Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/*
 * Copyright (c) 2017 - 2018, Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: Apache-2.0
 */
#include <drivers/counter.h>
#include <hal/nrf_timer.h>
#include <sys/atomic.h>

#define LOG_LEVEL CONFIG_COUNTER_LOG_LEVEL
#define LOG_MODULE_NAME counter_timer
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME, LOG_LEVEL);

#define TIMER_CLOCK 16000000

#define CC_TO_ID(cc_num) (cc_num - 2)

#define ID_TO_CC(idx) (nrf_timer_cc_channel_t)(idx + 2)

#define TOP_CH NRF_TIMER_CC_CHANNEL0
#define COUNTER_TOP_EVT NRF_TIMER_EVENT_COMPARE0
#define COUNTER_TOP_INT_MASK NRF_TIMER_INT_COMPARE0_MASK

#define COUNTER_OVERFLOW_SHORT NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK
#define COUNTER_READ_CC NRF_TIMER_CC_CHANNEL1

struct counter_nrfx_data {
	counter_top_callback_t top_cb;
	void *top_user_data;
	u32_t guard_period;
	atomic_t cc_int_pending;
};

struct counter_nrfx_ch_data {
	counter_alarm_callback_t callback;
	void *user_data;
};

struct counter_nrfx_config {
	struct counter_config_info info;
	struct counter_nrfx_ch_data *ch_data;
	NRF_TIMER_Type *timer;
	LOG_INSTANCE_PTR_DECLARE(log);
};

struct counter_timer_config {
	nrf_timer_bit_width_t bit_width;
	nrf_timer_mode_t mode;
	nrf_timer_frequency_t freq;
};

static inline struct counter_nrfx_data *get_dev_data(struct device *dev)
{
	return dev->driver_data;
}

static inline const struct counter_nrfx_config *get_nrfx_config(
							struct device *dev)
{
	return CONTAINER_OF(dev->config->config_info,
				struct counter_nrfx_config, info);
}

static int start(struct device *dev)
{
	nrf_timer_task_trigger(get_nrfx_config(dev)->timer,
			       NRF_TIMER_TASK_START);

	return 0;
}

static int stop(struct device *dev)
{
	nrf_timer_task_trigger(get_nrfx_config(dev)->timer,
				NRF_TIMER_TASK_SHUTDOWN);

	return 0;
}

static u32_t get_top_value(struct device *dev)
{
	return nrf_timer_cc_get(get_nrfx_config(dev)->timer, TOP_CH);
}

static u32_t get_max_relative_alarm(struct device *dev)
{
	return get_top_value(dev);
}

static u32_t read(struct device *dev)
{
	NRF_TIMER_Type *timer = get_nrfx_config(dev)->timer;

	nrf_timer_task_trigger(timer,
			       nrf_timer_capture_task_get(COUNTER_READ_CC));

	return nrf_timer_cc_get(timer, COUNTER_READ_CC);
}

/* Return true if value equals 2^n - 1 */
static inline bool is_bit_mask(u32_t val)
{
	return !(val & (val + 1));
}

static u32_t ticks_add(u32_t val1, u32_t val2, u32_t top)
{
	u32_t to_top;

	if (likely(is_bit_mask(top))) {
		return (val1 + val2) & top;
	}

	to_top = top - val1;

	return (val2 <= to_top) ? val1 + val2 : val2 - to_top;
}

static u32_t ticks_sub(u32_t val, u32_t old, u32_t top)
{
	if (likely(is_bit_mask(top))) {
		return (val - old) & top;
	}

