Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 * Copyright (c) 2017, Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <zephyr.h>
#include <string.h>
#include <sys/printk.h>
#include <xtensa-asm2.h>

#ifdef CONFIG_MULTITHREADING
#error Disable multithreading for this unit test!
#endif

/* Just random numbers intended to whiten the register contents during
 * the spill test and make every bit of every register in every call
 * significant in an attempt to catch any mistakes/swaps/etc...
 */
int white[] = {
	       0x5fad484a,
	       0xc23e88f7,
	       0xfff301fb,
	       0xf1189ba7,
	       0x88bffad6,
	       0xaabb96fa,
	       0x629619d5,
	       0x246bee82
};

static inline unsigned int ccount(void)
{
	unsigned int cc;

	__asm__ volatile("rsr.ccount %0" : "=r"(cc));
	return cc;
}

/* We call spill_fn() through a pointer to prevent the compiler from
 * detecting and optimizing out the tail recursion in fn() and forcing
 * a real function call using CALLn instructions.
 */
int (*spill_fnp)(int level, int a, int b, int c);

/* WINDOWBASE/WINDOWSTART registers tested before and after the spill */
unsigned int spill_wb0, spill_ws0, spill_wb1, spill_ws1;

/* Test start/end values for CCOUNT */
unsigned int spill_start, spill_end;

/* Validated result for spill_fn() */
int spill_expect;

enum {
	NO_SPILL, HAL_SPILL, ZEPHYR_SPILL, NUM_MODES
} spill_mode;

static int spill_fn(int level, int a, int b, int c)
{
	/* Be very careful when debugging, note that a printk() call
	 * tends to push all the registers out of the windows on its
	 * own, leaving no frames for us to test against!
	 */
	if (level >= ARRAY_SIZE(white)) {
		__asm__ volatile ("rsr.WINDOWBASE %0" : "=r"(spill_wb0));
		__asm__ volatile ("rsr.WINDOWSTART %0" : "=r"(spill_ws0));

		spill_start = ccount();

		if (spill_mode == NO_SPILL) {
			/* Just here to test the cycle count overhead
			 * and get the baseline function result.
			 */
		} else if (spill_mode == ZEPHYR_SPILL) {
			/* FIXME: the a0_save hack should be needless.  It
			 * *should* be enough to list "a0" in the clobber list
			 * of the __asm__ statement (and let the compiler
			 * decide on how to save the value), but that's not
			 * working for me...
			 */
			int a0_save;

			__asm__ volatile
				("mov %0, a0"			"\n\t"
				 "call0 spill_reg_windows"	"\n\t"
				 "mov a0, %0"			"\n\t"
				 : "=r"(a0_save));
		} else if (spill_mode == HAL_SPILL) {
			/* Strictly there is a xthal_window_spill_nw
			 * routine that is called with special setup
			 * (use CALL0, spill A2/A3, clear WOE) and
			 * supposed to be faster, but I couldn't make
			 * that work.
			 */
			extern void xthal_window_spill(void);
			xthal_window_spill();
		}

		spill_end = ccount();
		__asm__ volatile ("rsr.WINDOWBASE %0" : "=r" (spill_wb1));
		__asm__ volatile ("rsr.WINDOWSTART %0" : "=r" (spill_ws1));

		return ((a + b) | c);
	}

	int val1 = (a - (b & c)) ^ white[level];
	int val2 = ((a | b) + c) ^ white[(level + 1) % ARRAY_SIZE(white)];
	int val3 = (a - (b - c)) ^ white[(level + 2) % ARRAY_SIZE(white)];

	int x = spill_fnp(level+1, val1, val2, val3);

