Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/** @file
 * @brief 802.15.4 fragment related functions
 */

/*
 * Copyright (c) 2016 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <logging/log.h>
LOG_MODULE_REGISTER(net_ieee802154_fragment,
		    CONFIG_NET_L2_IEEE802154_LOG_LEVEL);

#include <errno.h>
#include <net/net_core.h>
#include <net/net_pkt.h>
#include <net/net_if.h>
#include <net/net_stats.h>
#include <net/udp.h>

#include "ieee802154_fragment.h"

#include "net_private.h"
#include "6lo.h"
#include "6lo_private.h"

#define NET_FRAG_DISPATCH_MASK	0xF8
#define NET_FRAG_OFFSET_POS	(NET_6LO_FRAG_DATAGRAM_SIZE_LEN +	\
				 NET_6LO_FRAG_DATAGRAM_OFFSET_LEN)

#define BUF_TIMEOUT K_MSEC(50)

#define FRAG_REASSEMBLY_TIMEOUT \
	K_SECONDS(CONFIG_NET_L2_IEEE802154_REASSEMBLY_TIMEOUT)
#define REASS_CACHE_SIZE CONFIG_NET_L2_IEEE802154_FRAGMENT_REASS_CACHE_SIZE

static u16_t datagram_tag;

/**
 *  Reassemble cache : Depends on cache size it used for reassemble
 *  IPv6 packets simultaneously.
 */
struct frag_cache {
	struct k_delayed_work timer;	/* Reassemble timer */
	struct net_pkt *pkt;		/* Reassemble packet */
	u16_t size;			/* Datagram size */
	u16_t tag;			/* Datagram tag */
	bool used;
};

static struct frag_cache cache[REASS_CACHE_SIZE];

/**
 *  RFC 4944, section 5.3
 *  If an entire payload (e.g., IPv6) datagram fits within a single 802.15.4
 *  frame, it is unfragmented and the LoWPAN encapsulation should not contain
 *  a fragmentation header.  If the datagram does not fit within a single
 *  IEEE 802.15.4 frame, it SHALL be broken into link fragments.  As the
 *  fragment offset can only express multiples of eight bytes, all link
 *  fragments for a datagram except the last one MUST be multiples of eight
 *  bytes in length.
 *
 *  RFC 7668, section 3 (IPv6 over Bluetooth Low Energy)
 *  Functionality is comprised of link-local IPv6 addresses and stateless
 *  IPv6 address autoconfiguration, Neighbor Discovery, and header compression
 *  Fragmentation features from 6LoWPAN standards are not used due to Bluetooth
 *  LE's link-layer fragmentation support.
 */

/**
 *                     1                   2                   3
 *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *  |1 1 0 0 0|    datagram_size    |         datagram_tag          |
 *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *                     1                   2                   3
 *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *  |1 1 0 0 0|    datagram_size    |         datagram_tag          |
 *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *  |datagram_offset|
 *  +-+-+-+-+-+-+-+-+
 */

static inline void set_datagram_size(u8_t *ptr, u16_t size)
{
	ptr[0] |= ((size & 0x7FF) >> 8);
	ptr[1] = (u8_t) size;
}

static inline void set_datagram_tag(u8_t *ptr, u16_t tag)
{
	ptr[0] = tag >> 8;
	ptr[1] = (u8_t) tag;
}

static inline void set_up_frag_hdr(struct net_buf *frag, u16_t size,
				   u8_t offset)
{
	u8_t pos = frag->len;

	if (!offset) {
		net_buf_add(frag, NET_6LO_FRAG1_HDR_LEN);
		frag->data[pos] = NET_6LO_DISPATCH_FRAG1;
	} else {
		net_buf_add(frag, NET_6LO_FRAGN_HDR_LEN);
		frag->data[pos] = NET_6LO_DISPATCH_FRAGN;
	}

	set_datagram_size(frag->data + pos, size);
	pos += NET_6LO_FRAG_DATAGRAM_SIZE_LEN;

	set_datagram_tag(frag->data + pos, datagram_tag);
	pos += NET_6LO_FRAG_DATAGRAM_OFFSET_LEN;

	if (offset) {
		frag->data[pos] = offset;
	}
}

static inline u8_t calc_max_payload(struct net_buf *frag, u8_t offset)
{
	u8_t max = frag->size - frag->len;

