Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/*
 * Copyright (c) 2017 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */


#include <kernel.h>
#include <string.h>
#include <sys/math_extras.h>
#include <sys/rb.h>
#include <kernel_structs.h>
#include <sys/sys_io.h>
#include <ksched.h>
#include <syscall.h>
#include <syscall_handler.h>
#include <device.h>
#include <init.h>
#include <stdbool.h>
#include <app_memory/app_memdomain.h>
#include <sys/libc-hooks.h>
#include <sys/mutex.h>
#include <inttypes.h>

#ifdef Z_LIBC_PARTITION_EXISTS
K_APPMEM_PARTITION_DEFINE(z_libc_partition);
#endif

/* TODO: Find a better place to put this. Since we pull the entire
 * lib..__modules__crypto__mbedtls.a  globals into app shared memory
 * section, we can't put this in zephyr_init.c of the mbedtls module.
 */
#ifdef CONFIG_MBEDTLS
K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition);
#endif

#define LOG_LEVEL CONFIG_KERNEL_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_DECLARE(os);

/* The originally synchronization strategy made heavy use of recursive
 * irq_locking, which ports poorly to spinlocks which are
 * non-recursive.  Rather than try to redesign as part of
 * spinlockification, this uses multiple locks to preserve the
 * original semantics exactly.  The locks are named for the data they
 * protect where possible, or just for the code that uses them where
 * not.
 */
#ifdef CONFIG_DYNAMIC_OBJECTS
static struct k_spinlock lists_lock;       /* kobj rbtree/dlist */
static struct k_spinlock objfree_lock;     /* k_object_free */
#endif
static struct k_spinlock obj_lock;         /* kobj struct data */

#define MAX_THREAD_BITS		(CONFIG_MAX_THREAD_BYTES * 8)

#ifdef CONFIG_DYNAMIC_OBJECTS
extern u8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES];
#endif

static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr);

const char *otype_to_str(enum k_objects otype)
{
	const char *ret;
	/* -fdata-sections doesn't work right except in very very recent
	 * GCC and these literal strings would appear in the binary even if
	 * otype_to_str was omitted by the linker
	 */
#ifdef CONFIG_LOG
	switch (otype) {
	/* otype-to-str.h is generated automatically during build by
	 * gen_kobject_list.py
	 */
#include <otype-to-str.h>
	default:
		ret = "?";
		break;
	}
#else
	ARG_UNUSED(otype);
	return NULL;
#endif
	return ret;
}

struct perm_ctx {
	int parent_id;
	int child_id;
	struct k_thread *parent;
};

#ifdef CONFIG_DYNAMIC_OBJECTS
struct dyn_obj {
	struct _k_object kobj;
	sys_dnode_t obj_list;
	struct rbnode node; /* must be immediately before data member */
	u8_t data[]; /* The object itself */
};

extern struct _k_object *z_object_gperf_find(void *obj);
extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
					     void *context);

static bool node_lessthan(struct rbnode *a, struct rbnode *b);

/*
 * Red/black tree of allocated kernel objects, for reasonably fast lookups
 * based on object pointer values.
 */
static struct rbtree obj_rb_tree = {
	.lessthan_fn = node_lessthan
};

/*
 * Linked list of allocated kernel objects, for iteration over all allocated
 * objects (and potentially deleting them during iteration).
 */
static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list);

/*
 * TODO: Write some hash table code that will replace both obj_rb_tree
 * and obj_list.
 */

static size_t obj_size_get(enum k_objects otype)
{
	size_t ret;

	switch (otype) {
#include <otype-to-size.h>
	default:
		ret = sizeof(struct device);
		break;
	}

	return ret;
}

static bool node_lessthan(struct rbnode *a, struct rbnode *b)
{
	return a < b;
}

static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node)
{
	return CONTAINER_OF(node, struct dyn_obj, node);
}

static struct dyn_obj *dyn_object_find(void *obj)
{
	struct rbnode *node;
	struct dyn_obj *ret;