	/* FIXME: as it happens, the compiler seems not to be
	 * optimizing components of this addition before the function
	 * call, which is what we want: the desire is that the
	 * individual values be held in registers across the call so
	 * that they can be checked to have been spilled/filled
	 * properly as we return up the stack.  But the compiler
	 * certainly COULD reorder this addition (it would actually be
	 * a good optimization: you could reduce the number of
	 * registers used before the tail return and use a smaller
	 * call frame).  For now, I'm happy enough simply having read
	 * the generated code, but long term this should be a more
	 * robust test if possible.  Maybe write the values to some
	 * extern volatile spots...
	 */
	return x + val1 + val2 + val3 + a + b + c;
}

int test_reg_spill(void)
{
	spill_fnp = spill_fn;

	int ok = 1;

	for (spill_mode = 0; spill_mode < NUM_MODES; spill_mode++) {
		printk("Testing %s\n",
		       spill_mode == NO_SPILL ? "NO_SPILL"
		       : (spill_mode == HAL_SPILL ? "HAL_SPILL"
			  : "ZEPHYR_SPILL"));

		int result = spill_fnp(0, 1, 2, 3);

		printk("  WINDOWBASE %d -> %d, WINDOWSTART 0x%x -> 0x%x (%d cycles)\n",
		       spill_wb0, spill_wb1, spill_ws0, spill_ws1,
		       spill_end - spill_start);

		if (spill_mode == NO_SPILL) {
			spill_expect = result;
			continue;
		}

		if (spill_ws1 != 1 << spill_wb1) {
			printk("WINDOWSTART should show exactly one frame at WINDOWBASE\n");
			ok = 0;
		}

		if (result != spill_expect) {
			printk("Unexpected fn(1, 2, 3) result, got %d want %d\n",
			       result, spill_expect);
			ok = 0;
		}
	}

	return ok;
}

int *test_highreg_handle;

/* Simple save locations for some context needed by the test assembly */
void *_test_highreg_sp_save;
void *_test_highreg_a0_save;

int test_highreg_stack[64];

int *test_highreg_sp_top = &test_highreg_stack[ARRAY_SIZE(test_highreg_stack)];

/* External function, defined in assembly */
void fill_window(void (*fn)(void));

/* Test rig for fill_window, maybe remove as a metatest */
int testfw_wb, testfw_ws;
void testfw(void);

/* Assembly-defined leaf functions for fill_window which poke the
 * specified number of high GPRs before calling xtensa_save_high_regs
 * to spill them into the test_highreg_stack area for inspection.
 */
void test_highreg_0(void);
void test_highreg_4(void);
void test_highreg_8(void);
void test_highreg_12(void);

typedef void (*test_fn_t)(void);
test_fn_t highreg_tests[] = {
	test_highreg_0,
	test_highreg_4,
	test_highreg_8,
	test_highreg_12,
};

int test_highreg_save(void)
{
	int ok = 1;

	fill_window(testfw);
	printk("testfw wb %d ws 0x%x\n", testfw_wb, testfw_ws);
	ok = ok && (testfw_ws == ((1 << (XCHAL_NUM_AREGS / 4)) - 1));

	for (int i = 0; i < ARRAY_SIZE(highreg_tests); i++) {
		printk("\nHighreg test %d\n", i);

		fill_window(highreg_tests[i]);

		ok = ok && (*test_highreg_handle == (int)test_highreg_sp_top);

		int spilled_words = test_highreg_sp_top - test_highreg_handle;

		for (int quad = 0; ok && quad < (spilled_words - 1)/4; quad++) {
			int *qbase = test_highreg_sp_top - (quad + 1) * 4;

			for (int ri = 0; ri < 4; ri++) {
				int reg = 4 + quad * 4 + ri;

				ok = ok && (qbase[ri] == reg);
				printk("  q %d reg %d qb[%d] %d\n",
				       quad, reg, ri, qbase[ri]);
			}
		}
	}

	return ok;
}

void *switch_handle0, *switch_handle1;

void xtensa_switch(void *handle, void **old_handle);

void test_switch_bounce(void);
__asm__("test_switch_bounce:"	"\n\t"
	"call4 test_switch_top"	"\n\t");

volatile int switch_count;

/* Sits in a loop switching back to handle0 (which is the main thread) */
void test_switch_top(void)
{
	int n = 1;

	while (1) {
		switch_count = n++;
		xtensa_switch(switch_handle0, &switch_handle1);
	}
}

int test_switch(void)
{
	static int stack2[512];

	printk("%s\n", __func__);

