Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
 * Copyright (c) 2015 Intel Corporation.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/* spi_dw.c - Designware SPI driver implementation */

#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_dw);

#if (CONFIG_SPI_LOG_LEVEL == 4)
#define DBG_COUNTER_INIT()	\
	u32_t __cnt = 0
#define DBG_COUNTER_INC()	\
	(__cnt++)
#define DBG_COUNTER_RESULT()	\
	(__cnt)
#else
#define DBG_COUNTER_INIT() {; }
#define DBG_COUNTER_INC() {; }
#define DBG_COUNTER_RESULT() 0
#endif

#include <errno.h>

#include <kernel.h>
#include <arch/cpu.h>

#include <soc.h>
#include <device.h>
#include <init.h>

#include <sys/sys_io.h>
#include <drivers/clock_control.h>
#include <sys/util.h>

#ifdef CONFIG_IOAPIC
#include <drivers/interrupt_controller/ioapic.h>
#endif

#include <drivers/spi.h>

#include "spi_dw.h"
#include "spi_context.h"

static inline bool spi_dw_is_slave(struct spi_dw_data *spi)
{
	return (IS_ENABLED(CONFIG_SPI_SLAVE) &&
		spi_context_is_slave(&spi->ctx));
}

static void completed(struct device *dev, int error)
{
	const struct spi_dw_config *info = dev->config->config_info;
	struct spi_dw_data *spi = dev->driver_data;

	if (error) {
		goto out;
	}

	if (spi_context_tx_on(&spi->ctx) ||
	    spi_context_rx_on(&spi->ctx)) {
		return;
	}

out:
	/* need to give time for FIFOs to drain before issuing more commands */
	while (test_bit_sr_busy(info->regs)) {
	}

	/* Disabling interrupts */
	write_imr(DW_SPI_IMR_MASK, info->regs);
	/* Disabling the controller */
	clear_bit_ssienr(info->regs);

	spi_context_cs_control(&spi->ctx, false);

	LOG_DBG("SPI transaction completed %s error",
		    error ? "with" : "without");

	spi_context_complete(&spi->ctx, error);
}

static void push_data(struct device *dev)
{
	const struct spi_dw_config *info = dev->config->config_info;
	struct spi_dw_data *spi = dev->driver_data;
	u32_t data = 0U;
	u32_t f_tx;

	DBG_COUNTER_INIT();

	if (spi_context_rx_on(&spi->ctx)) {
		f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs) -
			read_rxflr(info->regs);
		if ((int)f_tx < 0) {
			f_tx = 0U; /* if rx-fifo is full, hold off tx */
		}
	} else {
		f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs);
	}

	while (f_tx) {
		if (spi_context_tx_buf_on(&spi->ctx)) {
			switch (spi->dfs) {
			case 1:
				data = UNALIGNED_GET((u8_t *)
						     (spi->ctx.tx_buf));
				break;
			case 2:
				data = UNALIGNED_GET((u16_t *)
						     (spi->ctx.tx_buf));
				break;
#ifndef CONFIG_ARC
			case 4:
				data = UNALIGNED_GET((u32_t *)
						     (spi->ctx.tx_buf));
				break;
#endif
			}
		} else if (spi_context_rx_on(&spi->ctx)) {
			/* No need to push more than necessary */
			if ((int)(spi->ctx.rx_len - spi->fifo_diff) <= 0) {
				break;
			}

			data = 0U;
		} else if (spi_context_tx_on(&spi->ctx)) {
			data = 0U;
		} else {
			/* Nothing to push anymore */
			break;
		}

		write_dr(data, info->regs);

		spi_context_update_tx(&spi->ctx, spi->dfs, 1);
		spi->fifo_diff++;

		f_tx--;

		DBG_COUNTER_INC();
	}

	if (!spi_context_tx_on(&spi->ctx)) {
		/* prevents any further interrupts demanding TX fifo fill */
		write_txftlr(0, info->regs);
	}

	LOG_DBG("Pushed: %d", DBG_COUNTER_RESULT());
}

static void pull_data(struct device *dev)
{
	const struct spi_dw_config *info = dev->config->config_info;
	struct spi_dw_data *spi = dev->driver_data;

	DBG_COUNTER_INIT();

	while (read_rxflr(info->regs)) {
		u32_t data = read_dr(info->regs);