	/* For any dynamically allocated kernel object, the object
	 * pointer is just a member of the conatining struct dyn_obj,
	 * so just a little arithmetic is necessary to locate the
	 * corresponding struct rbnode
	 */
	node = (struct rbnode *)((char *)obj - sizeof(struct rbnode));

	k_spinlock_key_t key = k_spin_lock(&lists_lock);
	if (rb_contains(&obj_rb_tree, node)) {
		ret = node_to_dyn_obj(node);
	} else {
		ret = NULL;
	}
	k_spin_unlock(&lists_lock, key);

	return ret;
}

/**
 * @internal
 *
 * @brief Allocate a new thread index for a new thread.
 *
 * This finds an unused thread index that can be assigned to a new
 * thread. If too many threads have been allocated, the kernel will
 * run out of indexes and this function will fail.
 *
 * Note that if an unused index is found, that index will be marked as
 * used after return of this function.
 *
 * @param tidx The new thread index if successful
 *
 * @return true if successful, false if failed
 **/
static bool thread_idx_alloc(u32_t *tidx)
{
	int i;
	int idx;
	int base;

	base = 0;
	for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
		idx = find_lsb_set(_thread_idx_map[i]);

		if (idx != 0) {
			*tidx = base + (idx - 1);

			sys_bitfield_clear_bit((mem_addr_t)_thread_idx_map,
					       *tidx);

			/* Clear permission from all objects */
			z_object_wordlist_foreach(clear_perms_cb,
						   (void *)*tidx);

			return true;
		}

		base += 8;
	}

	return false;
}

/**
 * @internal
 *
 * @brief Free a thread index.
 *
 * This frees a thread index so it can be used by another
 * thread.
 *
 * @param tidx The thread index to be freed
 **/
static void thread_idx_free(u32_t tidx)
{
	/* To prevent leaked permission when index is recycled */
	z_object_wordlist_foreach(clear_perms_cb, (void *)tidx);

	sys_bitfield_set_bit((mem_addr_t)_thread_idx_map, tidx);
}

void *z_impl_k_object_alloc(enum k_objects otype)
{
	struct dyn_obj *dyn_obj;
	u32_t tidx;

	/* Stacks are not supported, we don't yet have mem pool APIs
	 * to request memory that is aligned
	 */
	__ASSERT(otype > K_OBJ_ANY && otype < K_OBJ_LAST &&
		 otype != K_OBJ__THREAD_STACK_ELEMENT,
		 "bad object type requested");

	dyn_obj = z_thread_malloc(sizeof(*dyn_obj) + obj_size_get(otype));
	if (dyn_obj == NULL) {
		LOG_WRN("could not allocate kernel object");
		return NULL;
	}

	dyn_obj->kobj.name = (char *)&dyn_obj->data;
	dyn_obj->kobj.type = otype;
	dyn_obj->kobj.flags = K_OBJ_FLAG_ALLOC;
	(void)memset(dyn_obj->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);

	/* Need to grab a new thread index for k_thread */
	if (otype == K_OBJ_THREAD) {
		if (!thread_idx_alloc(&tidx)) {
			k_free(dyn_obj);
			return NULL;
		}

		dyn_obj->kobj.data = tidx;
	}

	/* The allocating thread implicitly gets permission on kernel objects
	 * that it allocates
	 */
	z_thread_perms_set(&dyn_obj->kobj, _current);

	k_spinlock_key_t key = k_spin_lock(&lists_lock);

	rb_insert(&obj_rb_tree, &dyn_obj->node);
	sys_dlist_append(&obj_list, &dyn_obj->obj_list);
	k_spin_unlock(&lists_lock, key);

	return dyn_obj->kobj.name;
}

void k_object_free(void *obj)
{
	struct dyn_obj *dyn_obj;