	/* if top is not 2^n-1 */
	return (val >= old) ? (val - old) : val + top + 1 - old;
}

static void set_cc_int_pending(struct device *dev, u8_t chan)
{
	atomic_or(&get_dev_data(dev)->cc_int_pending, BIT(chan));
	NRFX_IRQ_PENDING_SET(NRFX_IRQ_NUMBER_GET(get_nrfx_config(dev)->timer));
}

static int set_cc(struct device *dev, u8_t id, u32_t val, u32_t flags)
{
	__ASSERT_NO_MSG(get_dev_data(dev)->guard_period < get_top_value(dev));
	bool absolute = flags & COUNTER_ALARM_CFG_ABSOLUTE;
	bool irq_on_late;
	NRF_TIMER_Type  *reg = get_nrfx_config(dev)->timer;
	u8_t chan = ID_TO_CC(id);
	nrf_timer_event_t evt = nrf_timer_compare_event_get(chan);
	u32_t top = get_top_value(dev);
	int err = 0;
	u32_t prev_val;
	u32_t now;
	u32_t diff;
	u32_t max_rel_val;

	__ASSERT(nrf_timer_int_enable_check(reg,
				nrf_timer_compare_int_get(chan)) == 0,
				"Expected that CC interrupt is disabled.");

	/* First take care of a risk of an event coming from CC being set to
	 * next tick. Reconfigure CC to future (now tick is the furtherest
	 * future).
	 */
	now = read(dev);
	prev_val = nrf_timer_cc_get(reg, chan);
	nrf_timer_cc_set(reg, chan, now);
	nrf_timer_event_clear(reg, evt);

	if (absolute) {
		max_rel_val = top - get_dev_data(dev)->guard_period;
		irq_on_late = flags & COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE;
	} else {
		/* If relative value is smaller than half of the counter range
		 * it is assumed that there is a risk of setting value too late
		 * and late detection algorithm must be applied. When late
		 * setting is detected, interrupt shall be triggered for
		 * immediate expiration of the timer. Detection is performed
		 * by limiting relative distance between CC and counter.
		 *
		 * Note that half of counter range is an arbitrary value.
		 */
		irq_on_late = val < (top / 2);
		/* limit max to detect short relative being set too late. */
		max_rel_val = irq_on_late ? top / 2 : top;
		val = ticks_add(now, val, top);
	}

	nrf_timer_cc_set(reg, chan, val);

	/* decrement value to detect also case when val == read(dev). Otherwise,
	 * condition would need to include comparing diff against 0.
	 */
	diff = ticks_sub(val - 1, read(dev), top);
	if (diff > max_rel_val) {
		if (absolute) {
			err = -ETIME;
		}

		/* Interrupt is triggered always for relative alarm and
		 * for absolute depending on the flag.
		 */
		if (irq_on_late) {
			set_cc_int_pending(dev, chan);
		} else {
			get_nrfx_config(dev)->ch_data[id].callback = NULL;
		}
	} else {
		nrf_timer_int_enable(reg, nrf_timer_compare_int_get(chan));
	}

	return err;
}

static int set_alarm(struct device *dev, u8_t chan,
			const struct counter_alarm_cfg *alarm_cfg)
{
	const struct counter_nrfx_config *nrfx_config = get_nrfx_config(dev);
	struct counter_nrfx_ch_data *chdata = &nrfx_config->ch_data[chan];

	if (alarm_cfg->ticks >  get_top_value(dev)) {
		return -EINVAL;
	}

	if (chdata->callback) {
		return -EBUSY;
	}

	chdata->callback = alarm_cfg->callback;
	chdata->user_data = alarm_cfg->user_data;

	return set_cc(dev, chan, alarm_cfg->ticks, alarm_cfg->flags);
}

static int cancel_alarm(struct device *dev, u8_t chan_id)
{
	const struct counter_nrfx_config *config = get_nrfx_config(dev);
	u32_t int_mask =  nrf_timer_compare_int_get(ID_TO_CC(chan_id));

	nrf_timer_int_disable(config->timer, int_mask);
	config->ch_data[chan_id].callback = NULL;

	return 0;
}

static int set_top_value(struct device *dev, const struct counter_top_cfg *cfg)
{
	const struct counter_nrfx_config *nrfx_config = get_nrfx_config(dev);
	NRF_TIMER_Type *timer = get_nrfx_config(dev)->timer;
	struct counter_nrfx_data *data = get_dev_data(dev);
	int err = 0;

