Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/*
 * Copyright (c) 2011-2015 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Intel Local APIC timer driver
 *
 * Typically, the local APIC timer operates in periodic mode. That is, after
 * its down counter reaches zero and triggers a timer interrupt, it is reset
 * to its initial value and the down counting continues.
 *
 * If the TICKLESS_IDLE kernel configuration option is enabled, the timer may
 * be programmed to wake the system in N >= TICKLESS_IDLE_THRESH ticks.  The
 * kernel invokes z_timer_idle_enter() to program the down counter in one-shot
 * mode to trigger an interrupt in N ticks.  When the timer expires or when
 * another interrupt is detected, the kernel's interrupt stub invokes
 * z_clock_idle_exit() to leave the tickless idle state.
 *
 * @internal
 * Factors that increase the driver's complexity:
 *
 * 1. As the down-counter is a 32-bit value, the number of ticks for which the
 * system can be in tickless idle is limited to 'max_system_ticks'; This
 * corresponds to 'cycles_per_max_ticks' (as the timer is programmed in cycles).
 *
 * 2. When the request to enter tickless arrives, any remaining cycles until
 * the next tick must be accounted for to maintain accuracy.
 *
 * 3. The act of entering tickless idle may potentially straddle a tick
 * boundary. Thus the number of remaining cycles to the next tick read from
 * the down counter is suspect as it could occur before or after the tick
 * boundary (thus before or after the counter is reset). If the tick is
 * straddled, the following will occur:
 *    a. Enter tickless idle in one-shot mode
 *    b. Immediately leave tickless idle
 *    c. Process the tick event in the timer_int_handler() and revert
 *       to periodic mode.
 *    d. Re-run the scheduler and possibly re-enter tickless idle
 *
 * 4. Tickless idle may be prematurely aborted due to a straddled tick.  See
 * previous factor.
 *
 * 5. Tickless idle may be prematurely aborted due to a non-timer interrupt.
 * Its handler may make a thread ready to run, so any elapsed ticks
 * must be accounted for and the timer must also expire at the end of the
 * next logical tick so timer_int_handler() can put it back in periodic mode.
 * This can only be distinguished from the previous factor by the execution of
 * timer_int_handler().
 *
 * 6. Tickless idle may end naturally.  The down counter should be zero in
 * this case. However, some targets do not implement the local APIC timer
 * correctly and the down-counter continues to decrement.
 * @endinternal
 */

#include <kernel.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <sys_clock.h>
#include <drivers/timer/system_timer.h>
#include <power/power.h>
#include <device.h>
#include <kernel_structs.h>

#include "legacy_api.h"

/* Local APIC Timer Bits */

#define LOAPIC_TIMER_DIVBY_2 0x0	 /* Divide by 2 */
#define LOAPIC_TIMER_DIVBY_4 0x1	 /* Divide by 4 */
#define LOAPIC_TIMER_DIVBY_8 0x2	 /* Divide by 8 */
#define LOAPIC_TIMER_DIVBY_16 0x3	/* Divide by 16 */
#define LOAPIC_TIMER_DIVBY_32 0x8	/* Divide by 32 */
#define LOAPIC_TIMER_DIVBY_64 0x9	/* Divide by 64 */
#define LOAPIC_TIMER_DIVBY_128 0xa       /* Divide by 128 */
#define LOAPIC_TIMER_DIVBY_1 0xb	 /* Divide by 1 */
#define LOAPIC_TIMER_DIVBY_MASK 0xf      /* mask bits */
#define LOAPIC_TIMER_PERIODIC 0x00020000 /* Timer Mode: Periodic */


#if defined(CONFIG_TICKLESS_IDLE)
#define TIMER_MODE_ONE_SHOT     0
#define TIMER_MODE_PERIODIC     1
#else /* !CONFIG_TICKLESS_IDLE */
#define tickless_idle_init() \
	do {/* nothing */              \
	} while (0)
#endif /* !CONFIG_TICKLESS_IDLE */

static s32_t _sys_idle_elapsed_ticks = 1;

