Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 | /* * Copyright (c) 2018, Intel Corporation * All rights reserved. * * Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com> * Liam Girdwood <liam.r.girdwood@linux.intel.com> * Keyon Jie <yang.jie@linux.intel.com> * Sathish Kuttan <sathish.k.kuttan@intel.com> * * SPDX-License-Identifier: Apache-2.0 */ #include <errno.h> #include <zephyr.h> #include <device.h> #include <soc.h> #include <drivers/dma.h> #include <audio/dmic.h> #include "intel_dmic.h" #include "decimation/pdm_decim_fir.h" #define LOG_LEVEL CONFIG_AUDIO_DMIC_LOG_LEVEL #include <logging/log.h> LOG_MODULE_REGISTER(audio_dmic); /* * Maximum number of PDM controller instances supported by this driver * configuration data types are selected based on this max. * For example, u32_t is selected when a config parameter is 4bits wide * and 8 instances fit within a 32 bit type */ #define MAX_PDM_CONTROLLERS_SUPPORTED 8 /* Actual number of hardware controllers */ #define DMIC_HW_CONTROLLERS 4 #define DMIC_MAX_MODES 50 /* HW FIR pipeline needs 5 additional cycles per channel for internal * operations. This is used in MAX filter length check. */ #define DMIC_FIR_PIPELINE_OVERHEAD 5 struct decim_modes { s16_t clkdiv[DMIC_MAX_MODES]; s16_t mcic[DMIC_MAX_MODES]; s16_t mfir[DMIC_MAX_MODES]; int num_of_modes; }; struct matched_modes { s16_t clkdiv[DMIC_MAX_MODES]; s16_t mcic[DMIC_MAX_MODES]; s16_t mfir_a[DMIC_MAX_MODES]; s16_t mfir_b[DMIC_MAX_MODES]; int num_of_modes; }; struct dmic_configuration { struct pdm_decim *fir_a; struct pdm_decim *fir_b; int clkdiv; int mcic; int mfir_a; int mfir_b; int cic_shift; int fir_a_shift; int fir_b_shift; int fir_a_length; int fir_b_length; s32_t fir_a_scale; s32_t fir_b_scale; }; /* Minimum OSR is always applied for 48 kHz and less sample rates */ #define DMIC_MIN_OSR 50 /* These are used as guideline for configuring > 48 kHz sample rates. The * minimum OSR can be relaxed down to 40 (use 3.84 MHz clock for 96 kHz). */ #define DMIC_HIGH_RATE_MIN_FS 64000 #define DMIC_HIGH_RATE_OSR_MIN 40 /* Used for scaling FIR coeffcients for HW */ #define DMIC_HW_FIR_COEF_MAX ((1 << (DMIC_HW_BITS_FIR_COEF - 1)) - 1) #define DMIC_HW_FIR_COEF_Q (DMIC_HW_BITS_FIR_COEF - 1) /* Internal precision in gains computation, e.g. Q4.28 in s32_t */ #define DMIC_FIR_SCALE_Q 28 /* Fractional multiplication with shift and round * Note that the parameters px and py must be cast to (s64_t) if other type. */ #define Q_MULTSR_32X32(px, py, qx, qy, qp) \ ((((px) * (py) >> ((qx)+(qy)-(qp)-1)) + 1) >> 1) /* Saturation */ #define SATP_INT32(x) (((x) > INT32_MAX) ? INT32_MAX : (x)) #define SATM_INT32(x) (((x) < INT32_MIN) ? INT32_MIN : (x)) /* Macros to set bit(s) */ #define SET_BIT(b, x) (((x) & 1) << (b)) #define SET_BITS(b_hi, b_lo, x) \ (((x) & ((1 << ((b_hi) - (b_lo) + 1)) - 1)) << (b_lo)) #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #define MAX(a, b) (((a) > (b)) ? (a) : (b)) /* queue size to hold buffers in process */ #define DMIC_BUF_Q_LEN 2 #define DMIC_REG_RD(reg) (*((volatile u32_t *)(PDM_BASE + (reg)))) #define DMIC_REG_WR(reg, val) \ (*((volatile u32_t *)(PDM_BASE + (reg))) = (val)) #define DMIC_REG_UPD(reg, mask, val) \ DMIC_REG_WR((reg), (DMIC_REG_RD((reg)) & ~(mask)) | ((val) & (mask))) struct _stream_data { struct k_msgq in_queue; struct k_msgq out_queue; void *in_msgs[DMIC_BUF_Q_LEN]; void *out_msgs[DMIC_BUF_Q_LEN]; struct k_mem_slab *mem_slab; size_t block_size; }; /* DMIC private data */ static struct _dmic_pdata { enum dmic_state state; u16_t fifo_a; u16_t fifo_b; u16_t mic_en_mask; u8_t num_streams; u8_t reserved; struct _stream_data streams[DMIC_MAX_STREAMS]; struct device *dma_dev; } dmic_private; static inline void dmic_parse_channel_map(u32_t channel_map_lo, u32_t channel_map_hi, u8_t channel, u8_t *pdm, enum pdm_lr *lr); static inline u8_t dmic_parse_clk_skew_map(u32_t skew_map, u8_t pdm); static void dmic_stop(void); /* This function searches from vec[] (of length vec_length) integer values * of n. The indexes to equal values is returned in idx[]. The function * returns the number of found matches. The max_results should be set to * 0 (or negative) or vec_length get all the matches. The max_result can be set * to 1 to receive only the first match in ascending order. It avoids need * for an array for idx. */ int find_equal_int16(s16_t idx[], s16_t vec[], int n, int vec_length, int max_results) { int nresults = 0; int i; for (i = 0; i < vec_length; i++) { if (vec[i] == n) { idx[nresults++] = i; if (nresults == max_results) { break; } } } return nresults; } /* Return the smallest value found in the vector */ s16_t find_min_int16(s16_t vec[], int vec_length) { int i; int min = vec[0]; for (i = 1; i < vec_length; i++) { min = (vec[i] < min) ? vec[i] : min; } return min; } /* Return the