	for (int i = 0; i < counter_get_num_of_channels(dev); i++) {
		/* Overflow can be changed only when all alarms are
		 * disables.
		 */
		if (nrfx_config->ch_data[i].callback) {
			return -EBUSY;
		}
	}

	nrf_timer_int_disable(timer, COUNTER_TOP_INT_MASK);
	nrf_timer_cc_set(timer, TOP_CH, cfg->ticks);
	nrf_timer_shorts_enable(timer, COUNTER_OVERFLOW_SHORT);

	data->top_cb = cfg->callback;
	data->top_user_data = cfg->user_data;

	if (!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
		nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR);
	} else if (read(dev) >= cfg->ticks) {
		err = -ETIME;
		if (cfg->flags & COUNTER_TOP_CFG_RESET_WHEN_LATE) {
			nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR);
		}
	}

	if (cfg->callback) {
		nrf_timer_int_enable(timer, COUNTER_TOP_INT_MASK);
	}

	return err;
}

static u32_t get_pending_int(struct device *dev)
{
	return 0;
}

static int init_timer(struct device *dev,
		      const struct counter_timer_config *config)
{
	NRF_TIMER_Type *reg = get_nrfx_config(dev)->timer;

	nrf_timer_bit_width_set(reg, config->bit_width);
	nrf_timer_mode_set(reg, config->mode);
	nrf_timer_frequency_set(reg, config->freq);

	nrf_timer_cc_set(reg, TOP_CH, counter_get_max_top_value(dev));

	NRFX_IRQ_ENABLE(NRFX_IRQ_NUMBER_GET(reg));

	return 0;
}

static u32_t get_guard_period(struct device *dev, u32_t flags)
{
	return get_dev_data(dev)->guard_period;
}

static int set_guard_period(struct device *dev, u32_t guard, u32_t flags)
{
	__ASSERT_NO_MSG(guard < get_top_value(dev));

	get_dev_data(dev)->guard_period = guard;
	return 0;
}

static void top_irq_handle(struct device *dev)
{
	NRF_TIMER_Type *reg = get_nrfx_config(dev)->timer;
	counter_top_callback_t cb = get_dev_data(dev)->top_cb;

	if (nrf_timer_event_check(reg, COUNTER_TOP_EVT) &&
		nrf_timer_int_enable_check(reg, COUNTER_TOP_INT_MASK)) {
		nrf_timer_event_clear(reg, COUNTER_TOP_EVT);
		__ASSERT(cb != NULL, "top event enabled - expecting callback");
		cb(dev, get_dev_data(dev)->top_user_data);
	}
}

static void alarm_irq_handle(struct device *dev, u32_t id)
{
	u32_t cc = ID_TO_CC(id);
	NRF_TIMER_Type *reg = get_nrfx_config(dev)->timer;
	u32_t int_mask = nrf_timer_compare_int_get(cc);
	nrf_timer_event_t evt = nrf_timer_compare_event_get(cc);
	bool hw_irq_pending = nrf_timer_event_check(reg, evt) &&
			      nrf_timer_int_enable_check(reg, int_mask);
	bool sw_irq_pending = get_dev_data(dev)->cc_int_pending & BIT(cc);

	if (hw_irq_pending || sw_irq_pending) {
		struct counter_nrfx_ch_data *chdata;
		counter_alarm_callback_t cb;

		nrf_timer_event_clear(reg, evt);
		atomic_and(&get_dev_data(dev)->cc_int_pending, ~BIT(cc));
		nrf_timer_int_disable(reg, int_mask);

		chdata = &get_nrfx_config(dev)->ch_data[id];
		cb = chdata->callback;
		chdata->callback = NULL;

		if (cb) {
			u32_t cc_val = nrf_timer_cc_get(reg, cc);

			cb(dev, id, cc_val, chdata->user_data);
		}
	}
}

static void irq_handler(struct device *dev)
{
	top_irq_handle(dev);

	for (u32_t i = 0; i < counter_get_num_of_channels(dev); i++) {
		alarm_irq_handle(dev, i);
	}
}

static const struct counter_driver_api counter_nrfx_driver_api = {
	.start = start,
	.stop = stop,
	.read = read,
	.set_alarm = set_alarm,
	.cancel_alarm = cancel_alarm,
	.set_top_value = set_top_value,
	.get_pending_int = get_pending_int,
	.get_top_value = get_top_value,
	.get_max_relative_alarm = get_max_relative_alarm,
	.get_guard_period = get_guard_period,
	.set_guard_period = set_guard_period,
};