/* computed counter 0 initial count value */
static u32_t __noinit cycles_per_tick;

#if defined(CONFIG_TICKLESS_IDLE)
static u32_t programmed_cycles;
static u32_t programmed_full_ticks;
static u32_t __noinit max_system_ticks;
static u32_t __noinit cycles_per_max_ticks;
#ifndef CONFIG_TICKLESS_KERNEL
static bool timer_known_to_have_expired;
static unsigned char timer_mode = TIMER_MODE_PERIODIC;
#endif
#endif /* CONFIG_TICKLESS_IDLE */

#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static u32_t loapic_timer_device_power_state;
static u32_t reg_timer_save;
static u32_t reg_timer_cfg_save;
#endif

/**
 *
 * @brief Set the timer for periodic mode
 *
 * This routine sets the timer for periodic mode.
 *
 * @return N/A
 */
static inline void periodic_mode_set(void)
{
	x86_write_loapic(LOAPIC_TIMER,
		x86_read_loapic(LOAPIC_TIMER) | LOAPIC_TIMER_PERIODIC);
}


/**
 *
 * @brief Set the initial count register
 *
 * This routine sets value from which the timer will count down.
 * Note that setting the value to zero stops the timer.
 *
 * @param count Count from which timer is to count down
 * @return N/A
 */
static inline void initial_count_register_set(u32_t count)
{
	x86_write_loapic(LOAPIC_TIMER_ICR, count);
}

#if defined(CONFIG_TICKLESS_IDLE)
/**
 *
 * @brief Set the timer for one shot mode
 *
 * This routine sets the timer for one shot mode.
 *
 * @return N/A
 */
static inline void one_shot_mode_set(void)
{
	x86_write_loapic(LOAPIC_TIMER,
		x86_read_loapic(LOAPIC_TIMER) & ~LOAPIC_TIMER_PERIODIC);
}
#endif /* CONFIG_TICKLESS_IDLE */

#if defined(CONFIG_TICKLESS_KERNEL) || defined(CONFIG_TICKLESS_IDLE)
/**
 *
 * @brief Get the value from the current count register
 *
 * This routine gets the value from the timer's current count register.  This
 * value is the 'time' remaining to decrement before the timer triggers an
 * interrupt.
 *
 * @return N/A
 */
static inline u32_t current_count_register_get(void)
{
	return x86_read_loapic(LOAPIC_TIMER_CCR);
}
#endif

#if defined(CONFIG_TICKLESS_IDLE)
/**
 *
 * @brief Get the value from the initial count register
 *
 * This routine gets the value from the initial count register.
 *
 * @return N/A
 */
static inline u32_t initial_count_register_get(void)
{
	return x86_read_loapic(LOAPIC_TIMER_ICR);
}
#endif /* CONFIG_TICKLESS_IDLE */

#ifdef CONFIG_TICKLESS_KERNEL
static inline void program_max_cycles(void)
{
	programmed_cycles = cycles_per_max_ticks;
	initial_count_register_set(programmed_cycles);
}
#endif

void timer_int_handler(void *unused /* parameter is not used */
				 )
{
#ifdef CONFIG_EXECUTION_BENCHMARKING
	__asm__ __volatile__ (
		"pushl %eax\n\t"
		"pushl %edx\n\t"
		"rdtsc\n\t"
		"mov %eax, arch_timing_tick_start\n\t"
		"mov %edx, arch_timing_tick_start+4\n\t"
		"pop %edx\n\t"
		"pop %eax\n\t");
#endif
	ARG_UNUSED(unused);

#if defined(CONFIG_TICKLESS_KERNEL)
	if (!programmed_full_ticks) {
		if (_sys_clock_always_on) {
			z_tick_set(z_clock_uptime());
			program_max_cycles();
		}
		return;
	}

	u32_t cycles = current_count_register_get();

	if ((cycles > 0) && (cycles < programmed_cycles)) {
		/* stale interrupt */
		return;
	}

