Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/*
 * Copyright (c) 2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Common fault handler for ARM Cortex-M
 *
 * Common fault handler for ARM Cortex-M processors.
 */

#include <toolchain.h>
#include <linker/sections.h>

#include <kernel.h>
#include <kernel_structs.h>
#include <inttypes.h>
#include <exc_handle.h>
#include <logging/log_ctrl.h>

#if defined(CONFIG_PRINTK) || defined(CONFIG_LOG)
#define PR_EXC(...) z_fatal_print(__VA_ARGS__)
#define STORE_xFAR(reg_var, reg) u32_t reg_var = (u32_t)reg
#else
#define PR_EXC(...)
#define STORE_xFAR(reg_var, reg)
#endif /* CONFIG_PRINTK || CONFIG_LOG */

#if (CONFIG_FAULT_DUMP == 2)
#define PR_FAULT_INFO(...) PR_EXC(__VA_ARGS__)
#else
#define PR_FAULT_INFO(...)
#endif

#if defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU)
#define EMN(edr)   (((edr) & SYSMPU_EDR_EMN_MASK) >> SYSMPU_EDR_EMN_SHIFT)
#define EACD(edr)  (((edr) & SYSMPU_EDR_EACD_MASK) >> SYSMPU_EDR_EACD_SHIFT)
#endif

#if defined(CONFIG_ARM_SECURE_FIRMWARE) || \
	defined(CONFIG_ARM_NONSECURE_FIRMWARE)

/* Exception Return (EXC_RETURN) is provided in LR upon exception entry.
 * It is used to perform an exception return and to detect possible state
 * transition upon exception.
 */

/* Prefix. Indicates that this is an EXC_RETURN value.
 * This field reads as 0b11111111.
 */
#define EXC_RETURN_INDICATOR_PREFIX     (0xFF << 24)
/* bit[0]: Exception Secure. The security domain the exception was taken to. */
#define EXC_RETURN_EXCEPTION_SECURE_Pos 0
#define EXC_RETURN_EXCEPTION_SECURE_Msk \
		BIT(EXC_RETURN_EXCEPTION_SECURE_Pos)
#define EXC_RETURN_EXCEPTION_SECURE_Non_Secure 0
#define EXC_RETURN_EXCEPTION_SECURE_Secure EXC_RETURN_EXCEPTION_SECURE_Msk
/* bit[2]: Stack Pointer selection. */
#define EXC_RETURN_SPSEL_Pos 2
#define EXC_RETURN_SPSEL_Msk BIT(EXC_RETURN_SPSEL_Pos)
#define EXC_RETURN_SPSEL_MAIN 0
#define EXC_RETURN_SPSEL_PROCESS EXC_RETURN_SPSEL_Msk
/* bit[3]: Mode. Indicates the Mode that was stacked from. */
#define EXC_RETURN_MODE_Pos 3
#define EXC_RETURN_MODE_Msk BIT(EXC_RETURN_MODE_Pos)
#define EXC_RETURN_MODE_HANDLER 0
#define EXC_RETURN_MODE_THREAD EXC_RETURN_MODE_Msk
/* bit[4]: Stack frame type. Indicates whether the stack frame is a standard
 * integer only stack frame or an extended floating-point stack frame.
 */
#define EXC_RETURN_STACK_FRAME_TYPE_Pos 4
#define EXC_RETURN_STACK_FRAME_TYPE_Msk BIT(EXC_RETURN_STACK_FRAME_TYPE_Pos)
#define EXC_RETURN_STACK_FRAME_TYPE_EXTENDED 0
#define EXC_RETURN_STACK_FRAME_TYPE_STANDARD EXC_RETURN_STACK_FRAME_TYPE_Msk
/* bit[5]: Default callee register stacking. Indicates whether the default
 * stacking rules apply, or whether the callee registers are already on the
 * stack.
 */
#define EXC_RETURN_CALLEE_STACK_Pos 5
#define EXC_RETURN_CALLEE_STACK_Msk BIT(EXC_RETURN_CALLEE_STACK_Pos)
#define EXC_RETURN_CALLEE_STACK_SKIPPED 0
#define EXC_RETURN_CALLEE_STACK_DEFAULT EXC_RETURN_CALLEE_STACK_Msk
/* bit[6]: Secure or Non-secure stack. Indicates whether a Secure or
 * Non-secure stack is used to restore stack frame on exception return.
 */
#define EXC_RETURN_RETURN_STACK_Pos 6
#define EXC_RETURN_RETURN_STACK_Msk BIT(EXC_RETURN_RETURN_STACK_Pos)
#define EXC_RETURN_RETURN_STACK_Non_Secure 0
#define EXC_RETURN_RETURN_STACK_Secure EXC_RETURN_RETURN_STACK_Msk