	return (max & 0xF8);
}

static inline u8_t copy_data(struct ieee802154_fragment_ctx *ctx,
			     struct net_buf *frame_buf, u8_t max)
{
	u8_t move = ctx->buf->len - (ctx->pos - ctx->buf->data);

	move = MIN(move, max);

	memcpy(frame_buf->data + frame_buf->len, ctx->pos, move);

	net_buf_add(frame_buf, move);

	return move;
}

static inline void update_fragment_ctx(struct ieee802154_fragment_ctx *ctx,
				       u8_t move)
{
	if (move == (ctx->buf->len - (ctx->pos - ctx->buf->data))) {
		ctx->buf = ctx->buf->frags;
		if (ctx->buf) {
			ctx->pos = ctx->buf->data;
		}
	} else {
		ctx->pos += move;
	}
}

/**
 *  ch  : compressed (IPv6) header(s)
 *  fh  : fragment header (dispatch + size + tag + [offset])
 *  p   : payload (first fragment holds IPv6 hdr as payload)
 *  e   : empty space
 *  ll  : link layer
 *
 *  Input frame_buf to ieee802154_fragment() looks like below
 *
 *  | ll |
 *
 *  After fragment creation, frame_buf will look like:
 *
 *  | ll + fh + p + e |
 *
 *  p being taken from current pkt buffer and position.
 *
 *  Space in every fragment is because fragment payload should be multiple
 *  of 8 octets (we have predefined packets at compile time, data packet mtu
 *  is set already).
 *
 *  If it's the first fragment being created, fh will not own any offset
 *  (so it will be 1 byte smaller)
 */
void ieee802154_fragment(struct ieee802154_fragment_ctx *ctx,
			 struct net_buf *frame_buf, bool iphc)
{
	u8_t max;

	if (!ctx->offset) {
		datagram_tag++;
	}

	set_up_frag_hdr(frame_buf, ctx->pkt_size, ctx->offset);
	max = calc_max_payload(frame_buf, ctx->offset);

	ctx->processed += max;

	if (!ctx->offset) {
		/* First fragment needs to take into account 6lo */
		if (iphc) {
			max -= ctx->hdr_diff;
		} else {
			/* Adding IPv6 dispatch header */
			max += 1U;
		}
	}

	while (max && ctx->buf) {
		u8_t move;

		move = copy_data(ctx, frame_buf, max);

		update_fragment_ctx(ctx, move);

		max -= move;
	}

	ctx->offset = ctx->processed >> 3;
}

static inline u16_t get_datagram_size(u8_t *ptr)
{
	return ((ptr[0] & 0x1F) << 8) | ptr[1];
}

static inline u16_t get_datagram_tag(u8_t *ptr)
{
	return (ptr[0] << 8) | ptr[1];
}

static void update_protocol_header_lengths(struct net_pkt *pkt, u16_t size)
{
	NET_PKT_DATA_ACCESS_DEFINE(ipv6_access, struct net_ipv6_hdr);
	struct net_ipv6_hdr *ipv6;

	ipv6 = (struct net_ipv6_hdr *)net_pkt_get_data(pkt, &ipv6_access);
	if (!ipv6) {
		NET_ERR("could not get IPv6 header");
		return;
	}

	net_pkt_set_ip_hdr_len(pkt, NET_IPV6H_LEN);
	ipv6->len = htons(size - NET_IPV6H_LEN);

	net_pkt_set_data(pkt, &ipv6_access);

	if (ipv6->nexthdr == IPPROTO_UDP) {
		NET_PKT_DATA_ACCESS_DEFINE(udp_access, struct net_udp_hdr);
		struct net_udp_hdr *udp;

		udp = (struct net_udp_hdr *)net_pkt_get_data(pkt, &udp_access);
		if (udp) {
			udp->len = htons(size - NET_IPV6H_LEN);
			net_pkt_set_data(pkt, &udp_access);
		} else {
			NET_ERR("could not get UDP header");
		}
	}
}

static inline void clear_reass_cache(u16_t size, u16_t tag)
{
	u8_t i;

	for (i = 0U; i < REASS_CACHE_SIZE; i++) {
		if (!(cache[i].size == size && cache[i].tag == tag)) {
			continue;
		}

		if (cache[i].pkt) {
			net_pkt_unref(cache[i].pkt);
		}

		cache[i].pkt = NULL;
		cache[i].size = 0U;
		cache[i].tag = 0U;
		cache[i].used = false;
		k_delayed_work_cancel(&cache[i].timer);
	}
}