	_sys_idle_elapsed_ticks = programmed_full_ticks;

	/*
	 * Clear programmed ticks before announcing elapsed time so
	 * that recursive calls to _update_elapsed_time() will not
	 * announce already consumed elapsed time
	 */
	programmed_full_ticks = 0U;

	z_clock_announce(_sys_idle_elapsed_ticks);

	/* z_clock_announce() could cause new programming */
	if (!programmed_full_ticks && _sys_clock_always_on) {
		z_tick_set(z_clock_uptime());
		program_max_cycles();
	}
#else
#ifdef CONFIG_TICKLESS_IDLE
	if (timer_mode == TIMER_MODE_ONE_SHOT) {
		if (!timer_known_to_have_expired) {
			u32_t  cycles;

			/*
			 * The timer fired unexpectedly. This is due
			 * to one of two cases:
			 *   1. Entering tickless idle straddled a tick.
			 *   2. Leaving tickless idle straddled the final tick.
			 * Due to the timer reprogramming in
			 * z_clock_idle_exit(), case #2 can be handled
			 * as a fall-through.
			 *
			 * NOTE: Although the cycle count is supposed
			 * to stop decrementing once it hits zero in
			 * one-shot mode, not all targets implement
			 * this properly (and continue to decrement).
			 * Thus, we have to perform a second
			 * comparison to check for wrap-around.
			 */

			cycles = current_count_register_get();
			if ((cycles > 0) && (cycles < programmed_cycles)) {
				/* Case 1 */
				_sys_idle_elapsed_ticks = 0;
			}
		}

		/* Return the timer to periodic mode */
		periodic_mode_set();
		initial_count_register_set(cycles_per_tick - 1);
		timer_known_to_have_expired = false;
		timer_mode = TIMER_MODE_PERIODIC;
	}

	_sys_idle_elapsed_ticks = 1;
	z_clock_announce(_sys_idle_elapsed_ticks);
#else
	z_clock_announce(_sys_idle_elapsed_ticks);
#endif /*CONFIG_TICKLESS_IDLE*/
#endif
#ifdef CONFIG_EXECUTION_BENCHMARKING
	__asm__ __volatile__ (
		"pushl %eax\n\t"
		"pushl %edx\n\t"
		"rdtsc\n\t"
		"mov %eax, arch_timing_tick_end\n\t"
		"mov %edx, arch_timing_tick_end+4\n\t"
		"pop %edx\n\t"
		"pop %eax\n\t");
#endif /* CONFIG_EXECUTION_BENCHMARKING */
}

#ifdef CONFIG_TICKLESS_KERNEL
u32_t z_get_program_time(void)
{
	return programmed_full_ticks;
}

u32_t z_get_remaining_program_time(void)
{
	if (programmed_full_ticks == 0U) {
		return 0;
	}

	return current_count_register_get() / cycles_per_tick;
}

u32_t z_get_elapsed_program_time(void)
{
	if (programmed_full_ticks == 0U) {
		return 0;
	}

	return programmed_full_ticks -
	    (current_count_register_get() / cycles_per_tick);
}

void z_set_time(u32_t time)
{
	if (!time) {
		programmed_full_ticks = 0U;
		return;
	}

	programmed_full_ticks =
	    time > max_system_ticks ? max_system_ticks : time;

	z_tick_set(z_clock_uptime());

	programmed_cycles = programmed_full_ticks * cycles_per_tick;
	initial_count_register_set(programmed_cycles);
}

void z_enable_sys_clock(void)
{
	if (!programmed_full_ticks) {
		program_max_cycles();
	}
}

u64_t z_clock_uptime(void)
{
	u64_t elapsed;

	elapsed = z_tick_get();
	if (programmed_cycles) {
		elapsed +=
		    (programmed_cycles -
		     current_count_register_get()) / cycles_per_tick;
	}