largest absolute value found in the vector. Note that * smallest negative value need to be saturated to preset as s32_t. */ s32_t find_max_abs_int32(s32_t vec[], int vec_length) { int i; s64_t amax = (vec[0] > 0) ? vec[0] : -vec[0]; for (i = 1; i < vec_length; i++) { amax = (vec[i] > amax) ? vec[i] : amax; amax = (-vec[i] > amax) ? -vec[i] : amax; } return SATP_INT32(amax); /* Amax is always a positive value */ } /* Count the left shift amount to normalize a 32 bit signed integer value * without causing overflow. Input value 0 will result to 31. */ int norm_int32(s32_t val) { if (val == 0) { return 31; } if (val < 0) { val = -val; } return __builtin_clz(val) - 1; } /* This function returns a raw list of potential microphone clock and decimation * modes for achieving requested sample rates. The search is constrained by * decimation HW capabililies and setup parameters. The parameters such as * microphone clock min/max and duty cycle requirements need be checked from * used microphone component datasheet. */ static void find_modes(struct decim_modes *modes, struct dmic_cfg *config, u32_t fs) { int clkdiv_min; int clkdiv_max; int clkdiv; int c1; int du_min; int du_max; int pdmclk; int osr; int mfir; int mcic; int ioclk_test; int osr_min = DMIC_MIN_OSR; int i = 0; /* Defaults, empty result */ modes->num_of_modes = 0; /* The FIFO is not requested if sample rate is set to zero. Just * return in such case with num_of_modes as zero. */ if (fs == 0U) { return; } /* Override DMIC_MIN_OSR for very high sample rates, use as minimum * the nominal clock for the high rates. */ if (fs >= DMIC_HIGH_RATE_MIN_FS) { osr_min = DMIC_HIGH_RATE_OSR_MIN; } /* Check for sane pdm clock, min 100 kHz, max ioclk/2 */ if ((config->io.max_pdm_clk_freq < DMIC_HW_PDM_CLK_MIN) || (config->io.max_pdm_clk_freq > (DMIC_HW_IOCLK / 2))) { LOG_ERR("max_pdm_clk_freq %u invalid", config->io.max_pdm_clk_freq); return; } if ((config->io.min_pdm_clk_freq < DMIC_HW_PDM_CLK_MIN) || (config->io.min_pdm_clk_freq > config->io.max_pdm_clk_freq)) { LOG_ERR("min_pdm_clk_freq %u invalid", config->io.min_pdm_clk_freq); return; } /* Check for sane duty cycle */ if (config->io.min_pdm_clk_dc > config->io.max_pdm_clk_dc) { LOG_ERR("min_pdm_clk_dc %u max_pdm_clk_dc %u invalid", config->io.min_pdm_clk_dc, config->io.max_pdm_clk_dc); return; } if ((config->io.min_pdm_clk_dc < DMIC_HW_DUTY_MIN) || (config->io.min_pdm_clk_dc > DMIC_HW_DUTY_MAX)) { LOG_ERR("min_pdm_clk_dc %u invalid", config->io.min_pdm_clk_dc); return; } if ((config->io.max_pdm_clk_dc < DMIC_HW_DUTY_MIN) || (config->io.max_pdm_clk_dc > DMIC_HW_DUTY_MAX)) { LOG_ERR("max_pdm_clk_dc %u invalid", config->io.max_pdm_clk_dc); return; } /* Min and max clock dividers */ clkdiv_min = (DMIC_HW_IOCLK + config->io.max_pdm_clk_freq - 1) / config->io.max_pdm_clk_freq; clkdiv_min = (clkdiv_min > DMIC_HW_CIC_DECIM_MIN) ? clkdiv_min : DMIC_HW_CIC_DECIM_MIN; clkdiv_max = DMIC_HW_IOCLK / config->io.min_pdm_clk_freq; /* Loop possible clock dividers and check based on resulting * oversampling ratio that CIC and FIR decimation ratios are * feasible. The ratios need to be integers. Also the mic clock * duty cycle need to be within limits. */ for (clkdiv = clkdiv_min; clkdiv <= clkdiv_max; clkdiv++) { /* Calculate duty cycle for this clock divider. Note that * odd dividers cause non-50% duty cycle. */ c1 = clkdiv >> 1; du_min = 100 * c1 / clkdiv; du_max = 100 - du_min; /* Calculate PDM clock rate and oversampling ratio. */ pdmclk = DMIC_HW_IOCLK / clkdiv; osr = pdmclk / fs; /* Check that OSR constraints is met and clock duty cycle does * not exceed microphone specification. If exceed proceed to * next clkdiv. */ if ((osr < osr_min) || (du_min < config->io.min_pdm_clk_dc) || (du_max > config->io.max_pdm_clk_dc)) { continue; } /* Loop FIR decimation factors candidates. If the * integer divided decimation factors and clock dividers * as multiplied with sample rate match the IO clock * rate the division was exact and such decimation mode * is possible. Then check that CIC decimation constraints * are met. The passed decimation modes are added to array. */ for (mfir = DMIC_HW_FIR_DECIM_MIN; mfir <= DMIC_HW_FIR_DECIM_MAX; mfir++) { mcic = osr / mfir; ioclk_test = fs * mfir * mcic * clkdiv; if (ioclk_test == DMIC_HW_IOCLK && mcic >= DMIC_HW_CIC_DECIM_MIN && mcic <= DMIC_HW_CIC_DECIM_MAX && i < DMIC_MAX_MODES) { modes->clkdiv[i] = clkdiv; modes->mcic[i] = mcic; modes->mfir[i] = mfir; i++; modes->num_of_modes = i; } } } } /* The previous raw modes list contains sane configuration possibilities. When * there is request for both FIFOs A and B operation this function returns * list of compatible settings. */ static void match_modes(struct matched_modes *c, struct decim_modes *a, struct decim_modes *b) { s16_t idx[DMIC_MAX_MODES]; int idx_length; int