Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 * Copyright (c) 2018, Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <drivers/gpio.h>
#include <hal/nrf_gpio.h>
#include <hal/nrf_gpiote.h>

#include "gpio_utils.h"

struct gpio_nrfx_data {
	sys_slist_t callbacks;

	/* Mask holding information about which pins have been configured to
	 * trigger interrupts using gpio_nrfx_config function.
	 */
	u32_t pin_int_en;

	/* Mask holding information about which pins have enabled callbacks
	 * using gpio_nrfx_enable_callback function.
	 */
	u32_t int_en;

	u32_t active_level;
	u32_t trig_edge;
	u32_t double_edge;
	u32_t inverted;
};

struct gpio_nrfx_cfg {
	NRF_GPIO_Type *port;
	u8_t port_num;
};

static inline struct gpio_nrfx_data *get_port_data(struct device *port)
{
	return port->driver_data;
}

static inline const struct gpio_nrfx_cfg *get_port_cfg(struct device *port)
{
	return port->config->config_info;
}

static int gpiote_channel_alloc(u32_t abs_pin, nrf_gpiote_polarity_t polarity)
{
	for (u8_t channel = 0; channel < GPIOTE_CH_NUM; ++channel) {
		if (!nrf_gpiote_te_is_enabled(NRF_GPIOTE, channel)) {
			nrf_gpiote_event_t evt =
				offsetof(NRF_GPIOTE_Type, EVENTS_IN[channel]);

			nrf_gpiote_event_configure(NRF_GPIOTE, channel, abs_pin,
						   polarity);
			nrf_gpiote_event_clear(NRF_GPIOTE, evt);
			nrf_gpiote_event_enable(NRF_GPIOTE, channel);
			nrf_gpiote_int_enable(NRF_GPIOTE, BIT(channel));
			return 0;
		}
	}

	return -ENODEV;
}

static void gpiote_channel_free(u32_t abs_pin)
{
	u32_t intenset = nrf_gpiote_int_enable_check(NRF_GPIOTE,
						     NRF_GPIOTE_INT_IN_MASK);

	for (size_t i = 0; i < GPIOTE_CH_NUM; i++) {
		if ((nrf_gpiote_event_pin_get(NRF_GPIOTE, i) == abs_pin)
		    && (intenset & BIT(i))) {
			nrf_gpiote_event_disable(NRF_GPIOTE, i);
			nrf_gpiote_int_disable(NRF_GPIOTE, BIT(i));
			return;
		}
	}
}

static inline u32_t sense_for_pin(const struct gpio_nrfx_data *data,
				  u32_t pin)
{
	if ((BIT(pin) & (data->active_level ^ data->inverted)) != 0) {
		return NRF_GPIO_PIN_SENSE_HIGH;
	}
	return NRF_GPIO_PIN_SENSE_LOW;
}

static int gpiote_pin_int_cfg(struct device *port, u32_t pin)
{
	struct gpio_nrfx_data *data = get_port_data(port);
	const struct gpio_nrfx_cfg *cfg = get_port_cfg(port);
	u32_t abs_pin = NRF_GPIO_PIN_MAP(cfg->port_num, pin);
	int res = 0;

	gpiote_channel_free(abs_pin);
	nrf_gpio_cfg_sense_set(abs_pin, NRF_GPIO_PIN_NOSENSE);

	/* Pins trigger interrupts only if pin has been configured to do so
	 * and callback has been enabled for that pin.
	 */
	if ((data->pin_int_en & BIT(pin)) && (data->int_en & BIT(pin))) {
		if (data->trig_edge & BIT(pin)) {
		/* For edge triggering we use GPIOTE channels. */
			nrf_gpiote_polarity_t pol;

			if (data->double_edge & BIT(pin)) {
				pol = NRF_GPIOTE_POLARITY_TOGGLE;
			} else if (((data->active_level & BIT(pin)) != 0U)
				   ^ ((BIT(pin) & data->inverted) != 0)) {
				pol = NRF_GPIOTE_POLARITY_LOTOHI;
			} else {
				pol = NRF_GPIOTE_POLARITY_HITOLO;
			}