	/* This function is intentionally not exposed to user mode.
	 * There's currently no robust way to track that an object isn't
	 * being used by some other thread
	 */

	k_spinlock_key_t key = k_spin_lock(&objfree_lock);

	dyn_obj = dyn_object_find(obj);
	if (dyn_obj != NULL) {
		rb_remove(&obj_rb_tree, &dyn_obj->node);
		sys_dlist_remove(&dyn_obj->obj_list);

		if (dyn_obj->kobj.type == K_OBJ_THREAD) {
			thread_idx_free(dyn_obj->kobj.data);
		}
	}
	k_spin_unlock(&objfree_lock, key);

	if (dyn_obj != NULL) {
		k_free(dyn_obj);
	}
}

struct _k_object *z_object_find(void *obj)
{
	struct _k_object *ret;

	ret = z_object_gperf_find(obj);

	if (ret == NULL) {
		struct dyn_obj *dynamic_obj;

		dynamic_obj = dyn_object_find(obj);
		if (dynamic_obj != NULL) {
			ret = &dynamic_obj->kobj;
		}
	}

	return ret;
}

void z_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
{
	struct dyn_obj *obj, *next;

	z_object_gperf_wordlist_foreach(func, context);

	k_spinlock_key_t key = k_spin_lock(&lists_lock);

	SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, obj_list) {
		func(&obj->kobj, context);
	}
	k_spin_unlock(&lists_lock, key);
}
#endif /* CONFIG_DYNAMIC_OBJECTS */

static int thread_index_get(struct k_thread *t)
{
	struct _k_object *ko;

	ko = z_object_find(t);

	if (ko == NULL) {
		return -1;
	}

	return ko->data;
}

static void unref_check(struct _k_object *ko, int index)
{
	k_spinlock_key_t key = k_spin_lock(&obj_lock);

	sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);

#ifdef CONFIG_DYNAMIC_OBJECTS
	struct dyn_obj *dyn_obj =
			CONTAINER_OF(ko, struct dyn_obj, kobj);

	if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) {
		goto out;
	}

	for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
		if (ko->perms[i] != 0U) {
			goto out;
		}
	}

	/* This object has no more references. Some objects may have
	 * dynamically allocated resources, require cleanup, or need to be
	 * marked as uninitailized when all references are gone. What
	 * specifically needs to happen depends on the object type.
	 */
	switch (ko->type) {
	case K_OBJ_PIPE:
		k_pipe_cleanup((struct k_pipe *)ko->name);
		break;
	case K_OBJ_MSGQ:
		k_msgq_cleanup((struct k_msgq *)ko->name);
		break;
	case K_OBJ_STACK:
		k_stack_cleanup((struct k_stack *)ko->name);
		break;
	default:
		/* Nothing to do */
		break;
	}

	rb_remove(&obj_rb_tree, &dyn_obj->node);
	sys_dlist_remove(&dyn_obj->obj_list);
	k_free(dyn_obj);
out:
#endif
	k_spin_unlock(&obj_lock, key);
}

static void wordlist_cb(struct _k_object *ko, void *ctx_ptr)
{
	struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;

	if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
				  (struct k_thread *)ko->name != ctx->parent) {
		sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
	}
}

void z_thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
{
	struct perm_ctx ctx = {
		thread_index_get(parent),
		thread_index_get(child),
		parent
	};

	if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
		z_object_wordlist_foreach(wordlist_cb, &ctx);
	}
}

void z_thread_perms_set(struct _k_object *ko, struct k_thread *thread)
{
	int index = thread_index_get(thread);

	if (index != -1) {
		sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
	}
}

void z_thread_perms_clear(struct _k_object *ko, struct k_thread *thread)
{
	int index = thread_index_get(thread);

	if (index != -1) {
		sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
		unref_check(ko, index);
	}
}

static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr)
{
	int id = (int)ctx_ptr;

	unref_check(ko, id);
}

void z_thread_perms_all_clear(struct k_thread *thread)
{
	int index = thread_index_get(thread);

	if (index != -1) {
		z_object_wordlist_foreach(clear_perms_cb, (void *)index);
	}
}

static int thread_perms_test(struct _k_object *ko)
{
	int index;

	if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) {
		return 1;
	}

	index = thread_index_get(_current);
	if (index != -1) {
		return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
	}
	return 0;
}