i; int n; int m; /* Check if previous search got results. */ c->num_of_modes = 0; if (a->num_of_modes == 0 && b->num_of_modes == 0) { /* Nothing to do */ return; } /* Check for request only for FIFO A or B. In such case pass list for * A or B as such. */ if (b->num_of_modes == 0) { c->num_of_modes = a->num_of_modes; for (i = 0; i < a->num_of_modes; i++) { c->clkdiv[i] = a->clkdiv[i]; c->mcic[i] = a->mcic[i]; c->mfir_a[i] = a->mfir[i]; c->mfir_b[i] = 0; /* Mark FIR B as non-used */ } return; } if (a->num_of_modes == 0) { c->num_of_modes = b->num_of_modes; for (i = 0; i < b->num_of_modes; i++) { c->clkdiv[i] = b->clkdiv[i]; c->mcic[i] = b->mcic[i]; c->mfir_b[i] = b->mfir[i]; c->mfir_a[i] = 0; /* Mark FIR A as non-used */ } return; } /* Merge a list of compatible modes */ i = 0; for (n = 0; n < a->num_of_modes; n++) { /* Find all indices of values a->clkdiv[n] in b->clkdiv[] */ idx_length = find_equal_int16(idx, b->clkdiv, a->clkdiv[n], b->num_of_modes, 0); for (m = 0; m < idx_length; m++) { if (b->mcic[idx[m]] == a->mcic[n]) { c->clkdiv[i] = a->clkdiv[n]; c->mcic[i] = a->mcic[n]; c->mfir_a[i] = a->mfir[n]; c->mfir_b[i] = b->mfir[idx[m]]; i++; } } c->num_of_modes = i; } } /* Finds a suitable FIR decimation filter from the included set */ static struct pdm_decim *get_fir(struct dmic_configuration *cfg, int mfir) { int i; int fs; int cic_fs; int fir_max_length; struct pdm_decim *fir = NULL; struct pdm_decim **fir_list; if (mfir <= 0) { return fir; } cic_fs = DMIC_HW_IOCLK / cfg->clkdiv / cfg->mcic; fs = cic_fs / mfir; /* FIR max. length depends on available cycles and coef RAM * length. Exceeding this length sets HW overrun status and * overwrite of other register. */ fir_max_length = (DMIC_HW_IOCLK / fs / 2) - DMIC_FIR_PIPELINE_OVERHEAD; fir_max_length = MIN(fir_max_length, DMIC_HW_FIR_LENGTH_MAX); fir_list = pdm_decim_get_fir_list(); for (i = 0; i < DMIC_FIR_LIST_LENGTH; i++) { if (fir_list[i]->decim_factor == mfir && fir_list[i]->length <= fir_max_length) { /* Store pointer, break from loop to avoid a * Possible other mode with lower FIR length. */ fir = fir_list[i]; break; } } return fir; } /* Calculate scale and shift to use for FIR coefficients. Scale is applied * before write to HW coef RAM. Shift will be programmed to HW register. */ static int fir_coef_scale(s32_t *fir_scale, int *fir_shift, int add_shift, const s32_t coef[], int coef_length, s32_t gain) { s32_t amax; s32_t new_amax; s32_t fir_gain; int shift; /* Multiply gain passed from CIC with output full scale. */ fir_gain = Q_MULTSR_32X32((s64_t)gain, DMIC_HW_SENS_Q28, DMIC_FIR_SCALE_Q, 28, DMIC_FIR_SCALE_Q); /* Find the largest FIR coefficient value. */ amax = find_max_abs_int32((s32_t *)coef, coef_length); /* Scale max. tap value with FIR gain. */ new_amax = Q_MULTSR_32X32((s64_t)amax, fir_gain, 31, DMIC_FIR_SCALE_Q, DMIC_FIR_SCALE_Q); if (new_amax <= 0) { return -EINVAL; } /* Get left shifts count to normalize the fractional value as 32 bit. * We need right shifts count for scaling so need to invert. The * difference of Q31 vs. used Q format is added to get the correct * normalization right shift value. */ shift = 31 - DMIC_FIR_SCALE_Q - norm_int32(new_amax); /* Add to shift for coef raw Q31 format shift and store to * configuration. Ensure range (fail should not happen with OK * coefficient set). */ *fir_shift = -shift + add_shift; if (*fir_shift < DMIC_HW_FIR_SHIFT_MIN || *fir_shift > DMIC_HW_FIR_SHIFT_MAX) { return -EINVAL; } /* Compensate shift into FIR coef scaler and store as Q4.20. */ if (shift < 0) { *fir_scale = (fir_gain << -shift); } else { *fir_scale = (fir_gain >> shift); } return 0; } /* This function selects with a simple criteria one mode to set up the * decimator. For the settings chosen for FIFOs A and B output a lookup * is done for FIR coefficients from the included coefficients tables. * For some decimation factors there may be several length coefficient sets. * It is due to possible restriction of decimation engine cycles per given * sample rate. If the coefficients length is exceeded the lookup continues. * Therefore the list of coefficient set must present the filters for a * decimation factor in decreasing length order. * * Note: If there is no filter available an error is returned. The parameters * should be reviewed for such case. If still a filter is missing it should be * added into the included set. FIR decimation with a high factor usually * needs compromizes into specifications and is not desirable. */ static int select_mode(struct dmic_configuration *cfg, struct matched_modes *modes) { s32_t g_cic; s32_t fir_in_max; s32_t cic_out_max; s32_t gain_to_fir; s16_t idx[DMIC_MAX_MODES]; s16_t *mfir; int n = 1; int mmin; int count; int mcic; int bits_cic; int ret; /* If there are more than one possibilities select a mode with