/**
 *  If the reassembly not completed within reassembly timeout discard
 *  the whole packet.
 */
static void reass_timeout(struct k_work *work)
{
	struct frag_cache *cache = CONTAINER_OF(work, struct frag_cache, timer);

	if (cache->pkt) {
		net_pkt_unref(cache->pkt);
	}

	cache->pkt = NULL;
	cache->size = 0U;
	cache->tag = 0U;
	cache->used = false;
}

/**
 *  Upon reception of first fragment with respective of size and tag
 *  create a new cache. If number of unused cache are out then
 *  discard the fragments.
 */
static inline struct frag_cache *set_reass_cache(struct net_pkt *pkt,
						 u16_t size, u16_t tag)
{
	int i;

	for (i = 0; i < REASS_CACHE_SIZE; i++) {
		if (cache[i].used) {
			continue;
		}

		cache[i].pkt = pkt;
		cache[i].size = size;
		cache[i].tag = tag;
		cache[i].used = true;

		k_delayed_work_init(&cache[i].timer, reass_timeout);
		k_delayed_work_submit(&cache[i].timer, FRAG_REASSEMBLY_TIMEOUT);
		return &cache[i];
	}

	return NULL;
}

/**
 *  Return cache if it matches with size and tag of stored caches,
 *  otherwise return NULL.
 */
static inline struct frag_cache *get_reass_cache(u16_t size, u16_t tag)
{
	u8_t i;

	for (i = 0U; i < REASS_CACHE_SIZE; i++) {
		if (cache[i].used) {
			if (cache[i].size == size &&
			    cache[i].tag == tag) {
				return &cache[i];
			}
		}
	}

	return NULL;
}

static inline void fragment_append(struct net_pkt *pkt, struct net_buf *frag)
{
	if ((frag->data[0] & NET_FRAG_DISPATCH_MASK) ==
	    NET_6LO_DISPATCH_FRAG1) {
		/* Always make sure first fragment is inserted first
		 * This will be useful for fragment_cached_pkt_len()
		 */
		frag->frags = pkt->buffer;
		pkt->buffer = frag;
	} else {
		net_pkt_append_buffer(pkt, frag);
	}
}

static inline size_t fragment_cached_pkt_len(struct net_pkt *pkt)
{
	size_t len = 0U;
	struct net_buf *frag;
	int hdr_len;
	u8_t *data;

	frag = pkt->buffer;
	while (frag) {
		u16_t hdr_len = NET_6LO_FRAGN_HDR_LEN;

		if ((frag->data[0] & NET_FRAG_DISPATCH_MASK) ==
		    NET_6LO_DISPATCH_FRAG1) {
			hdr_len = NET_6LO_FRAG1_HDR_LEN;
		}

		len += frag->len - hdr_len;

		frag = frag->frags;
	}

	/* 6lo assumes that fragment header has been removed,
	 * and in our side we assume first buffer is always the first fragment.
	 */
	data = pkt->buffer->data;
	pkt->buffer->data += NET_6LO_FRAG1_HDR_LEN;

	hdr_len = net_6lo_uncompress_hdr_diff(pkt);

	pkt->buffer->data = data;

	if (hdr_len == INT_MAX) {
		return 0;
	}

	return len + hdr_len;
}

static inline u16_t fragment_offset(struct net_buf *frag)
{
	if ((frag->data[0] & NET_FRAG_DISPATCH_MASK) ==
		    NET_6LO_DISPATCH_FRAG1) {
		return 0;
	}

	return ((u16_t)frag->data[NET_FRAG_OFFSET_POS] << 3);
}

static void fragment_move_back(struct net_pkt *pkt,
			       struct net_buf *frag, struct net_buf *stop)
{
	struct net_buf *prev, *current;

	prev = NULL;
	current = pkt->buffer;

	while (current && current != stop) {
		if (fragment_offset(frag) < fragment_offset(current)) {
			if (prev) {
				prev->frags = frag;
			}