			res = gpiote_channel_alloc(abs_pin, pol);
		} else {
		/* For level triggering we use sense mechanism. */
			u32_t sense = sense_for_pin(data, pin);

			nrf_gpio_cfg_sense_set(abs_pin, sense);
		}
	}
	return res;
}

static int gpio_nrfx_config(struct device *port, int access_op,
			    u32_t pin, int flags)
{
	struct gpio_nrfx_data *data = get_port_data(port);
	nrf_gpio_pin_pull_t pull;
	nrf_gpio_pin_drive_t drive;
	nrf_gpio_pin_dir_t dir;
	nrf_gpio_pin_input_t input;
	u8_t from_pin;
	u8_t to_pin;

	switch (flags & (GPIO_DS_LOW_MASK | GPIO_DS_HIGH_MASK)) {
	case GPIO_DS_DFLT_LOW | GPIO_DS_DFLT_HIGH:
		drive = NRF_GPIO_PIN_S0S1;
		break;
	case GPIO_DS_DFLT_LOW | GPIO_DS_ALT_HIGH:
		drive = NRF_GPIO_PIN_S0H1;
		break;
	case GPIO_DS_DFLT_LOW | GPIO_DS_DISCONNECT_HIGH:
		drive = NRF_GPIO_PIN_S0D1;
		break;

	case GPIO_DS_ALT_LOW | GPIO_DS_DFLT_HIGH:
		drive = NRF_GPIO_PIN_H0S1;
		break;
	case GPIO_DS_ALT_LOW | GPIO_DS_ALT_HIGH:
		drive = NRF_GPIO_PIN_H0H1;
		break;
	case GPIO_DS_ALT_LOW | GPIO_DS_DISCONNECT_HIGH:
		drive = NRF_GPIO_PIN_H0D1;
		break;

	case GPIO_DS_DISCONNECT_LOW | GPIO_DS_DFLT_HIGH:
		drive = NRF_GPIO_PIN_D0S1;
		break;
	case GPIO_DS_DISCONNECT_LOW | GPIO_DS_ALT_HIGH:
		drive = NRF_GPIO_PIN_D0H1;
		break;

	default:
		return -EINVAL;
	}

	if ((flags & GPIO_PUD_MASK) == GPIO_PUD_PULL_UP) {
		pull = NRF_GPIO_PIN_PULLUP;
	} else if ((flags & GPIO_PUD_MASK) == GPIO_PUD_PULL_DOWN) {
		pull = NRF_GPIO_PIN_PULLDOWN;
	} else {
		pull = NRF_GPIO_PIN_NOPULL;
	}

	dir = ((flags & GPIO_DIR_MASK) == GPIO_DIR_OUT)
	      ? NRF_GPIO_PIN_DIR_OUTPUT
	      : NRF_GPIO_PIN_DIR_INPUT;

	input = (dir == NRF_GPIO_PIN_DIR_INPUT)
		? NRF_GPIO_PIN_INPUT_CONNECT
		: NRF_GPIO_PIN_INPUT_DISCONNECT;

	if (access_op == GPIO_ACCESS_BY_PORT) {
		from_pin = 0U;
		to_pin   = 31U;
	} else {
		from_pin = pin;
		to_pin   = pin;
	}

	for (u8_t curr_pin = from_pin; curr_pin <= to_pin; ++curr_pin) {
		int res;

		nrf_gpio_cfg(NRF_GPIO_PIN_MAP(get_port_cfg(port)->port_num,
					      curr_pin),
			     dir, input, pull, drive, NRF_GPIO_PIN_NOSENSE);