lowest * FIR decimation factor. If there are several select mode with highest * ioclk divider to minimize microphone power consumption. The highest * clock divisors are in the end of list so select the last of list. * The minimum OSR criteria used in previous ensures that quality in * the candidates should be sufficient. */ if (modes->num_of_modes == 0) { LOG_ERR("num_of_modes is 0"); return -EINVAL; } /* Valid modes presence is indicated with non-zero decimation * factor in 1st element. If FIR A is not used get decimation factors * from FIR B instead. */ if (modes->mfir_a[0] > 0) { mfir = modes->mfir_a; } else { mfir = modes->mfir_b; } mmin = find_min_int16(mfir, modes->num_of_modes); count = find_equal_int16(idx, mfir, mmin, modes->num_of_modes, 0); n = idx[count - 1]; /* Get microphone clock and decimation parameters for used mode from * the list. */ cfg->clkdiv = modes->clkdiv[n]; cfg->mfir_a = modes->mfir_a[n]; cfg->mfir_b = modes->mfir_b[n]; cfg->mcic = modes->mcic[n]; cfg->fir_a = NULL; cfg->fir_b = NULL; /* Find raw FIR coefficients to match the decimation factors of FIR * A and B. */ if (cfg->mfir_a > 0) { cfg->fir_a = get_fir(cfg, cfg->mfir_a); if (!cfg->fir_a) { LOG_ERR("FIR filter not found for mfir_a %d", cfg->mfir_a); return -EINVAL; } } if (cfg->mfir_b > 0) { cfg->fir_b = get_fir(cfg, cfg->mfir_b); if (!cfg->fir_b) { LOG_ERR("FIR filter not found for mfir_b %d", cfg->mfir_b); return -EINVAL; } } /* Calculate CIC shift from the decimation factor specific gain. The * gain of HW decimator equals decimation factor to power of 5. */ mcic = cfg->mcic; g_cic = mcic * mcic * mcic * mcic * mcic; if (g_cic < 0) { /* Erroneous decimation factor and CIC gain */ LOG_ERR("Invalid CIC gain %d", g_cic); return -EINVAL; } bits_cic = 32 - norm_int32(g_cic); cfg->cic_shift = bits_cic - DMIC_HW_BITS_FIR_INPUT; /* Calculate remaining gain to FIR in Q format used for gain * values. */ fir_in_max = (1 << (DMIC_HW_BITS_FIR_INPUT - 1)); if (cfg->cic_shift >= 0) { cic_out_max = g_cic >> cfg->cic_shift; } else { cic_out_max = g_cic << -cfg->cic_shift; } gain_to_fir = (s32_t)((((s64_t)fir_in_max) << DMIC_FIR_SCALE_Q) / cic_out_max); /* Calculate FIR scale and shift */ if (cfg->mfir_a > 0) { cfg->fir_a_length = cfg->fir_a->length; ret = fir_coef_scale(&cfg->fir_a_scale, &cfg->fir_a_shift, cfg->fir_a->shift, cfg->fir_a->coef, cfg->fir_a->length, gain_to_fir); if (ret < 0) { /* Invalid coefficient set found, should not happen. */ LOG_ERR("Invalid coefficient A"); return -EINVAL; } } else { cfg->fir_a_scale = 0; cfg->fir_a_shift = 0; cfg->fir_a_length = 0; } if (cfg->mfir_b > 0) { cfg->fir_b_length = cfg->fir_b->length; ret = fir_coef_scale(&cfg->fir_b_scale, &cfg->fir_b_shift, cfg->fir_b->shift, cfg->fir_b->coef, cfg->fir_b->length, gain_to_fir); if (ret < 0) { /* Invalid coefficient set found, should not happen. */ LOG_ERR("Invalid coefficient B"); return -EINVAL; } } else { cfg->fir_b_scale = 0; cfg->fir_b_shift = 0; cfg->fir_b_length = 0; } return 0; } static int source_ipm_helper(struct pdm_chan_cfg *config, u32_t *source_mask, u8_t *controller_mask, u8_t *stereo_mask, u8_t *swap_mask) { u8_t pdm_ix; u8_t chan_ix; enum pdm_lr lr; u16_t pdm_lr_mask = 0U; int ipm = 0; /* clear outputs */ *source_mask = 0U; *stereo_mask = 0U; *swap_mask = 0U; *controller_mask = 0U; /* Loop number of PDM controllers in the configuration. If mic A * or B is enabled then a pdm controller is marked as active. Also it * is checked whether the controller should operate as stereo or mono * left (A) or mono right (B) mode. Mono right mode is setup as channel * swapped mono left. The function returns also in array source[] the * indice of enabled pdm controllers to be used for IPM configuration. */ for (chan_ix = 0U; chan_ix < config->req_num_chan; chan_ix++) { dmic_parse_channel_map(config->req_chan_map_lo, config->req_chan_map_hi, chan_ix, &pdm_ix, &lr); if (pdm_ix >= DMIC_HW_CONTROLLERS) { LOG_ERR("Invalid PDM controller %u in channel %u", pdm_ix, chan_ix); continue; } if ((*controller_mask & BIT(pdm_ix)) == 0U) { *controller_mask |= BIT(pdm_ix); *source_mask |= pdm_ix << (ipm << 2); ipm++; } pdm_lr_mask |= BIT(lr) << (pdm_ix << 1); /* * if both L and R are requested, * set the controller to be stereo */ if ((pdm_lr_mask >> (pdm_ix << 1)) & (BIT(PDM_CHAN_LEFT) | BIT(PDM_CHAN_RIGHT))) { *stereo_mask |= BIT(pdm_ix); } /* * if R channel mic was requested first * set the controller to swap the channels */ if ((pdm_lr_mask & BIT(PDM_CHAN_LEFT + (pdm_ix << 1))) == 0U) { *swap_mask |= BIT(pdm_ix); } } /* IPM bit field is set to count of active pdm controllers. */ LOG_DBG("%u decimators has to be configured", ipm); return ipm; } static int configure_registers(struct device *dev, struct dmic_configuration *hw_cfg, struct dmic_cfg *config) { u8_t skew; u8_t swap_mask; u8_t edge_mask; u8_t stereo_mask; u8_t controller_mask; u32_t val; s32_t ci; u32_t cu; u32_t coeff_ix; int ipm; int of0; int of1; int fir_decim; int fir_length; int length; int dccomp; int cic_start_a; int cic_start_b; int fir_start_a; int fir_start_b; int soft_reset; int i; int j; int array_a = 0; int array_b = 0; int cic_mute = 0; int fir_mute = 0; /* Normal start sequence */ dccomp = 1; soft_reset = 1; cic_start_a = 0; cic_start_b = 0; fir_start_a = 0; fir_start_b = 0; u32_t source_mask; /* OUTCONTROL0 and OUTCONTROL1 */ of0 = (config->streams[0].pcm_width == 32U) ? 