/* Integrity signature for an ARMv8-M implementation */
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
#define INTEGRITY_SIGNATURE_STD 0xFEFA125BUL
#define INTEGRITY_SIGNATURE_EXT 0xFEFA125AUL
#else
#define INTEGRITY_SIGNATURE 0xFEFA125BUL
#endif /* CONFIG_ARMV7_M_ARMV8_M_FP */
/* Size (in words) of the additional state context that is pushed
 * to the Secure stack during a Non-Secure exception entry.
 */
#define ADDITIONAL_STATE_CONTEXT_WORDS 10
#endif /* CONFIG_ARM_SECURE_FIRMWARE || CONFIG_ARM_NONSECURE_FIRMWARE */

/**
 *
 * Dump information regarding fault (FAULT_DUMP == 1)
 *
 * Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 1
 * (short form).
 *
 * eg. (precise bus error escalated to hard fault):
 *
 * Fault! EXC #3
 * HARD FAULT: Escalation (see below)!
 * MMFSR: 0x00000000, BFSR: 0x00000082, UFSR: 0x00000000
 * BFAR: 0xff001234
 *
 *
 *
 * Dump information regarding fault (FAULT_DUMP == 2)
 *
 * Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 2
 * (long form), and return the error code for the kernel to identify the fatal
 * error reason.
 *
 * eg. (precise bus error escalated to hard fault):
 *
 * ***** HARD FAULT *****
 *    Fault escalation (see below)
 * ***** BUS FAULT *****
 *   Precise data bus error
 *   Address: 0xff001234
 *
 */

#if (CONFIG_FAULT_DUMP == 1)
static void FaultShow(const z_arch_esf_t *esf, int fault)
{
	PR_EXC("Fault! EXC #%d", fault);

#if defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	PR_EXC("MMFSR: 0x%x, BFSR: 0x%x, UFSR: 0x%x",
	       SCB_MMFSR, SCB_BFSR, SCB_UFSR);
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
	PR_EXC("SFSR: 0x%x", SAU->SFSR);
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
#endif /* CONFIG_ARMV7_M_ARMV8_M_MAINLINE */
}
#else
/* For Dump level 2, detailed information is generated by the
 * fault handling functions for individual fault conditions, so this
 * function is left empty.
 *
 * For Dump level 0, no information needs to be generated.
 */
static void FaultShow(const z_arch_esf_t *esf, int fault)
{
	(void)esf;
	(void)fault;
}
#endif /* FAULT_DUMP == 1 */

#ifdef CONFIG_USERSPACE
Z_EXC_DECLARE(z_arch_user_string_nlen);

static const struct z_exc_handle exceptions[] = {
	Z_EXC_HANDLE(z_arch_user_string_nlen)
};
#endif

/* Perform an assessment whether an MPU fault shall be
 * treated as recoverable.
 *
 * @return true if error is recoverable, otherwise return false.
 */
static bool memory_fault_recoverable(z_arch_esf_t *esf)
{
#ifdef CONFIG_USERSPACE
	for (int i = 0; i < ARRAY_SIZE(exceptions); i++) {
		/* Mask out instruction mode */
		u32_t start = (u32_t)exceptions[i].start & ~0x1;
		u32_t end = (u32_t)exceptions[i].end & ~0x1;

		if (esf->basic.pc >= start && esf->basic.pc < end) {
			esf->basic.pc = (u32_t)(exceptions[i].fixup);
			return true;
		}
	}
#endif

	return false;
}

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
/* HardFault is used for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)