static void dump_permission_error(struct _k_object *ko)
{
	int index = thread_index_get(_current);
	LOG_ERR("thread %p (%d) does not have permission on %s %p",
		_current, index,
		otype_to_str(ko->type), ko->name);
	LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap");
}

void z_dump_object_error(int retval, void *obj, struct _k_object *ko,
			enum k_objects otype)
{
	switch (retval) {
	case -EBADF:
		LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype));
		break;
	case -EPERM:
		dump_permission_error(ko);
		break;
	case -EINVAL:
		LOG_ERR("%p used before initialization", obj);
		break;
	case -EADDRINUSE:
		LOG_ERR("%p %s in use", obj, otype_to_str(otype));
		break;
	default:
		/* Not handled error */
		break;
	}
}

void z_impl_k_object_access_grant(void *object, struct k_thread *thread)
{
	struct _k_object *ko = z_object_find(object);

	if (ko != NULL) {
		z_thread_perms_set(ko, thread);
	}
}

void k_object_access_revoke(void *object, struct k_thread *thread)
{
	struct _k_object *ko = z_object_find(object);

	if (ko != NULL) {
		z_thread_perms_clear(ko, thread);
	}
}

void z_impl_k_object_release(void *object)
{
	k_object_access_revoke(object, _current);
}

void k_object_access_all_grant(void *object)
{
	struct _k_object *ko = z_object_find(object);

	if (ko != NULL) {
		ko->flags |= K_OBJ_FLAG_PUBLIC;
	}
}

int z_object_validate(struct _k_object *ko, enum k_objects otype,
		       enum _obj_init_check init)
{
	if (unlikely((ko == NULL) ||
		(otype != K_OBJ_ANY && ko->type != otype))) {
		return -EBADF;
	}

	/* Manipulation of any kernel objects by a user thread requires that
	 * thread be granted access first, even for uninitialized objects
	 */
	if (unlikely(thread_perms_test(ko) == 0)) {
		return -EPERM;
	}

	/* Initialization state checks. _OBJ_INIT_ANY, we don't care */
	if (likely(init == _OBJ_INIT_TRUE)) {
		/* Object MUST be intialized */
		if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) {
			return -EINVAL;
		}
	} else if (init < _OBJ_INIT_TRUE) { /* _OBJ_INIT_FALSE case */
		/* Object MUST NOT be initialized */
		if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) {
			return -EADDRINUSE;
		}
	} else {
		/* _OBJ_INIT_ANY */
	}

	return 0;
}

void z_object_init(void *obj)
{
	struct _k_object *ko;

	/* By the time we get here, if the caller was from userspace, all the
	 * necessary checks have been done in z_object_validate(), which takes
	 * place before the object is initialized.
	 *
	 * This function runs after the object has been initialized and
	 * finalizes it
	 */

	ko = z_object_find(obj);
	if (ko == NULL) {
		/* Supervisor threads can ignore rules about kernel objects
		 * and may declare them on stacks, etc. Such objects will never
		 * be usable from userspace, but we shouldn't explode.
		 */
		return;
	}

	/* Allows non-initialization system calls to be made on this object */
	ko->flags |= K_OBJ_FLAG_INITIALIZED;
}

void z_object_recycle(void *obj)
{
	struct _k_object *ko = z_object_find(obj);

	if (ko != NULL) {
		(void)memset(ko->perms, 0, sizeof(ko->perms));
		z_thread_perms_set(ko, k_current_get());
		ko->flags |= K_OBJ_FLAG_INITIALIZED;
	}
}

void z_object_uninit(void *obj)
{
	struct _k_object *ko;

	/* See comments in z_object_init() */
	ko = z_object_find(obj);
	if (ko == NULL) {
		return;
	}

	ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
}

/*
 * Copy to/from helper functions used in syscall handlers
 */
void *z_user_alloc_from_copy(const void *src, size_t size)
{
	void *dst = NULL;