			frag->frags = current;
			break;
		}

		prev = current;
		current = current->frags;
	}
}

static inline void fragment_remove_headers(struct net_pkt *pkt)
{
	struct net_buf *frag;

	frag = pkt->buffer;
	while (frag) {
		u16_t hdr_len = NET_6LO_FRAGN_HDR_LEN;

		if ((frag->data[0] & NET_FRAG_DISPATCH_MASK) ==
		    NET_6LO_DISPATCH_FRAG1) {
			hdr_len = NET_6LO_FRAG1_HDR_LEN;
		}

		memmove(frag->data, frag->data + hdr_len, frag->len - hdr_len);
		frag->len -= hdr_len;

		frag = frag->frags;
	}
}

static inline void fragment_reconstruct_packet(struct net_pkt *pkt)
{
	struct net_buf *prev, *current, *next;

	prev = NULL;
	current = pkt->buffer;

	while (current) {
		next = current->frags;

		if (!prev || (fragment_offset(prev) >
			      fragment_offset(current))) {
			prev = current;
		} else {
			fragment_move_back(pkt, current, prev);
		}

		current = next;
	}

	/* Let's remove now useless fragmentation headers */
	fragment_remove_headers(pkt);
}

/**
 *  Parse size and tag from the fragment, check if we have any cache
 *  related to it. If not create a new cache.
 *  Remove the fragmentation header and uncompress IPv6 and related headers.
 *  Cache Rx part of fragment along with data buf for the first fragment
 *  in the cache, remaining fragments just cache data fragment, unref
 *  RX pkt. So in both the cases caller can assume packet is consumed.
 */
static inline enum net_verdict fragment_add_to_cache(struct net_pkt *pkt)
{
	bool first_frag = false;
	struct frag_cache *cache;
	struct net_buf *frag;
	u16_t size;
	u16_t tag;

	/* Parse total size of packet */
	size = get_datagram_size(pkt->buffer->data);

	/* Parse the datagram tag */
	tag = get_datagram_tag(pkt->buffer->data +
			       NET_6LO_FRAG_DATAGRAM_SIZE_LEN);

	/* If there are no fragments in the cache means this frag
	 * is the first one. So cache Rx pkt otherwise not.
	 */
	frag = pkt->buffer;
	pkt->buffer = NULL;

	cache = get_reass_cache(size, tag);
	if (!cache) {
		cache = set_reass_cache(pkt, size, tag);
		if (!cache) {
			NET_ERR("Could not get a cache entry");
			pkt->buffer = frag;
			return NET_DROP;
		}

		first_frag = true;
	}

	fragment_append(cache->pkt, frag);

	if (fragment_cached_pkt_len(cache->pkt) == cache->size) {
		/* Assign buffer back to input packet. */
		pkt->buffer = cache->pkt->buffer;
		cache->pkt->buffer = NULL;

		fragment_reconstruct_packet(pkt);

		/* Once reassemble is done, cache is no longer needed. */
		clear_reass_cache(size, tag);

		if (!net_6lo_uncompress(pkt)) {
			NET_ERR("Could not uncompress. Bogus packet?");
			return NET_DROP;
		}

		net_pkt_cursor_init(pkt);

		update_protocol_header_lengths(pkt, size);

		net_pkt_cursor_init(pkt);

		NET_DBG("All fragments received and reassembled");

		return NET_CONTINUE;
	}

	/* Unref Rx part of original packet */
	if (!first_frag) {
		net_pkt_unref(pkt);
	}

	return NET_OK;
}


enum net_verdict ieee802154_reassemble(struct net_pkt *pkt)
{
	if (!pkt || !pkt->buffer) {
		NET_ERR("Nothing to reassemble");
		return NET_DROP;
	}

	if ((pkt->buffer->data[0] & NET_FRAG_DISPATCH_MASK) >=
	    NET_6LO_DISPATCH_FRAG1) {
		return fragment_add_to_cache(pkt);
	} else {
		NET_DBG("No frag dispatch (%02x)", pkt->buffer->data[0]);
		/* Received unfragmented packet, uncompress */
		if (net_6lo_uncompress(pkt)) {
			return NET_CONTINUE;
		}

		NET_ERR("Could not uncompress. Bogus packet?");
	}

	return NET_DROP;
}