#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
u32_t z_check_thread_stack_fail(const u32_t fault_addr,
	const u32_t psp);
#endif /* CONFIG_MPU_STACK_GUARD || defined(CONFIG_USERSPACE) */

/**
 *
 * @brief Dump MPU fault information
 *
 * See _FaultDump() for example.
 *
 * @return error code to identify the fatal error reason
 */
static u32_t MpuFault(z_arch_esf_t *esf, int fromHardFault, bool *recoverable)
{
	u32_t reason = K_ERR_CPU_EXCEPTION;
	u32_t mmfar = -EINVAL;

	PR_FAULT_INFO("***** MPU FAULT *****");

	if ((SCB->CFSR & SCB_CFSR_MSTKERR_Msk) != 0) {
		PR_FAULT_INFO("  Stacking error (context area might be"
			" not valid)");
	}
	if ((SCB->CFSR & SCB_CFSR_MUNSTKERR_Msk) != 0) {
		PR_FAULT_INFO("  Unstacking error");
	}
	if ((SCB->CFSR & SCB_CFSR_DACCVIOL_Msk) != 0) {
		PR_FAULT_INFO("  Data Access Violation");
		/* In a fault handler, to determine the true faulting address:
		 * 1. Read and save the MMFAR value.
		 * 2. Read the MMARVALID bit in the MMFSR.
		 * The MMFAR address is valid only if this bit is 1.
		 *
		 * Software must follow this sequence because another higher
		 * priority exception might change the MMFAR value.
		 */
		mmfar = SCB->MMFAR;

		if ((SCB->CFSR & SCB_CFSR_MMARVALID_Msk) != 0) {
			PR_EXC("  MMFAR Address: 0x%x", mmfar);
			if (fromHardFault) {
				/* clear SCB_MMAR[VALID] to reset */
				SCB->CFSR &= ~SCB_CFSR_MMARVALID_Msk;
			}
		}
	}
	if ((SCB->CFSR & SCB_CFSR_IACCVIOL_Msk) != 0) {
		PR_FAULT_INFO("  Instruction Access Violation");
	}
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
	if ((SCB->CFSR & SCB_CFSR_MLSPERR_Msk) != 0) {
		PR_FAULT_INFO(
			"  Floating-point lazy state preservation error");
	}
#endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */

	/* When stack protection is enabled, we need to assess
	 * if the memory violation error is a stack corruption.
	 *
	 * By design, being a Stacking MemManage fault is a necessary
	 * and sufficient condition for a thread stack corruption.
	 */
	if (SCB->CFSR & SCB_CFSR_MSTKERR_Msk) {
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
		/* MemManage Faults are always banked between security
		 * states. Therefore, we can safely assume the fault
		 * originated from the same security state.
		 *
		 * As we only assess thread stack corruption, we only
		 * process the error further if the stack frame is on
		 * PSP. For always-banked MemManage Fault, this is
		 * equivalent to inspecting the RETTOBASE flag.
		 */
		if (SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) {
			u32_t min_stack_ptr = z_check_thread_stack_fail(mmfar,
				((u32_t) &esf[0]));

			if (min_stack_ptr) {
				/* When MemManage Stacking Error has occurred,
				 * the stack context frame might be corrupted
				 * but the stack pointer may have actually
				 * descent below the allowed (thread) stack
				 * area. We may face a problem with un-stacking
				 * the frame, upon the exception return, if we
				 * do not have sufficient access permissions to
				 * read the corrupted stack frame. Therefore,
				 * we manually force the stack pointer to the
				 * lowest allowed position, inside the thread's
				 * stack.
				 *
				 * Note:
				 * The PSP will normally be adjusted in a tail-
				 * chained exception performing context switch,
				 * after aborting the corrupted thread. The
				 * adjustment, here, is required as tail-chain
				 * cannot always be guaranteed.
				 *
				 * The manual adjustment of PSP is safe, as we
				 * will not be re-scheduling this thread again
				 * for execution; thread stack corruption is a
				 * fatal error and a thread that corrupted its
				 * stack needs to be aborted.
				 */
				__set_PSP(min_stack_ptr);

				reason = K_ERR_STACK_CHK_FAIL;
			} else {
				__ASSERT(0,
					"Stacking error not a stack fail\n");
			}
		}
#else
	(void)mmfar;
	__ASSERT(0,
		"Stacking error without stack guard / User-mode support\n");
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
	}