		DBG_COUNTER_INC();

		if (spi_context_rx_buf_on(&spi->ctx)) {
			switch (spi->dfs) {
			case 1:
				UNALIGNED_PUT(data, (u8_t *)spi->ctx.rx_buf);
				break;
			case 2:
				UNALIGNED_PUT(data, (u16_t *)spi->ctx.rx_buf);
				break;
#ifndef CONFIG_ARC
			case 4:
				UNALIGNED_PUT(data, (u32_t *)spi->ctx.rx_buf);
				break;
#endif
			}
		}

		spi_context_update_rx(&spi->ctx, spi->dfs, 1);
		spi->fifo_diff--;
	}

	if (!spi->ctx.rx_len && spi->ctx.tx_len < DW_SPI_FIFO_DEPTH) {
		write_rxftlr(spi->ctx.tx_len - 1, info->regs);
	} else if (read_rxftlr(info->regs) >= spi->ctx.rx_len) {
		write_rxftlr(spi->ctx.rx_len - 1, info->regs);
	}

	LOG_DBG("Pulled: %d", DBG_COUNTER_RESULT());
}

static int spi_dw_configure(const struct spi_dw_config *info,
			    struct spi_dw_data *spi,
			    const struct spi_config *config)
{
	u32_t ctrlr0 = 0U;

	LOG_DBG("%p (prev %p)", config, spi->ctx.config);

	if (spi_context_configured(&spi->ctx, config)) {
		/* Nothing to do */
		return 0;
	}

	/* Verify if requested op mode is relevant to this controller */
	if (config->operation & SPI_OP_MODE_SLAVE) {
		if (!(info->op_modes & SPI_CTX_RUNTIME_OP_MODE_SLAVE)) {
			LOG_ERR("Slave mode not supported");
			return -ENOTSUP;
		}
	} else {
		if (!(info->op_modes & SPI_CTX_RUNTIME_OP_MODE_MASTER)) {
			LOG_ERR("Master mode not supported");
			return -ENOTSUP;
		}
	}

	if (config->operation & (SPI_TRANSFER_LSB |
				 SPI_LINES_DUAL | SPI_LINES_QUAD)) {
		LOG_ERR("Unsupported configuration");
		return -EINVAL;
	}

	/* Word size */
	ctrlr0 |= DW_SPI_CTRLR0_DFS(SPI_WORD_SIZE_GET(config->operation));

	/* Determine how many bytes are required per-frame */
	spi->dfs = SPI_WS_TO_DFS(SPI_WORD_SIZE_GET(config->operation));

	/* SPI mode */
	if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
		ctrlr0 |= DW_SPI_CTRLR0_SCPOL;
	}

	if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
		ctrlr0 |= DW_SPI_CTRLR0_SCPH;
	}

	if (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) {
		ctrlr0 |= DW_SPI_CTRLR0_SRL;
	}

	/* Installing the configuration */
	write_ctrlr0(ctrlr0, info->regs);

	/* At this point, it's mandatory to set this on the context! */
	spi->ctx.config = config;

	if (!spi_dw_is_slave(spi)) {
		/* Baud rate and Slave select, for master only */
		write_baudr(SPI_DW_CLK_DIVIDER(info->clock_frequency,
					       config->frequency), info->regs);
		write_ser(1 << config->slave, info->regs);
	}

	spi_context_cs_configure(&spi->ctx);

	if (spi_dw_is_slave(spi)) {
		LOG_DBG("Installed slave config %p:"
			    " ws/dfs %u/%u, mode %u/%u/%u",
			    config,
			    SPI_WORD_SIZE_GET(config->operation), spi->dfs,
			    (SPI_MODE_GET(config->operation) &
			     SPI_MODE_CPOL) ? 1 : 0,
			    (SPI_MODE_GET(config->operation) &
			     SPI_MODE_CPHA) ? 1 : 0,
			    (SPI_MODE_GET(config->operation) &
			     SPI_MODE_LOOP) ? 1 : 0);
	} else {
		LOG_DBG("Installed master config %p: freq %uHz (div = %u),"
			    " ws/dfs %u/%u, mode %u/%u/%u, slave %u",
			    config, config->frequency,
			    SPI_DW_CLK_DIVIDER(info->clock_frequency,
					       config->frequency),
			    SPI_WORD_SIZE_GET(config->operation), spi->dfs,
			    (SPI_MODE_GET(config->operation) &
			     SPI_MODE_CPOL) ? 1 : 0,
			    (SPI_MODE_GET(config->operation) &
			     SPI_MODE_CPHA) ? 1 : 0,
			    (SPI_MODE_GET(config->operation) &
			     SPI_MODE_LOOP) ? 1 : 0,
			    config->slave);
	}