	(void)memset(stack2, 0, sizeof(stack2));

	int *sp = xtensa_init_stack(&stack2[ARRAY_SIZE(stack2)],
				    (void *)test_switch_bounce,
				    0, 0, 0);

#if 0
	/* DEBUG: dump the stack contents for manual inspection */
	for (int i = 0; i < 64; i++) {
		int idx = ARRAY_SIZE(stack2) - (i+1);
		int off = (i+1) * -4;
		int *addr = &stack2[idx];

		if (addr < sp) {
			break;
		}
		printk("%p (%d): 0x%x\n", addr, off, stack2[idx]);
	}
	printk("sp: %p\n", sp);
#endif

	switch_handle1 = sp;

	const int n_switch = 10;

	for (int i = 0; i < n_switch; i++) {
		xtensa_switch(switch_handle1, &switch_handle0);
		/* printk("switch %d count %d\n", i, switch_count); */
	}

	return switch_count == n_switch;
}

void rfi_jump(void);
void rfi_jump_c(void)
{
	int ps;

	__asm__ volatile ("rsr.PS %0" : "=r"(ps));
	printk("%s, PS = %xh\n", __func__, ps);
}

int xstack_ok;

#define XSTACK_SIZE 1024
#define XSTACK_CANARY 0x5a5aa5a5
static int xstack_stack2[XSTACK_SIZE + 1];

void do_xstack_call(void *new_stack); /* in asmhelp.S */

void xstack_bottom(void)
{
	xstack_ok = 1;
}

void xstack_top(void)
{
	int on_my_stack;

	printk("%s oms %p\n", __func__, &on_my_stack);

	/* Do this via fill_window() to be absolutely sure the whole
	 * call stack across both physical stacks got spilled and
	 * filled properly.
	 */
	fill_window(xstack_bottom);
}

int test_xstack(void)
{
	/* Make the stack one element big and put a canary above it to
	 * check nothing underflows
	 */

	int *new_stack = &xstack_stack2[XSTACK_SIZE];
	*new_stack = XSTACK_CANARY;

	printk("%s new_stack = %p\n", __func__, new_stack);

	do_xstack_call(new_stack);

	printk("xstack_ok %d stack2[%d] 0x%x\n",
	       xstack_ok, XSTACK_SIZE, xstack_stack2[XSTACK_SIZE]);

	return xstack_ok && xstack_stack2[XSTACK_SIZE] == XSTACK_CANARY;
}

#ifdef CONFIG_SOC_ESP32
#define TIMER_INT 16
#else
#define TIMER_INT 13
#endif

volatile int timer2_fired;

int excint_stack[8192];
void *excint_stack_top = &excint_stack[ARRAY_SIZE(excint_stack)];

static struct { int nest; void *stack_top; } excint_cpu;

volatile int int5_result;

void disable_timer(void)
{
	int ie;

	__asm__ volatile("rsr.intenable %0" : "=r"(ie));
	ie &= ~(1<<TIMER_INT);
	__asm__ volatile("wsr.intenable %0; rsync" : : "r"(ie));
}

void enable_timer(void)
{
	int ie;

	__asm__ volatile("rsr.intenable %0" : "=r"(ie));
	ie |= (1<<TIMER_INT);
	__asm__ volatile("wsr.intenable %0; rsync" : : "r"(ie));
}

void *handle_int5_c(void *handle)
{
	int5_result = spill_fnp(0, 3, 2, 1);

	int ccompare2_val = ccount() - 1;

	__asm__ volatile("wsr.ccompare2 %0; rsync" : : "r"(ccompare2_val));

	disable_timer();

	timer2_fired = 1;

	return handle;
}

int interrupt_test(void)
{
	int ok = 1;

	excint_cpu.nest = 0;
	excint_cpu.stack_top = &excint_stack[ARRAY_SIZE(excint_stack)];

	void *cpuptr = &excint_cpu;