	/* clear MMFSR sticky bits */
	SCB->CFSR |= SCB_CFSR_MEMFAULTSR_Msk;

	/* Assess whether system shall ignore/recover from this MPU fault. */
	*recoverable = memory_fault_recoverable(esf);

	return reason;
}

/**
 *
 * @brief Dump bus fault information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static int BusFault(z_arch_esf_t *esf, int fromHardFault, bool *recoverable)
{
	u32_t reason = K_ERR_CPU_EXCEPTION;

	PR_FAULT_INFO("***** BUS FAULT *****");

	if (SCB->CFSR & SCB_CFSR_STKERR_Msk) {
		PR_FAULT_INFO("  Stacking error");
	}
	if (SCB->CFSR & SCB_CFSR_UNSTKERR_Msk) {
		PR_FAULT_INFO("  Unstacking error");
	}
	if (SCB->CFSR & SCB_CFSR_PRECISERR_Msk) {
		PR_FAULT_INFO("  Precise data bus error");
		/* In a fault handler, to determine the true faulting address:
		 * 1. Read and save the BFAR value.
		 * 2. Read the BFARVALID bit in the BFSR.
		 * The BFAR address is valid only if this bit is 1.
		 *
		 * Software must follow this sequence because another
		 * higher priority exception might change the BFAR value.
		 */
		STORE_xFAR(bfar, SCB->BFAR);

		if ((SCB->CFSR & SCB_CFSR_BFARVALID_Msk) != 0) {
			PR_EXC("  BFAR Address: 0x%x", bfar);
			if (fromHardFault) {
				/* clear SCB_CFSR_BFAR[VALID] to reset */
				SCB->CFSR &= ~SCB_CFSR_BFARVALID_Msk;
			}
		}
	}
	if (SCB->CFSR & SCB_CFSR_IMPRECISERR_Msk) {
		PR_FAULT_INFO("  Imprecise data bus error");
	}
	if ((SCB->CFSR & SCB_CFSR_IBUSERR_Msk) != 0) {
		PR_FAULT_INFO("  Instruction bus error");
#if !defined(CONFIG_ARMV7_M_ARMV8_M_FP)
	}
#else
	} else if (SCB->CFSR & SCB_CFSR_LSPERR_Msk) {
		PR_FAULT_INFO("  Floating-point lazy state preservation error");
	}
#endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */

#if defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU)
	u32_t sperr = SYSMPU->CESR & SYSMPU_CESR_SPERR_MASK;
	u32_t mask = BIT(31);
	int i;
	u32_t ear = -EINVAL;

	if (sperr) {
		for (i = 0; i < SYSMPU_EAR_COUNT; i++, mask >>= 1) {
			if ((sperr & mask) == 0U) {
				continue;
			}
			STORE_xFAR(edr, SYSMPU->SP[i].EDR);
			ear = SYSMPU->SP[i].EAR;

			PR_FAULT_INFO("  NXP MPU error, port %d", i);
			PR_FAULT_INFO("    Mode: %s, %s Address: 0x%x",
			       edr & BIT(2) ? "Supervisor" : "User",
			       edr & BIT(1) ? "Data" : "Instruction",
			       ear);
			PR_FAULT_INFO(
					"    Type: %s, Master: %d, Regions: 0x%x",
			       edr & BIT(0) ? "Write" : "Read",
			       EMN(edr), EACD(edr));