		WRITE_BIT(data->pin_int_en, curr_pin, flags & GPIO_INT);
		WRITE_BIT(data->trig_edge, curr_pin, flags & GPIO_INT_EDGE);
		WRITE_BIT(data->double_edge, curr_pin,
			  flags & GPIO_INT_DOUBLE_EDGE);
		WRITE_BIT(data->active_level, curr_pin,
			  flags & GPIO_INT_ACTIVE_HIGH);
		WRITE_BIT(data->inverted, curr_pin, flags & GPIO_POL_INV);

		res = gpiote_pin_int_cfg(port, curr_pin);
		if (res != 0) {
			return res;
		}
	}

	return 0;
}

static int gpio_nrfx_write(struct device *port, int access_op,
			   u32_t pin, u32_t value)
{
	NRF_GPIO_Type *reg = get_port_cfg(port)->port;
	struct gpio_nrfx_data *data = get_port_data(port);

	if (access_op == GPIO_ACCESS_BY_PORT) {
		nrf_gpio_port_out_write(reg, value ^ data->inverted);
	} else {
		if ((value > 0) ^ ((BIT(pin) & data->inverted) != 0)) {
			nrf_gpio_port_out_set(reg, BIT(pin));
		} else {
			nrf_gpio_port_out_clear(reg, BIT(pin));
		}
	}

	return 0;
}

static int gpio_nrfx_read(struct device *port, int access_op,
			  u32_t pin, u32_t *value)
{
	NRF_GPIO_Type *reg = get_port_cfg(port)->port;
	struct gpio_nrfx_data *data = get_port_data(port);

	u32_t dir = nrf_gpio_port_dir_read(reg);
	u32_t port_in = nrf_gpio_port_in_read(reg) & ~dir;
	u32_t port_out = nrf_gpio_port_out_read(reg) & dir;
	u32_t port_val = (port_in | port_out) ^ data->inverted;

	if (access_op == GPIO_ACCESS_BY_PORT) {
		*value = port_val;
	} else {
		*value = (port_val & BIT(pin)) ? 1 : 0;
	}

	return 0;
}

static int gpio_nrfx_manage_callback(struct device *port,
				     struct gpio_callback *callback,
				     bool set)
{
	return gpio_manage_callback(&get_port_data(port)->callbacks,
				     callback, set);
}

static int gpio_nrfx_pin_manage_callback(struct device *port,
					 int access_op,
					 u32_t pin,
					 bool enable)
{
	struct gpio_nrfx_data *data = get_port_data(port);
	int res = 0;
	u8_t from_pin;
	u8_t to_pin;

	if (access_op == GPIO_ACCESS_BY_PORT) {
		from_pin = 0U;
		to_pin   = 31U;
	} else {
		from_pin = pin;
		to_pin   = pin;
	}

	for (u8_t curr_pin = from_pin; curr_pin <= to_pin; ++curr_pin) {
		WRITE_BIT(data->int_en, curr_pin, enable);

		res = gpiote_pin_int_cfg(port, curr_pin);
		if (res != 0) {
			return res;
		}
	}

	return res;
}

static inline int gpio_nrfx_pin_enable_callback(struct device *port,
						int access_op,
						u32_t pin)
{
	return gpio_nrfx_pin_manage_callback(port, access_op, pin, true);
}

static inline int gpio_nrfx_pin_disable_callback(struct device *port,
						 int access_op,
						 u32_t pin)
{
	return gpio_nrfx_pin_manage_callback(port, access_op, pin, false);
}

static const struct gpio_driver_api gpio_nrfx_drv_api_funcs = {
	.config = gpio_nrfx_config,
	.write = gpio_nrfx_write,
	.read = gpio_nrfx_read,
	.manage_callback = gpio_nrfx_manage_callback,
	.enable_callback = gpio_nrfx_pin_enable_callback,
	.disable_callback = gpio_nrfx_pin_disable_callback
};

static inline u32_t get_level_pins(struct device *port)
{
	struct gpio_nrfx_data *data = get_port_data(port);

	/* Take into consideration only pins that were configured to
	 * trigger interrupts and have callback enabled.
	 */
	u32_t out = data->int_en & data->pin_int_en;