	return 0;
}

static uint32_t spi_dw_compute_ndf(const struct spi_buf *rx_bufs,
				   size_t rx_count, u8_t dfs)
{
	u32_t len = 0U;

	for (; rx_count; rx_bufs++, rx_count--) {
		if (len > (UINT16_MAX - rx_bufs->len)) {
			goto error;
		}

		len += rx_bufs->len;
	}

	if (len) {
		return (len / dfs) - 1;
	}
error:
	return UINT32_MAX;
}

static void spi_dw_update_txftlr(const struct spi_dw_config *info,
				 struct spi_dw_data *spi)
{
	u32_t reg_data = DW_SPI_TXFTLR_DFLT;

	if (spi_dw_is_slave(spi)) {
		if (!spi->ctx.tx_len) {
			reg_data = 0U;
		} else if (spi->ctx.tx_len < DW_SPI_TXFTLR_DFLT) {
			reg_data = spi->ctx.tx_len - 1;
		}
	}

	LOG_DBG("TxFTLR: %u", reg_data);

	write_txftlr(reg_data, info->regs);
}

static int transceive(struct device *dev,
		      const struct spi_config *config,
		      const struct spi_buf_set *tx_bufs,
		      const struct spi_buf_set *rx_bufs,
		      bool asynchronous,
		      struct k_poll_signal *signal)
{
	const struct spi_dw_config *info = dev->config->config_info;
	struct spi_dw_data *spi = dev->driver_data;
	u32_t tmod = DW_SPI_CTRLR0_TMOD_TX_RX;
	u32_t reg_data;
	int ret;

	spi_context_lock(&spi->ctx, asynchronous, signal);

	/* Configure */
	ret = spi_dw_configure(info, spi, config);
	if (ret) {
		goto out;
	}

	if (!rx_bufs || !rx_bufs->buffers) {
		tmod = DW_SPI_CTRLR0_TMOD_TX;
	} else if (!tx_bufs || !tx_bufs->buffers) {
		tmod = DW_SPI_CTRLR0_TMOD_RX;
	}

	/* ToDo: add a way to determine EEPROM mode */

	if (tmod >= DW_SPI_CTRLR0_TMOD_RX &&
	    !spi_dw_is_slave(spi)) {
		reg_data = spi_dw_compute_ndf(rx_bufs->buffers,
					      rx_bufs->count,
					      spi->dfs);
		if (reg_data == UINT32_MAX) {
			ret = -EINVAL;
			goto out;
		}

		write_ctrlr1(reg_data, info->regs);
	} else {
		write_ctrlr1(0, info->regs);
	}

	if (spi_dw_is_slave(spi)) {
		/* Enabling MISO line relevantly */
		if (tmod == DW_SPI_CTRLR0_TMOD_RX) {
			tmod |= DW_SPI_CTRLR0_SLV_OE;
		} else {
			tmod &= ~DW_SPI_CTRLR0_SLV_OE;
		}
	}

	/* Updating TMOD in CTRLR0 register */
	reg_data = read_ctrlr0(info->regs);
	reg_data &= ~DW_SPI_CTRLR0_TMOD_RESET;
	reg_data |= tmod;

	write_ctrlr0(reg_data, info->regs);

	/* Set buffers info */
	spi_context_buffers_setup(&spi->ctx, tx_bufs, rx_bufs, spi->dfs);

	spi->fifo_diff = 0U;

	/* Tx Threshold */
	spi_dw_update_txftlr(info, spi);

	/* Does Rx thresholds needs to be lower? */
	reg_data = DW_SPI_RXFTLR_DFLT;

	if (spi_dw_is_slave(spi)) {
		if (spi->ctx.rx_len &&
		    spi->ctx.rx_len < DW_SPI_RXFTLR_DFLT) {
			reg_data = spi->ctx.rx_len - 1;
		}
	} else {
		if (spi->ctx.rx_len && spi->ctx.rx_len < DW_SPI_FIFO_DEPTH) {
			reg_data = spi->ctx.rx_len - 1;
		}
	}