	return elapsed;
}
#endif

#if defined(CONFIG_TICKLESS_IDLE)
/**
 *
 * @brief Initialize the tickless idle feature
 *
 * This routine initializes the tickless idle feature.  Note that the maximum
 * number of ticks that can elapse during a "tickless idle" is limited by
 * <cycles_per_tick>.  The larger the value (the lower the tick frequency),
 * the fewer elapsed ticks during a "tickless idle".  Conversely, the smaller
 * the value (the higher the tick frequency), the more elapsed ticks during a
 * "tickless idle".
 *
 * @return N/A
 */
static void tickless_idle_init(void)
{
	/*
	 * Calculate the maximum number of system ticks less one. This
	 * guarantees that an overflow will not occur when any remaining
	 * cycles are added to <cycles_per_max_ticks> when calculating
	 * <programmed_cycles>.
	 */
	max_system_ticks = (0xffffffff / cycles_per_tick) - 1;
	cycles_per_max_ticks = max_system_ticks * cycles_per_tick;
}

/**
 *
 * @brief Place system timer into idle state
 *
 * Re-program the timer to enter into the idle state for the given number of
 * ticks. It is placed into one shot mode where it will fire in the number of
 * ticks supplied or the maximum number of ticks that can be programmed into
 * hardware. A value of -1 means infinite number of ticks.
 *
 * @return N/A
 */
void z_timer_idle_enter(s32_t ticks /* system ticks */
				)
{
#ifdef CONFIG_TICKLESS_KERNEL
	if (ticks != K_FOREVER) {
		/* Need to reprogram only if current program is smaller */
		if (ticks > programmed_full_ticks) {
			z_set_time(ticks);
		}
	} else {
		programmed_full_ticks = 0U;
		programmed_cycles = 0U;
		initial_count_register_set(0); /* 0 disables timer */
	}
#else
	u32_t  cycles;

	/*
	 * Although interrupts are disabled, the LOAPIC timer is still counting
	 * down. Take a snapshot of current count register to get the number of
	 * cycles remaining in the timer before it signals an interrupt and apply
	 * that towards the one-shot calculation to maintain accuracy.
	 *
	 * NOTE: If entering tickless idle straddles a tick, 'programmed_cycles'
	 * and 'programmmed_full_ticks' may be incorrect as we do not know which
	 * side of the tick the snapshot occurred.  This is not a problem as the
	 * values will be corrected once the straddling is detected.
	 */

	cycles = current_count_register_get();

	if ((ticks == K_FOREVER) || (ticks > max_system_ticks)) {
		/*
		 * The number of cycles until the timer must fire next might not fit
		 * in the 32-bit counter register. To work around this, program
		 * the counter to fire in the maximum number of ticks (plus any
		 * remaining cycles).
		 */

		programmed_full_ticks = max_system_ticks;
		programmed_cycles = cycles + cycles_per_max_ticks;
	} else {
		programmed_full_ticks = ticks - 1;
		programmed_cycles = cycles + (programmed_full_ticks * cycles_per_tick);
	}

	/* Set timer to one-shot mode */
	one_shot_mode_set();
	initial_count_register_set(programmed_cycles);
	timer_mode = TIMER_MODE_ONE_SHOT;
#endif
}

/**
 *
 * @brief Handling of tickless idle when interrupted
 *
 * The routine is responsible for taking the timer out of idle mode and
 * generating an interrupt at the next tick interval.
 *
 * Note that in this routine, _sys_idle_elapsed_ticks must be zero because the
 * ticker has done its work and consumed all the ticks. This has to be true
 * otherwise idle mode wouldn't have been entered in the first place.
 *
 * @return N/A
 */
void z_clock_idle_exit(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
	if (!programmed_full_ticks && _sys_clock_always_on) {
		program_max_cycles();
	}
#else
	u32_t remaining_cycles;
	u32_t remaining_full_ticks;