#define COUNTER_NRFX_TIMER_DEVICE(idx)					       \
	BUILD_ASSERT_MSG(DT_NORDIC_NRF_TIMER_TIMER_##idx##_PRESCALER <=	       \
			TIMER_PRESCALER_PRESCALER_Msk,			       \
			"TIMER prescaler out of range");		       \
	DEVICE_DECLARE(timer_##idx);					       \
	static int counter_##idx##_init(struct device *dev)		       \
	{								       \
		IRQ_CONNECT(DT_NORDIC_NRF_TIMER_TIMER_##idx##_IRQ_0,	       \
			    DT_NORDIC_NRF_TIMER_TIMER_##idx##_IRQ_0_PRIORITY,  \
			    irq_handler, DEVICE_GET(timer_##idx), 0);	       \
		static const struct counter_timer_config config = {	       \
			.freq =	DT_NORDIC_NRF_TIMER_TIMER_##idx##_PRESCALER,   \
			.mode = NRF_TIMER_MODE_TIMER,			       \
			.bit_width = (TIMER##idx##_MAX_SIZE == 32) ?	       \
					NRF_TIMER_BIT_WIDTH_32 :	       \
					NRF_TIMER_BIT_WIDTH_16,		       \
		};							       \
		return init_timer(dev, &config);			       \
	}								       \
	static struct counter_nrfx_data counter_##idx##_data;		       \
	static struct counter_nrfx_ch_data				       \
		counter##idx##_ch_data[CC_TO_ID(TIMER##idx##_CC_NUM)];	       \
	LOG_INSTANCE_REGISTER(LOG_MODULE_NAME, idx, CONFIG_COUNTER_LOG_LEVEL); \
	static const struct counter_nrfx_config nrfx_counter_##idx##_config = {\
		.info = {						       \
			.max_top_value = (TIMER##idx##_MAX_SIZE == 32) ?       \
					0xffffffff : 0x0000ffff,	       \
			.freq = TIMER_CLOCK /				       \
			   (1 << DT_NORDIC_NRF_TIMER_TIMER_##idx##_PRESCALER), \
			.flags = COUNTER_CONFIG_INFO_COUNT_UP,		       \
			.channels = CC_TO_ID(TIMER##idx##_CC_NUM),	       \
		},							       \
		.ch_data = counter##idx##_ch_data,			       \
		.timer = NRF_TIMER##idx,				       \
		LOG_INSTANCE_PTR_INIT(log, LOG_MODULE_NAME, idx)	       \
	};								       \
	DEVICE_AND_API_INIT(timer_##idx,				       \
			    DT_NORDIC_NRF_TIMER_TIMER_##idx##_LABEL,	       \
			    counter_##idx##_init,			       \
			    &counter_##idx##_data,			       \
			    &nrfx_counter_##idx##_config.info,		       \
			    PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,  \
			    &counter_nrfx_driver_api)

#ifdef CONFIG_COUNTER_TIMER0
COUNTER_NRFX_TIMER_DEVICE(0);
#endif

#ifdef CONFIG_COUNTER_TIMER1
COUNTER_NRFX_TIMER_DEVICE(1);
#endif

#ifdef CONFIG_COUNTER_TIMER2
COUNTER_NRFX_TIMER_DEVICE(2);
#endif

#ifdef CONFIG_COUNTER_TIMER3
COUNTER_NRFX_TIMER_DEVICE(3);
#endif

#ifdef CONFIG_COUNTER_TIMER4
COUNTER_NRFX_TIMER_DEVICE(4);
#endif