	/* Rx Threshold */
	write_rxftlr(reg_data, info->regs);

	/* Enable interrupts */
	reg_data = !rx_bufs ?
		DW_SPI_IMR_UNMASK & DW_SPI_IMR_MASK_RX :
		DW_SPI_IMR_UNMASK;
	write_imr(reg_data, info->regs);

	spi_context_cs_control(&spi->ctx, true);

	LOG_DBG("Enabling controller");
	set_bit_ssienr(info->regs);

	ret = spi_context_wait_for_completion(&spi->ctx);
out:
	spi_context_release(&spi->ctx, ret);

	return ret;
}

static int spi_dw_transceive(struct device *dev,
		      const struct spi_config *config,
			     const struct spi_buf_set *tx_bufs,
			     const struct spi_buf_set *rx_bufs)
{
	LOG_DBG("%p, %p, %p", dev, tx_bufs, rx_bufs);

	return transceive(dev, config, tx_bufs, rx_bufs, false, NULL);
}

#ifdef CONFIG_SPI_ASYNC
static int spi_dw_transceive_async(struct device *dev,
				   const struct spi_config *config,
				   const struct spi_buf_set *tx_bufs,
				   const struct spi_buf_set *rx_bufs,
				   struct k_poll_signal *async)
{
	LOG_DBG("%p, %p, %p, %p", dev, tx_bufs, rx_bufs, async);

	return transceive(dev, config, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */

static int spi_dw_release(struct device *dev, const struct spi_config *config)
{
	struct spi_dw_data *spi = dev->driver_data;

	if (!spi_context_configured(&spi->ctx, config)) {
		return -EINVAL;
	}

	spi_context_unlock_unconditionally(&spi->ctx);

	return 0;
}

void spi_dw_isr(struct device *dev)
{
	const struct spi_dw_config *info = dev->config->config_info;
	u32_t int_status;
	int error;

	int_status = read_isr(info->regs);

	LOG_DBG("SPI %p int_status 0x%x - (tx: %d, rx: %d)", dev,
		    int_status, read_txflr(info->regs), read_rxflr(info->regs));

	if (int_status & DW_SPI_ISR_ERRORS_MASK) {
		error = -EIO;
		goto out;
	}

	error = 0;

	if (int_status & DW_SPI_ISR_RXFIS) {
		pull_data(dev);
	}

	if (int_status & DW_SPI_ISR_TXEIS) {
		push_data(dev);
	}

out:
	clear_interrupts(info->regs);
	completed(dev, error);
}

static const struct spi_driver_api dw_spi_api = {
	.transceive = spi_dw_transceive,
#ifdef CONFIG_SPI_ASYNC
	.transceive_async = spi_dw_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
	.release = spi_dw_release,
};

int spi_dw_init(struct device *dev)
{
	const struct spi_dw_config *info = dev->config->config_info;
	struct spi_dw_data *spi = dev->driver_data;

	clock_config(dev);
	clock_on(dev);

	info->config_func();

	/* Masking interrupt and making sure controller is disabled */
	write_imr(DW_SPI_IMR_MASK, info->regs);
	clear_bit_ssienr(info->regs);

	LOG_DBG("Designware SPI driver initialized on device: %p", dev);

	spi_context_unlock_unconditionally(&spi->ctx);

	return 0;
}


#ifdef CONFIG_SPI_0
void spi_config_0_irq(void);

struct spi_dw_data spi_dw_data_port_0 = {
	SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_0, ctx),
	SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_0, ctx),
};

const struct spi_dw_config spi_dw_config_0 = {
	.regs = DT_SPI_0_BASE_ADDRESS,
	.clock_frequency = DT_SPI_0_CLOCK_FREQUENCY,
#ifdef CONFIG_SPI_DW_PORT_0_CLOCK_GATE
	.clock_name = CONFIG_SPI_DW_PORT_1_CLOCK_GATE_DRV_NAME,
	.clock_data = UINT_TO_POINTER(CONFIG_SPI_DW_PORT_0_CLOCK_GATE_SUBSYS),
#endif /* CONFIG_SPI_DW_PORT_0_CLOCK_GATE */
	.config_func = spi_config_0_irq,
	.op_modes = CONFIG_SPI_0_OP_MODES
};