2 : 0; if (config->channel.req_num_streams > 1) { of1 = (config->streams[1].pcm_width == 32U) ? 2 : 0; } else { of1 = 0; } ipm = source_ipm_helper(&config->channel, &source_mask, &controller_mask, &stereo_mask, &swap_mask); val = OUTCONTROL0_TIE(0) | OUTCONTROL0_SIP(0) | OUTCONTROL0_FINIT(1) | OUTCONTROL0_FCI(0) | OUTCONTROL0_BFTH(3) | OUTCONTROL0_OF(of0) | OUTCONTROL0_NUMBER_OF_DECIMATORS(ipm) | OUTCONTROL0_IPM_SOURCE_1(source_mask) | OUTCONTROL0_IPM_SOURCE_2(source_mask >> 4) | OUTCONTROL0_IPM_SOURCE_3(source_mask >> 8) | OUTCONTROL0_IPM_SOURCE_4(source_mask >> 12) | OUTCONTROL0_TH(3); DMIC_REG_WR(OUTCONTROL0, val); LOG_DBG("WR: OUTCONTROL0: 0x%08X", val); val = OUTCONTROL1_TIE(0) | OUTCONTROL1_SIP(0) | OUTCONTROL1_FINIT(1) | OUTCONTROL1_FCI(0) | OUTCONTROL1_BFTH(3) | OUTCONTROL1_OF(of1) | OUTCONTROL1_NUMBER_OF_DECIMATORS(ipm) | OUTCONTROL1_IPM_SOURCE_1(source_mask) | OUTCONTROL1_IPM_SOURCE_2(source_mask >> 4) | OUTCONTROL1_IPM_SOURCE_3(source_mask >> 8) | OUTCONTROL1_IPM_SOURCE_4(source_mask >> 12) | OUTCONTROL1_TH(3); DMIC_REG_WR(OUTCONTROL1, val); LOG_DBG("WR: OUTCONTROL1: 0x%08X", val); /* Mark enabled microphones into private data to be later used * for starting correct parts of the HW. */ for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { if ((controller_mask & BIT(i)) == 0U) { /* controller is not enabled */ continue; } if (stereo_mask & BIT(i)) { dmic_private.mic_en_mask |= (BIT(PDM_CHAN_LEFT) | BIT(PDM_CHAN_RIGHT)) << (i << 1); } else { dmic_private.mic_en_mask |= ((swap_mask & BIT(i)) == 0U) ? BIT(PDM_CHAN_LEFT) << (i << 1) : BIT(PDM_CHAN_RIGHT) << (i << 1); } } /* * Mono right channel mic usage requires swap of PDM channels * since the mono decimation is done with only left channel * processing active. */ edge_mask = config->io.pdm_clk_pol ^ swap_mask; for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { /* CIC */ val = CIC_CONTROL_SOFT_RESET(soft_reset) | CIC_CONTROL_CIC_START_B(cic_start_b) | CIC_CONTROL_CIC_START_A(cic_start_a) | CIC_CONTROL_MIC_B_POLARITY(config->io.pdm_data_pol >> i) | CIC_CONTROL_MIC_A_POLARITY(config->io.pdm_data_pol >> i) | CIC_CONTROL_MIC_MUTE(cic_mute) | CIC_CONTROL_STEREO_MODE(stereo_mask >> i); DMIC_REG_WR(CIC_CONTROL(i), val); LOG_DBG("WR: CIC_CONTROL[%u]: 0x%08X", i, val); val = CIC_CONFIG_CIC_SHIFT(hw_cfg->cic_shift + 8) | CIC_CONFIG_COMB_COUNT(hw_cfg->mcic - 1); DMIC_REG_WR(CIC_CONFIG(i), val); LOG_DBG("WR: CIC_CONFIG[%u]: 0x%08X", i, val); skew = dmic_parse_clk_skew_map(config->io.pdm_clk_skew, i); val = MIC_CONTROL_PDM_CLKDIV(hw_cfg->clkdiv - 2) | MIC_CONTROL_PDM_SKEW(skew) | MIC_CONTROL_CLK_EDGE(edge_mask >> i) | MIC_CONTROL_PDM_EN_B(cic_start_b) | MIC_CONTROL_PDM_EN_A(cic_start_a); DMIC_REG_WR(MIC_CONTROL(i), val); LOG_DBG("WR: MIC_CONTROL[%u]: 0x%08X", i, val); /* FIR A */ fir_decim = MAX(hw_cfg->mfir_a - 1, 0); fir_length = MAX(hw_cfg->fir_a_length - 1, 0); val = FIR_CONTROL_A_START(fir_start_a) | FIR_CONTROL_A_ARRAY_START_EN(array_a) | FIR_CONTROL_A_DCCOMP(dccomp) | FIR_CONTROL_A_MUTE(fir_mute) | FIR_CONTROL_A_STEREO(stereo_mask >> i); DMIC_REG_WR(FIR_CONTROL_A(i), val); LOG_DBG("WR: FIR_CONTROL_A[%u]: 0x%08X", i, val); val = FIR_CONFIG_A_FIR_DECIMATION(fir_decim) | FIR_CONFIG_A_FIR_SHIFT(hw_cfg->fir_a_shift) | FIR_CONFIG_A_FIR_LENGTH(fir_length); DMIC_REG_WR(FIR_CONFIG_A(i), val); LOG_DBG("WR: FIR_CONFIG_A[%u]: 0x%08X", i, val); val = DC_OFFSET_LEFT_A_DC_OFFS(DCCOMP_TC0); DMIC_REG_WR(DC_OFFSET_LEFT_A(i), val); LOG_DBG("WR: DC_OFFSET_LEFT_A[%u]: 0x%08X", i, val); val = DC_OFFSET_RIGHT_A_DC_OFFS(DCCOMP_TC0); DMIC_REG_WR(DC_OFFSET_RIGHT_A(i), val); LOG_DBG("WR: DC_OFFSET_RIGHT_A[%u]: 0x%08X", i, val); val = OUT_GAIN_LEFT_A_GAIN(0); DMIC_REG_WR(OUT_GAIN_LEFT_A(i), val); LOG_DBG("WR: OUT_GAIN_LEFT_A[%u]: 0x%08X", i, val); val = OUT_GAIN_RIGHT_A_GAIN(0); DMIC_REG_WR(OUT_GAIN_RIGHT_A(i), val); LOG_DBG("WR: OUT_GAIN_RIGHT_A[%u]: 0x%08X", i, val); /* FIR B */ fir_decim = MAX(hw_cfg->mfir_b - 1, 0); fir_length = MAX(hw_cfg->fir_b_length - 1, 0); val = FIR_CONTROL_B_START(fir_start_b) | FIR_CONTROL_B_ARRAY_START_EN(array_b) | FIR_CONTROL_B_DCCOMP(dccomp) | FIR_CONTROL_B_MUTE(fir_mute) | FIR_CONTROL_B_STEREO(stereo_mask >> i); DMIC_REG_WR(FIR_CONTROL_B(i), val); LOG_DBG("WR: FIR_CONTROL_B[%u]: 