	/* Exclude pins that trigger interrupts by edge. */
	out &= ~data->trig_edge & ~data->double_edge;

	/* The sequence above assumes that the sense field will be
	 * configured only for these pins.  If anybody's modifying
	 * PIN_CNF directly it won't work.
	 */
	return out;
}

static void cfg_level_pins(struct device *port)
{
	const struct gpio_nrfx_data *data = get_port_data(port);
	const struct gpio_nrfx_cfg *cfg = get_port_cfg(port);
	u32_t pin = 0U;
	u32_t bit = 1U << pin;
	u32_t level_pins = get_level_pins(port);

	/* Configure sense detection on all pins that use it. */
	while (level_pins) {
		if (level_pins & bit) {
			u32_t abs_pin = NRF_GPIO_PIN_MAP(cfg->port_num, pin);
			u32_t sense = sense_for_pin(data, pin);

			nrf_gpio_cfg_sense_set(abs_pin, sense);
			level_pins &= ~bit;
		}
		++pin;
		bit <<= 1;
	}
}

/**
 * @brief Function for getting pins that triggered level interrupt.
 *
 * @param port Pointer to GPIO port device.
 *
 * @return Bitmask where 1 marks pin as trigger source.
 */
static u32_t check_level_trigger_pins(struct device *port)
{
	struct gpio_nrfx_data *data = get_port_data(port);
	const struct gpio_nrfx_cfg *cfg = get_port_cfg(port);
	u32_t level_pins = get_level_pins(port);
	u32_t port_in = nrf_gpio_port_in_read(cfg->port);

	/* Extract which pins after inversion, have logic level same as
	 * interrupt trigger level.
	 */
	u32_t pin_states = ~(port_in ^ data->inverted ^ data->active_level);

	/* Discard pins that aren't configured for level. */
	u32_t out = pin_states & level_pins;

	/* Disable sense detection on all pins that use it, whether
	 * they appear to have triggered or not.  This ensures
	 * nobody's requesting DETECT.
	 */
	u32_t pin = 0U;
	u32_t bit = 1U << pin;

	while (level_pins) {
		if (level_pins & bit) {
			u32_t abs_pin = NRF_GPIO_PIN_MAP(cfg->port_num, pin);

			nrf_gpio_cfg_sense_set(abs_pin, NRF_GPIO_PIN_NOSENSE);
			level_pins &= ~bit;
		}
		++pin;
		bit <<= 1;
	}

	return out;
}

static inline void fire_callbacks(struct device *port, u32_t pins)
{
	struct gpio_nrfx_data *data = get_port_data(port);
	sys_slist_t *list = &data->callbacks;
	struct gpio_callback *cb, *tmp;

	/* Instead of calling the common gpio_fire_callbacks() function,
	 * iterate the list of callbacks locally, to be able to perform
	 * additional masking of the pins and to call handlers only for
	 * the currently enabled callbacks.
	 */
	SYS_SLIST_FOR_EACH_CONTAINER_SAFE(list, cb, tmp, node) {
		/* Check currently enabled callbacks (data->int_en) in each
		 * iteration, as some callbacks may get disabled also in any
		 * of the handlers called here.
		 */
		if ((cb->pin_mask & pins) & data->int_en) {
			__ASSERT(cb->handler, "No callback handler!");
			cb->handler(port, cb, pins);
		}
	}
}

#ifdef CONFIG_GPIO_NRF_P0
DEVICE_DECLARE(gpio_nrfx_p0);
#endif
#ifdef CONFIG_GPIO_NRF_P1
DEVICE_DECLARE(gpio_nrfx_p1);
#endif

static void gpiote_event_handler(void)
{
	u32_t fired_triggers[GPIO_COUNT] = {0};
	bool port_event = nrf_gpiote_event_check(NRF_GPIOTE,
						 NRF_GPIOTE_EVENT_PORT);

	if (port_event) {
#ifdef CONFIG_GPIO_NRF_P0
		fired_triggers[0] =
			check_level_trigger_pins(DEVICE_GET(gpio_nrfx_p0));
#endif
#ifdef CONFIG_GPIO_NRF_P1
		fired_triggers[1] =
			check_level_trigger_pins(DEVICE_GET(gpio_nrfx_p1));
#endif