DEVICE_AND_API_INIT(spi_dw_port_0, DT_SPI_0_NAME, spi_dw_init,
		    &spi_dw_data_port_0, &spi_dw_config_0,
		    POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
		    &dw_spi_api);

void spi_config_0_irq(void)
{
#ifdef CONFIG_SPI_DW_PORT_0_INTERRUPT_SINGLE_LINE
	IRQ_CONNECT(DT_SPI_0_IRQ, DT_SPI_0_IRQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_0), DT_SPI_DW_IRQ_FLAGS);
	irq_enable(DT_SPI_0_IRQ);
#else
	IRQ_CONNECT(DT_SPI_0_IRQ_RX_AVAIL, DT_SPI_0_IRQ_RX_AVAIL_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_0), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_0_IRQ_TX_REQ, DT_SPI_0_IRQ_TX_REQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_0), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_0_IRQ_ERR_INT, DT_SPI_0_IRQ_ERR_INT_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_0), DT_SPI_DW_IRQ_FLAGS);

	irq_enable(DT_SPI_0_IRQ_RX_AVAIL);
	irq_enable(DT_SPI_0_IRQ_TX_REQ);
	irq_enable(DT_SPI_0_IRQ_ERR_INT);

#endif
}
#endif /* CONFIG_SPI_0 */
#ifdef CONFIG_SPI_1
void spi_config_1_irq(void);

struct spi_dw_data spi_dw_data_port_1 = {
	SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_1, ctx),
	SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_1, ctx),
};

static const struct spi_dw_config spi_dw_config_1 = {
	.regs = DT_SPI_1_BASE_ADDRESS,
	.clock_frequency = DT_SPI_1_CLOCK_FREQUENCY,
#ifdef CONFIG_SPI_DW_PORT_1_CLOCK_GATE
	.clock_name = CONFIG_SPI_DW_PORT_1_CLOCK_GATE_DRV_NAME,
	.clock_data = UINT_TO_POINTER(CONFIG_SPI_DW_PORT_1_CLOCK_GATE_SUBSYS),
#endif /* CONFIG_SPI_DW_PORT_1_CLOCK_GATE */
	.config_func = spi_config_1_irq,
	.op_modes = CONFIG_SPI_1_OP_MODES
};

DEVICE_AND_API_INIT(spi_dw_port_1, DT_SPI_1_NAME, spi_dw_init,
		    &spi_dw_data_port_1, &spi_dw_config_1,
		    POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
		    &dw_spi_api);

void spi_config_1_irq(void)
{
#ifdef CONFIG_SPI_DW_PORT_1_INTERRUPT_SINGLE_LINE
	IRQ_CONNECT(DT_SPI_1_IRQ, DT_SPI_1_IRQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_1), DT_SPI_DW_IRQ_FLAGS);
	irq_enable(DT_SPI_1_IRQ);
#else
	IRQ_CONNECT(DT_SPI_1_IRQ_RX_AVAIL, DT_SPI_1_IRQ_RX_AVAIL_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_1), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_1_IRQ_TX_REQ, DT_SPI_1_IRQ_TX_REQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_1), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_1_IRQ_ERR_INT, DT_SPI_1_IRQ_ERR_INT_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_1), DT_SPI_DW_IRQ_FLAGS);

	irq_enable(DT_SPI_1_IRQ_RX_AVAIL);
	irq_enable(DT_SPI_1_IRQ_TX_REQ);
	irq_enable(DT_SPI_1_IRQ_ERR_INT);

#endif
}
#endif /* CONFIG_SPI_1 */
#ifdef CONFIG_SPI_2
void spi_config_2_irq(void);

struct spi_dw_data spi_dw_data_port_2 = {
	SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_2, ctx),
	SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_2, ctx),
};

static const struct spi_dw_config spi_dw_config_2 = {
	.regs = DT_SPI_2_BASE_ADDRESS,
	.clock_frequency = DT_SPI_2_CLOCK_FREQUENCY,
#ifdef CONFIG_SPI_DW_PORT_2_CLOCK_GATE
	.clock_name = CONFIG_SPI_DW_PORT_2_CLOCK_GATE_DRV_NAME,
	.clock_data = UINT_TO_POINTER(CONFIG_SPI_DW_PORT_2_CLOCK_GATE_SUBSYS),
#endif /* CONFIG_SPI_DW_PORT_2_CLOCK_GATE */
	.config_func = spi_config_2_irq,
	.op_modes = CONFIG_SPI_2_OP_MODES
};

