || \
	defined(CONFIG_SOC_SERIES_STM32WBX) || \
	defined(CONFIG_SOC_SERIES_STM32G4X)
	/*
	 * Enabling ADC modules in L4, WB and G4 series may fail if they are
	 * still not stabilized, this will wait for a short time to ensure ADC
	 * modules are properly enabled.
	 */
	u32_t countTimeout = 0;

	while (LL_ADC_IsActiveFlag_ADRDY(adc) == 0) {
		if (LL_ADC_IsEnabled(adc) == 0UL) {
			LL_ADC_Enable(adc);
			countTimeout++;
			if (countTimeout == 10) {
				return -ETIMEDOUT;
			}
		}
	}
#endif

	config->irq_cfg_func();

#ifdef CONFIG_SOC_SERIES_STM32F1X
	/* Calibration of F1 must starts after two cycles after ADON is set. */
	LL_ADC_StartCalibration(adc);
	LL_ADC_REG_SetTriggerSource(adc, LL_ADC_REG_TRIG_SOFTWARE);
#endif
	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}

static const struct adc_driver_api api_stm32_driver_api = {
	.channel_setup = adc_stm32_channel_setup,
	.read = adc_stm32_read,
#ifdef CONFIG_ADC_ASYNC
	.read_async = adc_stm32_read_async,
#endif
};

#define STM32_ADC_INIT(index)						\
									\
static void adc_stm32_cfg_func_##index(void);				\
									\
static const struct adc_stm32_cfg adc_stm32_cfg_##index = {		\
	.base = (ADC_TypeDef *)DT_ADC_##index##_BASE_ADDRESS,		\
	.irq_cfg_func = adc_stm32_cfg_func_##index,			\
	.pclken = {							\
		.enr = DT_ADC_##index##_CLOCK_BITS,			\
		.bus = DT_ADC_##index##_CLOCK_BUS,			\
	},								\
};									\
static struct adc_stm32_data adc_stm32_data_##index = {			\
	ADC_CONTEXT_INIT_TIMER(adc_stm32_data_##index, ctx),		\
	ADC_CONTEXT_INIT_LOCK(adc_stm32_data_##index, ctx),		\
	ADC_CONTEXT_INIT_SYNC(adc_stm32_data_##index, ctx),		\
};									\
									\
DEVICE_AND_API_INIT(adc_##index, DT_ADC_##index##_NAME, &adc_stm32_init,\
		    &adc_stm32_data_##index, &adc_stm32_cfg_##index,	\
		    POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,	\
		    &api_stm32_driver_api);				\
									\
static void adc_stm32_cfg_func_##index(void)				\
{									\
	IRQ_CONNECT(DT_ADC_##index##_IRQ, DT_ADC_##index##_IRQ_PRI,	\
		    adc_stm32_isr, DEVICE_GET(adc_##index), 0);		\
	irq_enable(DT_ADC_##index##_IRQ);				\
}

#ifdef CONFIG_ADC_1
STM32_ADC_INIT(1)
#endif /* CONFIG_ADC_1 */