	/*
	 * Interrupts are locked and idling has ceased. The cause of the cessation
	 * is unknown. It may be due to one of three cases.
	 *  1. The timer, which was previously placed into one-shot mode has
	 *     counted down to zero and signaled an interrupt.
	 *  2. A non-timer interrupt occurred. Note that the LOAPIC timer will
	 *     still continue to decrement and may yet signal an interrupt.
	 *  3. The LOAPIC timer signaled an interrupt while the timer was being
	 *     programmed for one-shot mode.
	 *
	 * NOTE: Although the cycle count is supposed to stop decrementing once it
	 * hits zero in one-shot mode, not all targets implement this properly
	 * (and continue to decrement).  Thus a second comparison is required to
	 * check for wrap-around.
	 */

	remaining_cycles = current_count_register_get();

	if ((remaining_cycles == 0U) ||
		(remaining_cycles >= programmed_cycles)) {
		/*
		 * The timer has expired. The handler timer_int_handler() is
		 * guaranteed to execute. Track the number of elapsed ticks. The
		 * handler timer_int_handler() will account for the final tick.
		 */

		_sys_idle_elapsed_ticks = programmed_full_ticks;

		/*
		 * Announce elapsed ticks to the kernel. Note we are guaranteed
		 * that the timer ISR will execute before the tick event is serviced.
		 * (The timer ISR reprograms the timer for the next tick.)
		 */

		z_clock_announce(_sys_idle_elapsed_ticks);

		timer_known_to_have_expired = true;

		return;
	}

	timer_known_to_have_expired = false;

	/*
	 * Either a non-timer interrupt occurred, or we straddled a tick when
	 * entering tickless idle. It is impossible to determine which occurred
	 * at this point. Regardless of the cause, ensure that the timer will
	 * expire at the end of the next tick in case the ISR makes any threads
	 * ready to run.
	 *
	 * NOTE #1: In the case of a straddled tick, the '_sys_idle_elapsed_ticks'
	 * calculation below may result in either 0 or 1. If 1, then this may
	 * result in a harmless extra call to z_clock_announce().
	 *
	 * NOTE #2: In the case of a straddled tick, it is assumed that when the
	 * timer is reprogrammed, it will be reprogrammed with a cycle count
	 * sufficiently close to one tick that the timer will not expire before
	 * timer_int_handler() is executed.
	 */

	remaining_full_ticks = remaining_cycles / cycles_per_tick;

	_sys_idle_elapsed_ticks = programmed_full_ticks - remaining_full_ticks;

	if (_sys_idle_elapsed_ticks > 0) {
		z_clock_announce(_sys_idle_elapsed_ticks);
	}

	if (remaining_full_ticks > 0) {
		/*
		 * Re-program the timer (still in one-shot mode) to fire at the end of
		 * the tick, being careful to not program zero thus stopping the timer.
		 */

		programmed_cycles = 1 + ((remaining_cycles - 1) % cycles_per_tick);

		initial_count_register_set(programmed_cycles);
	}
#endif
}
#endif /* CONFIG_TICKLESS_IDLE */

/**
 *
 * @brief Initialize and enable the system clock
 *
 * This routine is used to program the timer to deliver interrupts at the
 * rate specified via the 'sys_clock_us_per_tick' global variable.
 *
 * @return 0
 */
int z_clock_driver_init(struct device *device)
{
	ARG_UNUSED(device);

	/* determine the timer counter value (in timer clock cycles/system tick)
	 */

	cycles_per_tick = k_ticks_to_cyc_floor32(1);

	tickless_idle_init();

	x86_write_loapic(LOAPIC_TIMER_CONFIG,
		     (x86_read_loapic(LOAPIC_TIMER_CONFIG) & ~0xf)
		     | LOAPIC_TIMER_DIVBY_1);

#ifdef CONFIG_TICKLESS_KERNEL
	one_shot_mode_set();
#else
	periodic_mode_set();
#endif
	initial_count_register_set(cycles_per_tick - 1);
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
	loapic_timer_device_power_state = DEVICE_PM_ACTIVE_STATE;
#endif