DEVICE_AND_API_INIT(spi_dw_port_2, DT_SPI_2_NAME, spi_dw_init,
		    &spi_dw_data_port_2, &spi_dw_config_2,
		    POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
		    &dw_spi_api);

void spi_config_2_irq(void)
{
#ifdef CONFIG_SPI_DW_PORT_2_INTERRUPT_SINGLE_LINE
	IRQ_CONNECT(DT_SPI_2_IRQ, DT_SPI_2_IRQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_2), DT_SPI_DW_IRQ_FLAGS);
	irq_enable(DT_SPI_2_IRQ);
#else
	IRQ_CONNECT(DT_SPI_2_IRQ_RX_AVAIL, DT_SPI_2_IRQ_RX_AVAIL_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_2), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_2_IRQ_TX_REQ, DT_SPI_2_IRQ_TX_REQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_2), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_2_IRQ_ERR_INT, DT_SPI_2_IRQ_ERR_INT_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_2), DT_SPI_DW_IRQ_FLAGS);

	irq_enable(DT_SPI_2_IRQ_RX_AVAIL);
	irq_enable(DT_SPI_2_IRQ_TX_REQ);
	irq_enable(DT_SPI_2_IRQ_ERR_INT);

#endif
}
#endif /* CONFIG_SPI_2 */
#ifdef CONFIG_SPI_3
void spi_config_3_irq(void);

struct spi_dw_data spi_dw_data_port_3 = {
	SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_3, ctx),
	SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_3, ctx),
};

static const struct spi_dw_config spi_dw_config_3 = {
	.regs = DT_SPI_3_BASE_ADDRESS,
	.clock_frequency = DT_SPI_3_CLOCK_FREQUENCY,
#ifdef CONFIG_SPI_DW_PORT_3_CLOCK_GATE
	.clock_name = CONFIG_SPI_DW_PORT_3_CLOCK_GATE_DRV_NAME,
	.clock_data = UINT_TO_POINTER(CONFIG_SPI_DW_PORT_3_CLOCK_GATE_SUBSYS),
#endif /* CONFIG_SPI_DW_PORT_3_CLOCK_GATE */
	.config_func = spi_config_3_irq,
	.op_modes = CONFIG_SPI_3_OP_MODES
};

DEVICE_AND_API_INIT(spi_dw_port_3, DT_SPI_3_NAME, spi_dw_init,
		    &spi_dw_data_port_3, &spi_dw_config_3,
		    POST_KERNEL, CONFIG_SPI_INIT_PRIORITY,
		    &dw_spi_api);

void spi_config_3_irq(void)
{
#ifdef CONFIG_SPI_DW_PORT_3_INTERRUPT_SINGLE_LINE
	IRQ_CONNECT(DT_SPI_3_IRQ, DT_SPI_3_IRQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_3), DT_SPI_DW_IRQ_FLAGS);
	irq_enable(DT_SPI_3_IRQ);
#else
	IRQ_CONNECT(DT_SPI_3_IRQ_RX_AVAIL, DT_SPI_3_IRQ_RX_AVAIL_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_3), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_3_IRQ_TX_REQ, DT_SPI_3_IRQ_TX_REQ_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_3), DT_SPI_DW_IRQ_FLAGS);
	IRQ_CONNECT(DT_SPI_3_IRQ_ERR_INT, DT_SPI_3_IRQ_ERR_INT_PRI,
		    spi_dw_isr, DEVICE_GET(spi_dw_port_3), DT_SPI_DW_IRQ_FLAGS);

	irq_enable(DT_SPI_3_IRQ_RX_AVAIL);
	irq_enable(DT_SPI_3_IRQ_TX_REQ);
	irq_enable(DT_SPI_3_IRQ_ERR_INT);

#endif
}
#endif /* CONFIG_SPI_3 */