			/* When stack protection is enabled, we need to assess
			 * if the memory violation error is a stack corruption.
			 *
			 * By design, being a Stacking Bus fault is a necessary
			 * and sufficient condition for a stack corruption.
			 */
			if (SCB->CFSR & SCB_CFSR_STKERR_Msk) {
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
				/* Note: we can assume the fault originated
				 * from the same security state for ARM
				 * platforms implementing the NXP MPU
				 * (CONFIG_CPU_HAS_NXP_MPU=y).
				 *
				 * As we only assess thread stack corruption,
				 * we only process the error further, if the
				 * stack frame is on PSP. For NXP MPU-related
				 * Bus Faults (banked), this is equivalent to
				 * inspecting the RETTOBASE flag.
				 */
				if (SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) {
					u32_t min_stack_ptr =
						z_check_thread_stack_fail(ear,
							((u32_t) &esf[0]));

					if (min_stack_ptr) {
						/* When BusFault Stacking Error
						 * has occurred, the stack
						 * context frame might be
						 * corrupted but the stack
						 * pointer may have actually
						 * moved. We may face problems
						 * with un-stacking the frame,
						 * upon exception return, if we
						 * do not have sufficient
						 * permissions to read the
						 * corrupted stack frame.
						 * Therefore, we manually force
						 * the stack pointer to the
						 * lowest allowed position.
						 *
						 * Note:
						 * The PSP will normally be
						 * adjusted in a tail-chained
						 * exception performing context
						 * switch, after aborting the
						 * corrupted thread. Here, the
						 * adjustment is required as
						 * tail-chain cannot always be
						 * guaranteed.
						 */
						__set_PSP(min_stack_ptr);

						reason =
							K_ERR_STACK_CHK_FAIL;
						break;
					}
				}
#else
				(void)ear;
				__ASSERT(0,
					"Stacking error without stack guard"
					"or User-mode support");
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
			}
		}
		SYSMPU->CESR &= ~sperr;
	}
#endif /* defined(CONFIG_ARM_MPU) && defined(CONFIG_CPU_HAS_NXP_MPU) */

	/* clear BFSR sticky bits */
	SCB->CFSR |= SCB_CFSR_BUSFAULTSR_Msk;

	*recoverable = memory_fault_recoverable(esf);

	return reason;
}

/**
 *
 * @brief Dump usage fault information
 *
 * See _FaultDump() for example.
 *
 * @return error code to identify the fatal error reason
 */
static u32_t UsageFault(const z_arch_esf_t *esf)
{
	u32_t reason = K_ERR_CPU_EXCEPTION;

	PR_FAULT_INFO("***** USAGE FAULT *****");

	/* bits are sticky: they stack and must be reset */
	if ((SCB->CFSR & SCB_CFSR_DIVBYZERO_Msk) != 0) {
		PR_FAULT_INFO("  Division by zero");
	}
	if ((SCB->CFSR & SCB_CFSR_UNALIGNED_Msk) != 0) {
		PR_FAULT_INFO("  Unaligned memory access");
	}
#if defined(CONFIG_ARMV8_M_MAINLINE)
	if ((SCB->CFSR & SCB_CFSR_STKOF_Msk) != 0) {
		PR_FAULT_INFO("  Stack overflow (context area not valid)");
#if defined(CONFIG_BUILTIN_STACK_GUARD)
		/* Stack Overflows are always reported as stack corruption
		 * errors. Note that the built-in stack overflow mechanism
		 * prevents the context area to be loaded on the stack upon
		 * UsageFault exception entry. As a result, we cannot rely
		 * on the reported faulty instruction address, to determine
		 * the instruction that triggered the stack overflow.
		 */
		reason = K_ERR_STACK_CHK_FAIL;
#endif /* CONFIG_BUILTIN_STACK_GUARD */
	}
#endif /* CONFIG_ARMV8_M_MAINLINE */
	if ((SCB->CFSR & SCB_CFSR_NOCP_Msk) != 0) {
		PR_FAULT_INFO("  No coprocessor instructions");
	}
	if ((SCB->CFSR & SCB_CFSR_INVPC_Msk) != 0) {
		PR_FAULT_INFO("  Illegal load of EXC_RETURN into PC");
	}
	if ((SCB->CFSR & SCB_CFSR_INVSTATE_Msk) != 0) {
		PR_FAULT_INFO("  Illegal use of the EPSR");
	}
	if ((SCB->CFSR & SCB_CFSR_UNDEFINSTR_Msk) != 0) {
		PR_FAULT_INFO("  Attempt to execute undefined instruction");
	}