		/* Sense detect was disabled while checking pins so
		 * DETECT should be deasserted.
		 */
		nrf_gpiote_event_clear(NRF_GPIOTE, NRF_GPIOTE_EVENT_PORT);
	}

	/* Handle interrupt from GPIOTE channels. */
	for (size_t i = 0; i < GPIOTE_CH_NUM; i++) {
		nrf_gpiote_event_t evt =
			offsetof(NRF_GPIOTE_Type, EVENTS_IN[i]);

		if (nrf_gpiote_int_enable_check(NRF_GPIOTE, BIT(i)) &&
		    nrf_gpiote_event_check(NRF_GPIOTE, evt)) {
			u32_t abs_pin = nrf_gpiote_event_pin_get(NRF_GPIOTE, i);
			/* Divide absolute pin number to port and pin parts. */
			fired_triggers[abs_pin / 32U] |= BIT(abs_pin % 32);
			nrf_gpiote_event_clear(NRF_GPIOTE, evt);
		}
	}

#ifdef CONFIG_GPIO_NRF_P0
	if (fired_triggers[0]) {
		fire_callbacks(DEVICE_GET(gpio_nrfx_p0), fired_triggers[0]);
	}
#endif
#ifdef CONFIG_GPIO_NRF_P1
	if (fired_triggers[1]) {
		fire_callbacks(DEVICE_GET(gpio_nrfx_p1), fired_triggers[1]);
	}
#endif

	if (port_event) {
		/* Reprogram sense to match current configuration.
		 * This may cause DETECT to be re-asserted.
		 */
#ifdef CONFIG_GPIO_NRF_P0
		cfg_level_pins(DEVICE_GET(gpio_nrfx_p0));
#endif
#ifdef CONFIG_GPIO_NRF_P1
		cfg_level_pins(DEVICE_GET(gpio_nrfx_p1));
#endif
	}
}

static int gpio_nrfx_init(struct device *port)
{
	static bool gpio_initialized;

	if (!gpio_initialized) {
		gpio_initialized = true;
		IRQ_CONNECT(DT_NORDIC_NRF_GPIOTE_GPIOTE_0_IRQ_0,
			    DT_NORDIC_NRF_GPIOTE_GPIOTE_0_IRQ_0_PRIORITY,
			    gpiote_event_handler, NULL, 0);

		irq_enable(DT_NORDIC_NRF_GPIOTE_GPIOTE_0_IRQ_0);
		nrf_gpiote_int_enable(NRF_GPIOTE, NRF_GPIOTE_INT_PORT_MASK);
	}

	return 0;
}

#define GPIO_NRF_DEVICE(id)						\
	static const struct gpio_nrfx_cfg gpio_nrfx_p##id##_cfg = {	\
		.port = NRF_P##id,					\
		.port_num = id						\
	};								\
									\
	static struct gpio_nrfx_data gpio_nrfx_p##id##_data;		\
									\
	DEVICE_AND_API_INIT(gpio_nrfx_p##id,				\
			    DT_NORDIC_NRF_GPIO_GPIO_##id##_LABEL,	\
			    gpio_nrfx_init,				\
			    &gpio_nrfx_p##id##_data,			\
			    &gpio_nrfx_p##id##_cfg,			\
			    POST_KERNEL,				\
			    CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,	\
			    &gpio_nrfx_drv_api_funcs)

#ifdef CONFIG_GPIO_NRF_P0
GPIO_NRF_DEVICE(0);
#endif

#ifdef CONFIG_GPIO_NRF_P1
GPIO_NRF_DEVICE(1);
#endif