	/* Does the caller in user mode have access to read this memory? */
	if (Z_SYSCALL_MEMORY_READ(src, size)) {
		goto out_err;
	}

	dst = z_thread_malloc(size);
	if (dst == NULL) {
		LOG_ERR("out of thread resource pool memory (%zu)", size);
		goto out_err;
	}

	(void)memcpy(dst, src, size);
out_err:
	return dst;
}

static int user_copy(void *dst, const void *src, size_t size, bool to_user)
{
	int ret = EFAULT;

	/* Does the caller in user mode have access to this memory? */
	if (to_user ? Z_SYSCALL_MEMORY_WRITE(dst, size) :
			Z_SYSCALL_MEMORY_READ(src, size)) {
		goto out_err;
	}

	(void)memcpy(dst, src, size);
	ret = 0;
out_err:
	return ret;
}

int z_user_from_copy(void *dst, const void *src, size_t size)
{
	return user_copy(dst, src, size, false);
}

int z_user_to_copy(void *dst, const void *src, size_t size)
{
	return user_copy(dst, src, size, true);
}

char *z_user_string_alloc_copy(const char *src, size_t maxlen)
{
	size_t actual_len;
	int err;
	char *ret = NULL;

	actual_len = z_user_string_nlen(src, maxlen, &err);
	if (err != 0) {
		goto out;
	}
	if (actual_len == maxlen) {
		/* Not NULL terminated */
		LOG_ERR("string too long %p (%zu)", src, actual_len);
		goto out;
	}
	if (size_add_overflow(actual_len, 1, &actual_len)) {
		LOG_ERR("overflow");
		goto out;
	}

	ret = z_user_alloc_from_copy(src, actual_len);

	/* Someone may have modified the source string during the above
	 * checks. Ensure what we actually copied is still terminated
	 * properly.
	 */
	if (ret != NULL) {
		ret[actual_len - 1] = '\0';
	}
out:
	return ret;
}

int z_user_string_copy(char *dst, const char *src, size_t maxlen)
{
	size_t actual_len;
	int ret, err;

	actual_len = z_user_string_nlen(src, maxlen, &err);
	if (err != 0) {
		ret = EFAULT;
		goto out;
	}
	if (actual_len == maxlen) {
		/* Not NULL terminated */
		LOG_ERR("string too long %p (%zu)", src, actual_len);
		ret = EINVAL;
		goto out;
	}
	if (size_add_overflow(actual_len, 1, &actual_len)) {
		LOG_ERR("overflow");
		ret = EINVAL;
		goto out;
	}

	ret = z_user_from_copy(dst, src, actual_len);

	/* See comment above in z_user_string_alloc_copy() */
	dst[actual_len - 1] = '\0';
out:
	return ret;
}

/*
 * Application memory region initialization
 */

extern char __app_shmem_regions_start[];
extern char __app_shmem_regions_end[];

void z_app_shmem_bss_zero(void)
{
	struct z_app_region *region, *end;

	end = (struct z_app_region *)&__app_shmem_regions_end;
	region = (struct z_app_region *)&__app_shmem_regions_start;

	for ( ; region < end; region++) {
		(void)memset(region->bss_start, 0, region->bss_size);
	}
}

/*
 * Default handlers if otherwise unimplemented
 */

static uintptr_t handler_bad_syscall(uintptr_t bad_id, uintptr_t arg2,
				     uintptr_t arg3, uintptr_t arg4,
				     uintptr_t arg5, uintptr_t arg6,
				     void *ssf)
{
	LOG_ERR("Bad system call id %" PRIuPTR " invoked", bad_id);
	arch_syscall_oops(_current_cpu->syscall_frame);
	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}

static uintptr_t handler_no_syscall(uintptr_t arg1, uintptr_t arg2,
				    uintptr_t arg3, uintptr_t arg4,
				    uintptr_t arg5, uintptr_t arg6, void *ssf)
{
	LOG_ERR("Unimplemented system call");
	arch_syscall_oops(_current_cpu->syscall_frame);
	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}

#include <syscall_dispatch.c>