	__asm__ volatile("wsr.MISC0 %0" : : "r"(cpuptr));

	/* We reuse the "spill_fn" logic from above to get a
	 * stack-sensitive, deeply-recursive computation going that
	 * will be sensitive to interrupt bugs
	 */
	spill_mode = NO_SPILL;

	unsigned int start = ccount();
	int expect = spill_fnp(0, 3, 2, 1);
	unsigned int spill_time = ccount() - start;

	/* Ten thousand iterations is still pretty quick */
	for (int i = 0; i < 10000; i++) {
		int nest = i & 1;

		excint_cpu.nest = nest;
		timer2_fired = 0;

		/* Vaguely random delay between 2-8 iterations of
		 * spill_fn().  Maybe improve with a real PRNG.
		 */
		const int max_reps = 8;
		int wh = white[i % ARRAY_SIZE(white)];
		int delay = spill_time * 2U
			+ ((wh * (i+1)) % (spill_time * (max_reps - 2)));

		int alarm = ccount() + delay;

		__asm__ volatile("wsr.ccompare2 %0; rsync" : : "r"(alarm));

		enable_timer();

#if 0
		/* This is what I want to test: run the spill_fn test
		 * repeatedly in the main thread so that it can be
		 * interrupted and restored, and validate that it
		 * returns the same result every time.  But this can't
		 * work, even in principle: the timer interrupt we are
		 * using is "high priority", which means that it can
		 * interrupt the window exceptions being thrown in the
		 * main thread.  And by design, Xtensa window
		 * exceptions CANNOT be made reentrant (they don't
		 * save the interrupted state, so can be interrupted
		 * again before they can mask off exceptions, which
		 * will then lose/clobber the OWB field in PS when the
		 * interrupt handler throws another window exception).
		 * So this doesn't work, in fact it fails every 2-10
		 * iterations as spill_fn spends a lot of its time
		 * spill/filling stack frames (by design, of course).
		 *
		 * This could be made to work if we could repurpose
		 * the existing medium priority timer interrupt (which
		 * is hard in a unit test: that's an important
		 * interrupt!) or use the low priority timer which
		 * delivers to the global exception handler (basically
		 * impossible in a unit test).  Frustrating.
		 */
		int reps = 0;

		while (!timer2_fired && reps < (max_reps+2)) {
			int result = spill_fnp(0, 3, 2, 1);

			reps++;
			if (result != expect) {
				ok = 0;
			}
		}
		if (reps >= max_reps+2) {
			printk("Interrupt didn't arrive\n");
			ok = 0;
		}
		if (int5_result != expect) {
			printk("Unexpected int spill_fn() result\n");
			ok = 0;
		}
		printk("INT test delay %d nest %d reps %d\n",
		       delay, nest, reps);
#else
		/* So this is what we do instead: just spin in the
		 * main thread calling functions that don't involve
		 * exceptions.  By experiment, calling spill_fn with a
		 * first (depth) argument of 6 or 7 results in a
		 * shallow call tree that won't throw exepctions.  At
		 * least we're executing real code which depends on
		 * its register state and validating that interrupts
		 * don't hurt.
		 */
		volatile int dummy = 1;

		while (!timer2_fired) {
			dummy = spill_fnp(6, dummy, 2, 3);
		}
		if (int5_result != expect) {
			printk("Unexpected int spill_fn() result\n");
			ok = 0;
		}
#endif
	}
	return ok;
}

void main(void)
{
	/* Turn off interrupts and leave disabled, otherwise the
	 * "userspace" context switching tests might not be reliable.
	 * Stack pointers can exist in indeterminate states here.
	 * (Note: the interrupt test below is using a high priority
	 * interrupt which is not masked by irq_lock(), so it doesn't
	 * care).
	 */
	int key = irq_lock();

	/* Strictly not a "test", we just want to know that the jump
	 * worked.  If the rest of the code runs, this must have
	 * "passed".
	 */
	rfi_jump();

	int ok = 1;

	ok = ok && test_reg_spill();

	ok = ok && test_highreg_save();

	ok = ok && test_switch();

	ok = ok && test_xstack();

	ok = ok && interrupt_test();

	irq_unlock(key);

	printk("%s\n", ok ? "OK" : "Failed");
}