0x%08X", i, val); val = FIR_CONFIG_B_FIR_DECIMATION(fir_decim) | FIR_CONFIG_B_FIR_SHIFT(hw_cfg->fir_b_shift) | FIR_CONFIG_B_FIR_LENGTH(fir_length); DMIC_REG_WR(FIR_CONFIG_B(i), val); LOG_DBG("WR: FIR_CONFIG_B[%u]: 0x%08X", i, val); val = DC_OFFSET_LEFT_B_DC_OFFS(DCCOMP_TC0); DMIC_REG_WR(DC_OFFSET_LEFT_B(i), val); LOG_DBG("WR: DC_OFFSET_LEFT_B[%u]: 0x%08X", i, val); val = DC_OFFSET_RIGHT_B_DC_OFFS(DCCOMP_TC0); DMIC_REG_WR(DC_OFFSET_RIGHT_B(i), val); LOG_DBG("WR: DC_OFFSET_RIGHT_B[%u]: 0x%08X", i, val); val = OUT_GAIN_LEFT_B_GAIN(0); DMIC_REG_WR(OUT_GAIN_LEFT_B(i), val); LOG_DBG("WR: OUT_GAIN_LEFT_B[%u]: 0x%08X", i, val); val = OUT_GAIN_RIGHT_B_GAIN(0); DMIC_REG_WR(OUT_GAIN_RIGHT_B(i), val); LOG_DBG("WR: OUT_GAIN_RIGHT_B[%u]: 0x%08X", i, val); } /* Write coef RAM A with scaled coefficient in reverse order */ length = hw_cfg->fir_a_length; for (j = 0; j < length; j++) { ci = (s32_t)Q_MULTSR_32X32((s64_t)hw_cfg->fir_a->coef[j], hw_cfg->fir_a_scale, 31, DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q); cu = FIR_COEF_A(ci); coeff_ix = (length - j - 1) << 2; for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { DMIC_REG_WR(PDM_COEFF_A(i) + coeff_ix, cu); } } /* Write coef RAM B with scaled coefficient in reverse order */ length = hw_cfg->fir_b_length; for (j = 0; j < length; j++) { ci = (s32_t)Q_MULTSR_32X32((s64_t)hw_cfg->fir_b->coef[j], hw_cfg->fir_b_scale, 31, DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q); cu = FIR_COEF_B(ci); coeff_ix = (length - j - 1) << 2; for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { DMIC_REG_WR(PDM_COEFF_B(i) + coeff_ix, cu); } } /* Function dmic_start() uses these to start the used FIFOs */ dmic_private.fifo_a = (hw_cfg->mfir_a > 0) ? 1 : 0; dmic_private.fifo_b = (hw_cfg->mfir_b > 0) ? 1 : 0; return 0; } static void dmic_dma_callback(void *arg, u32_t chan, int err_code) { void *buffer; size_t size; int stream; struct _stream_data *stream_data; int ret; stream = (chan == DMA_CHANNEL_DMIC_RXA) ? 0 : 1; stream_data = &dmic_private.streams[stream]; /* retrieve buffer from input queue */ ret = k_msgq_get(&stream_data->in_queue, &buffer, K_NO_WAIT); if (ret) { LOG_ERR("stream %u in_queue is empty", stream); } if (dmic_private.state == DMIC_STATE_ACTIVE) { size = stream_data->block_size; /* put buffer in output queue */ ret = k_msgq_put(&stream_data->out_queue, &buffer, K_NO_WAIT); if (ret) { LOG_ERR("stream%u out_queue is full", stream); } /* allocate new buffer for next audio frame */ ret = k_mem_slab_alloc(stream_data->mem_slab, &buffer, K_NO_WAIT); if (ret) { LOG_ERR("buffer alloc from slab %p err %d", stream_data->mem_slab, ret); } else { /* put buffer in input queue */ ret = k_msgq_put(&stream_data->in_queue, &buffer, K_NO_WAIT); if (ret) { LOG_ERR("buffer %p -> in_queue %p err %d", buffer, &stream_data->in_queue, ret); } /* reload the DMA */ dmic_reload_dma(chan, buffer, stream_data->block_size); dmic_start_dma(chan); } } else { /* stop activity, free buffers */ dmic_stop(); dmic_stop_dma(chan); k_mem_slab_free(stream_data->mem_slab, &buffer); } } static int dmic_set_config(struct device *dev, struct dmic_cfg *config) { struct decim_modes modes_a; struct decim_modes modes_b; struct matched_modes modes_ab; struct dmic_configuration hw_cfg; int ret; int stream; LOG_DBG("min_pdm_clk_freq %u max_pdm_clk_freq %u", config->io.min_pdm_clk_freq, config->io.max_pdm_clk_freq); LOG_DBG("min_pdm_clk_dc %u max_pdm_clk_dc %u", config->io.min_pdm_clk_dc, config->io.max_pdm_clk_dc); LOG_DBG("num_chan %u", config->channel.req_num_chan); LOG_DBG("req_num_streams %u", config->channel.req_num_streams); if (config->channel.req_num_streams == 0U) { LOG_ERR("req_num_streams is 0"); return -EINVAL; } config->channel.act_num_streams = MIN(config->channel.req_num_streams, DMIC_MAX_STREAMS); LOG_DBG("req_num_streams %u act_num_streams %u", config->channel.req_num_streams, config->channel.act_num_streams); dmic_private.num_streams = config->channel.act_num_streams; for (stream = 0; stream < dmic_private.num_streams; stream++) { LOG_DBG("stream %u pcm_rate %u pcm_width %u", stream, config->streams[stream].pcm_rate, config->streams[stream].pcm_width); if ((config->streams[stream].pcm_width) && (config->streams[stream].mem_slab == NULL)) { LOG_ERR("Invalid mem_slab for stream %u", stream); return -EINVAL; } dmic_private.streams[stream].mem_slab = config->streams[stream].mem_slab; dmic_private.streams[stream].block_size = config->streams[stream].block_size; } /* Match and select optimal decimators configuration for FIFOs A and B * paths. This setup phase is still abstract. Successful completion * points struct cfg to FIR coefficients and contains the scale value * to use for FIR coefficient RAM write as well as the CIC and FIR * shift values. */ find_modes(&modes_a, config, config->streams[0].pcm_rate); if ((modes_a.num_of_modes == 0) && (config->streams[0].pcm_rate > 0)) { LOG_ERR("stream A num_of_modes is 0 and pcm_rate is %u", config->streams[0].pcm_rate); return -EINVAL; } if (dmic_private.num_streams > 1) { find_modes(&modes_b, config, config->streams[1].pcm_rate); if ((modes_b.num_of_modes == 0) && (config->streams[1].pcm_rate > 0)) { LOG_ERR("stream B num_of_modes = 0 & pcm_rate = %u", config->streams[1].pcm_rate); return -EINVAL; } } else { modes_b.num_of_modes = 0; } match_modes(&modes_ab, &modes_a, &modes_b); ret = select_mode(&hw_cfg, &modes_ab); if (ret < 0) { LOG_ERR("select_mode failed"); return -EINVAL; } LOG_DBG("clkdiv %u mcic %u", hw_cfg.clkdiv, hw_cfg.mcic); LOG_DBG("mfir_a %d mfir_b %d", hw_cfg.mfir_a, hw_cfg.mfir_b); LOG_DBG("fir_a_length %d fir_b_length %d", hw_cfg.fir_a_length, hw_cfg.fir_b_length); LOG_DBG("cic_shift %d fir_a_shift %d fir_b_shift %d", hw_cfg.cic_shift, hw_cfg.fir_a_shift, hw_cfg.fir_b_shift); /* Struct reg contains a mirror of actual HW registers. Determine * register bits configuration from decimator configuration and the * requested parameters. */ ret = configure_registers(dev, &hw_cfg, config); if (ret < 0) { LOG_ERR("configure_registers failed RC: %d", ret); return -EINVAL; } dmic_private.state = DMIC_STATE_CONFIGURED; return 0; } /* start the DMIC for capture */ static void dmic_start(struct device *dev) { struct _stream_data *stream; unsigned int key; int i; int mic_a; int mic_b; int fir_a; int fir_b; void *buffer; int ret; for (i = 0; i < dmic_private.num_streams; i++) { stream = &dmic_private.streams[i]; /* allocate buffer for stream A */ ret = k_mem_slab_alloc(stream->mem_slab, &buffer, K_NO_WAIT); if (ret) { LOG_ERR("alloc from mem_slab_a %p failed", stream->mem_slab); return; } /* load buffer to DMA */ dmic_reload_dma((i == 0) ? DMA_CHANNEL_DMIC_RXA : DMA_CHANNEL_DMIC_RXB, buffer, stream->block_size); ret = k_msgq_put(&stream->in_queue, &buffer, K_NO_WAIT); if (ret) { LOG_ERR("stream %u in_queue full", i); k_mem_slab_free(stream->mem_slab, &buffer); return; } } /* enable port */ key = irq_lock(); for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { mic_a = dmic_private.mic_en_mask >> (PDM_CHAN_LEFT + (i << 1)); mic_a &= BIT(0); mic_b = dmic_private.mic_en_mask >> (PDM_CHAN_RIGHT + (i << 1)); mic_b &= BIT(0); if ((dmic_private.mic_en_mask >> (i << 1)) & (BIT(PDM_CHAN_LEFT) | BIT(PDM_CHAN_RIGHT))) { fir_a = (dmic_private.fifo_a) ? 1 : 0; fir_b = (dmic_private.fifo_b) ? 1 : 0; } else { fir_a = fir_b = 0; } LOG_DBG("mic_a %d mic_b %d", mic_a, mic_b); LOG_DBG("fir_a %d fir_b %d", fir_a, fir_b); DMIC_REG_UPD(CIC_CONTROL(i), CIC_CONTROL_CIC_START_A_BIT | CIC_CONTROL_CIC_START_B_BIT, CIC_CONTROL_CIC_START_A(mic_a) | CIC_CONTROL_CIC_START_B(mic_b)); DMIC_REG_UPD(MIC_CONTROL(i), MIC_CONTROL_PDM_EN_A_BIT | MIC_CONTROL_PDM_EN_B_BIT, MIC_CONTROL_PDM_EN_A(mic_a) | MIC_CONTROL_PDM_EN_B(mic_b)); DMIC_REG_UPD(FIR_CONTROL_A(i), FIR_CONTROL_A_START_BIT, FIR_CONTROL_A_START(fir_a)); DMIC_REG_UPD(FIR_CONTROL_B(i), FIR_CONTROL_B_START_BIT, FIR_CONTROL_B_START(fir_b)); LOG_DBG("CIC_CONTROL[%u]: %08X", i, DMIC_REG_RD(CIC_CONTROL(i))); LOG_DBG("MIC_CONTROL[%u]: %08X", i, DMIC_REG_RD(MIC_CONTROL(i))); LOG_DBG("FIR_CONTROL_A[%u]: %08X", i, DMIC_REG_RD(FIR_CONTROL_A(i))); LOG_DBG("FIR_CONTROL_B[%u]: %08X", i, DMIC_REG_RD(FIR_CONTROL_B(i))); } /* start the DMA channel(s) */ if (dmic_private.fifo_a) { dmic_start_dma(DMA_CHANNEL_DMIC_RXA); } if (dmic_private.fifo_b) { dmic_start_dma(DMA_CHANNEL_DMIC_RXB); } if (dmic_private.fifo_a) { /* Clear FIFO A initialize, Enable interrupts to DSP, * Start FIFO A packer. */ DMIC_REG_UPD(OUTCONTROL0, OUTCONTROL0_FINIT_BIT | OUTCONTROL0_SIP_BIT, OUTCONTROL0_SIP_BIT); } if (dmic_private.fifo_b) { /* Clear FIFO B initialize, Enable interrupts to DSP, * Start FIFO B packer. */ DMIC_REG_UPD(OUTCONTROL1, OUTCONTROL1_FINIT_BIT | OUTCONTROL1_SIP_BIT, OUTCONTROL1_SIP_BIT); } LOG_DBG("OUTCONTROL0: %08X", DMIC_REG_RD(OUTCONTROL0)); LOG_DBG("OUTCONTROL1: %08X", DMIC_REG_RD(OUTCONTROL1)); /* Clear soft reset for all/used PDM controllers. This should * start capture in sync. */ LOG_DBG("Releasing soft reset for all PDM controllers"); for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { DMIC_REG_UPD(CIC_CONTROL(i), CIC_CONTROL_SOFT_RESET_BIT, 0); } dmic_private.state = DMIC_STATE_ACTIVE; irq_unlock(key); LOG_DBG("State changed to DMIC_STATE_ACTIVE"); /* Currently there's no DMIC HW internal mutings and wait times * applied into this start sequence. It can be implemented here if * start of audio capture would contain clicks and/or noise and it * is not suppressed by gain ramp somewhere in the capture pipe. */ } /* stop the DMIC for capture */ static void dmic_stop(void) { int i; /* Stop FIFO packers and set FIFO initialize bits */ DMIC_REG_UPD(OUTCONTROL0, OUTCONTROL0_SIP_BIT | OUTCONTROL0_FINIT_BIT, OUTCONTROL0_FINIT_BIT); DMIC_REG_UPD(OUTCONTROL1, OUTCONTROL1_SIP_BIT | OUTCONTROL1_FINIT_BIT, OUTCONTROL1_FINIT_BIT); /* Set soft reset for all PDM controllers. */ LOG_DBG("Soft reset all PDM controllers"); for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { DMIC_REG_UPD(CIC_CONTROL(i), CIC_CONTROL_SOFT_RESET_BIT, CIC_CONTROL_SOFT_RESET_BIT); } } static int dmic_trigger_device(struct device *dev, enum dmic_trigger cmd) { unsigned int key; LOG_DBG("cmd: %d", cmd); switch (cmd) { case DMIC_TRIGGER_RELEASE: case DMIC_TRIGGER_START: if ((dmic_private.state == DMIC_STATE_CONFIGURED) || (dmic_private.state == DMIC_STATE_PAUSED)) { dmic_start(dev); } else { LOG_ERR("Invalid state %d for cmd %d", dmic_private.state, cmd); } break; case DMIC_TRIGGER_STOP: case DMIC_TRIGGER_PAUSE: key = irq_lock(); dmic_private.state = DMIC_STATE_CONFIGURED; irq_unlock(key); break; default: break; } return 0; } static inline u8_t dmic_parse_clk_skew_map(u32_t skew_map, u8_t pdm) { return (u8_t)((skew_map >> ((pdm & BIT_MASK(3)) * 4U)) & BIT_MASK(4)); } static int dmic_initialize_device(struct device *dev) { int stream; struct _stream_data *stream_data; /* Initialize the buffer queues */ for (stream = 0; stream < DMIC_MAX_STREAMS; stream++) { stream_data = &dmic_private.streams[stream]; k_msgq_init(&stream_data->in_queue, (char *)stream_data->in_msgs, sizeof(void *), DMIC_BUF_Q_LEN); k_msgq_init(&stream_data->out_queue, (char *)stream_data->out_msgs, sizeof(void *), DMIC_BUF_Q_LEN); } /* Set state, note there is no playback direction support */ dmic_private.state = DMIC_STATE_INITIALIZED; LOG_DBG("Device %s Initialized", dev->config->name); return 0; } static int dmic_configure_device(struct device *dev, struct dmic_cfg *config) { int ret = 0; ret = dmic_set_config(dev, config); if (ret) { LOG_ERR("dmic_set_config failed with code %d", ret); } ret = dmic_configure_dma(config->streams, dmic_private.num_streams); if (ret) { LOG_ERR("dmic_configure_dma failed with code %d", ret); return ret; } return ret; } static int dmic_read_device(struct device *dev, u8_t stream, void **buffer, size_t *size, s32_t timeout) { int ret; if (stream >= dmic_private.num_streams) { LOG_ERR("stream %u invalid. must be < %u", stream, dmic_private.num_streams); return -EINVAL; } /* retrieve buffer from out queue */ ret = k_msgq_get(&dmic_private.streams[stream].out_queue, buffer, timeout); if (ret) { LOG_ERR("No buffers in stream %u out_queue", stream); } else { *size = dmic_private.streams[stream].block_size; SOC_DCACHE_INVALIDATE(*buffer, *size); } return ret; } int dmic_configure_dma(struct pcm_stream_cfg *config, u8_t num_streams) { int ret = 0; int stream; u32_t channel; struct dma_block_config dma_block; struct dma_config dma_cfg = { .dma_slot = DMA_HANDSHAKE_DMIC_RXA, .channel_direction = PERIPHERAL_TO_MEMORY, .complete_callback_en = 1, .error_callback_en = 0, .source_handshake = 0, .dest_handshake = 0, .channel_priority = 0, .source_chaining_en = 0, .dest_chaining_en = 0, .source_data_size = 4, .dest_data_size = 4, .source_burst_length = 8, .dest_burst_length = 8, .block_count = 1, .head_block = &dma_block, .dma_callback = dmic_dma_callback, }; dmic_private.dma_dev = device_get_binding(DMIC_DMA_DEV_NAME); if (!dmic_private.dma_dev) { LOG_ERR("Failed to bind to device: %s", DMIC_DMA_DEV_NAME); return -ENODEV; } for (stream = 0; stream < num_streams; stream++) { channel = (stream == 0) ? DMA_CHANNEL_DMIC_RXA : DMA_CHANNEL_DMIC_RXB; dma_cfg.dma_slot = (stream == 0) ? DMA_HANDSHAKE_DMIC_RXA : DMA_HANDSHAKE_DMIC_RXB; LOG_DBG("Configuring stream %u DMA ch%u handshake %u", stream, channel, dma_cfg.dma_slot); dma_block.source_address = (u32_t)NULL; dma_block.dest_address = (u32_t)NULL; dma_block.block_size = 0U; dma_block.next_block = NULL; ret = dma_config(dmic_private.dma_dev, channel, &dma_cfg); if (ret) { LOG_ERR("dma_config channel %u failed (%d)", channel, ret); } } return ret; } int dmic_reload_dma(u32_t channel, void *buffer, size_t size) { u32_t source; source = (channel == DMA_CHANNEL_DMIC_RXA) ? OUTDATA0 : OUTDATA1; LOG_DBG("Loading buffer %p size %u to channel %u", buffer, size, channel); return dma_reload(dmic_private.dma_dev, channel, PDM_BASE + source, (u32_t)buffer, size); } int dmic_start_dma(u32_t channel) { LOG_DBG("Starting DMA channel %u", channel); return dma_start(dmic_private.dma_dev, channel); } int dmic_stop_dma(u32_t channel) { LOG_DBG("Stopping DMA channel %u", channel); return dma_stop(dmic_private.dma_dev, channel); } static struct _dmic_ops dmic_ops = { .trigger = dmic_trigger_device, .configure = dmic_configure_device, .read = dmic_read_device, }; DEVICE_AND_API_INIT(dmic, "PDM", &dmic_initialize_device, NULL, NULL, POST_KERNEL, CONFIG_AUDIO_DMIC_INIT_PRIORITY, &dmic_ops); |