	IRQ_CONNECT(CONFIG_LOAPIC_TIMER_IRQ, CONFIG_LOAPIC_TIMER_IRQ_PRIORITY,
		    timer_int_handler, 0, 0);
	irq_enable(CONFIG_LOAPIC_TIMER_IRQ);

	return 0;
}

#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static int sys_clock_suspend(struct device *dev)
{
	ARG_UNUSED(dev);

	reg_timer_save = x86_read_loapic(LOAPIC_TIMER);
	reg_timer_cfg_save = x86_read_loapic(LOAPIC_TIMER_CONFIG);
	loapic_timer_device_power_state = DEVICE_PM_SUSPEND_STATE;

	return 0;
}

static int sys_clock_resume(struct device *dev)
{
	ARG_UNUSED(dev);

	x86_write_loapic(LOAPIC_TIMER, reg_timer_save);
	x86_write_loapic(LOAPIC_TIMER_CONFIG, reg_timer_cfg_save);

	/*
	 * It is difficult to accurately know the time spent in DS.
	 * We can use TSC or RTC but that will create a dependency
	 * on those components. Other issue is about what to do
	 * with pending timers. Following are some options :-
	 *
	 * 1) Expire all timers based on time spent found using some
	 *    source like TSC
	 * 2) Expire all timers anyway
	 * 3) Expire only the timer at the top
	 * 4) Continue from where the timer left
	 *
	 * 1 and 2 require change to how timers are handled. 4 may not
	 * give a good user experience. After waiting for a long period
	 * in DS, the system would appear dead if it waits again.
	 *
	 * Current implementation uses option 3. The top most timer is
	 * expired. Following code will set the counter to a low number
	 * so it would immediately expire and generate timer interrupt
	 * which will process the top most timer. Note that timer IC
	 * cannot be set to 0.  Setting it to 0 will stop the timer.
	 */

	initial_count_register_set(1);
	loapic_timer_device_power_state = DEVICE_PM_ACTIVE_STATE;

	return 0;
}

/*
* Implements the driver control management functionality
* the *context may include IN data or/and OUT data
*/
int z_clock_device_ctrl(struct device *port, u32_t ctrl_command,
			  void *context, device_pm_cb cb, void *arg)
{
	int ret = 0;

	if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
		if (*((u32_t *)context) == DEVICE_PM_SUSPEND_STATE) {
			ret = sys_clock_suspend(port);
		} else if (*((u32_t *)context) == DEVICE_PM_ACTIVE_STATE) {
			ret = sys_clock_resume(port);
		}
	} else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) {
		*((u32_t *)context) = loapic_timer_device_power_state;
	}

	if (cb) {
		cb(port, ret, context, arg);
	}

	return ret;
}
#endif

/**
 *
 * @brief Read the platform's timer hardware
 *
 * This routine returns the current time in terms of timer hardware clock
 * cycles. We use the x86 TSC as the LOAPIC timer can't be used as a periodic
 * system clock and a timestamp source at the same time.
 *
 * @return up counter of elapsed clock cycles
 */
u32_t z_timer_cycle_get_32(void)
{
#if CONFIG_TSC_CYCLES_PER_SEC != 0
	u64_t tsc;

	/* 64-bit math to avoid overflows */
	tsc = z_tsc_read() * (u64_t)sys_clock_hw_cycles_per_sec() /
		(u64_t) CONFIG_TSC_CYCLES_PER_SEC;
	return (u32_t)tsc;
#else
	/* TSC runs same as the bus speed, nothing to do but return the TSC
	 * value
	 */
	return z_do_read_cpu_timestamp32();
#endif
}

#if defined(CONFIG_SYSTEM_CLOCK_DISABLE)
/**
 *
 * @brief Stop announcing ticks into the kernel
 *
 * This routine simply disables the LOAPIC counter such that interrupts are no
 * longer delivered.
 *
 * @return N/A
 */
void sys_clock_disable(void)
{
	unsigned int key; /* interrupt lock level */

	key = irq_lock();

	irq_disable(CONFIG_LOAPIC_TIMER_IRQ);

	initial_count_register_set(0);
	irq_unlock(key);
}

#endif /* CONFIG_SYSTEM_CLOCK_DISABLE */