	/* clear UFSR sticky bits */
	SCB->CFSR |= SCB_CFSR_USGFAULTSR_Msk;

	return reason;
}

#if defined(CONFIG_ARM_SECURE_FIRMWARE)
/**
 *
 * @brief Dump secure fault information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void SecureFault(const z_arch_esf_t *esf)
{
	PR_FAULT_INFO("***** SECURE FAULT *****");

	STORE_xFAR(sfar, SAU->SFAR);
	if ((SAU->SFSR & SAU_SFSR_SFARVALID_Msk) != 0) {
		PR_EXC("  Address: 0x%x", sfar);
	}

	/* bits are sticky: they stack and must be reset */
	if ((SAU->SFSR & SAU_SFSR_INVEP_Msk) != 0) {
		PR_FAULT_INFO("  Invalid entry point");
	} else if ((SAU->SFSR & SAU_SFSR_INVIS_Msk) != 0) {
		PR_FAULT_INFO("  Invalid integrity signature");
	} else if ((SAU->SFSR & SAU_SFSR_INVER_Msk) != 0) {
		PR_FAULT_INFO("  Invalid exception return");
	} else if ((SAU->SFSR & SAU_SFSR_AUVIOL_Msk) != 0) {
		PR_FAULT_INFO("  Attribution unit violation");
	} else if ((SAU->SFSR & SAU_SFSR_INVTRAN_Msk) != 0) {
		PR_FAULT_INFO("  Invalid transition");
	} else if ((SAU->SFSR & SAU_SFSR_LSPERR_Msk) != 0) {
		PR_FAULT_INFO("  Lazy state preservation");
	} else if ((SAU->SFSR & SAU_SFSR_LSERR_Msk) != 0) {
		PR_FAULT_INFO("  Lazy state error");
	}

	/* clear SFSR sticky bits */
	SAU->SFSR |= 0xFF;
}
#endif /* defined(CONFIG_ARM_SECURE_FIRMWARE) */

/**
 *
 * @brief Dump debug monitor exception information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void DebugMonitor(const z_arch_esf_t *esf)
{
	ARG_UNUSED(esf);

	PR_FAULT_INFO(
		"***** Debug monitor exception (not implemented) *****");
}

#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */

/**
 *
 * @brief Dump hard fault information
 *
 * See _FaultDump() for example.
 *
 * @return error code to identify the fatal error reason
 */
static u32_t HardFault(z_arch_esf_t *esf, bool *recoverable)
{
	u32_t reason = K_ERR_CPU_EXCEPTION;

	PR_FAULT_INFO("***** HARD FAULT *****");

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	/* Workaround for #18712:
	 * HardFault may be due to escalation, as a result of
	 * an SVC instruction that could not be executed; this
	 * can occur if Z_ARCH_EXCEPT() is called by an ISR,
	 * which executes at priority equal to the SVC handler
	 * priority. We handle the case of Kernel OOPS and Stack
	 * Fail here.
	 */
	u16_t *ret_addr = (u16_t *)esf->basic.pc;
	/* SVC is a 16-bit instruction. On a synchronous SVC
	 * escalated to Hard Fault, the return address is the
	 * next instruction, i.e. after the SVC.
	 */
#define _SVC_OPCODE 0xDF00

	u16_t fault_insn = *(ret_addr - 1);
	if (((fault_insn & 0xff00) == _SVC_OPCODE) &&
		((fault_insn & 0x00ff) == _SVC_CALL_RUNTIME_EXCEPT)) {

		PR_EXC("Z_ARCH_EXCEPT with reason %x\n", esf->basic.r0);
		reason = esf->basic.r0;
	}
#undef _SVC_OPCODE

	*recoverable = memory_fault_recoverable(esf);
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	*recoverable = false;

	if ((SCB->HFSR & SCB_HFSR_VECTTBL_Msk) != 0) {
		PR_EXC("  Bus fault on vector table read");
	} else if ((SCB->HFSR & SCB_HFSR_FORCED_Msk) != 0) {
		PR_EXC("  Fault escalation (see below)");
		if (SCB_MMFSR != 0) {
			reason = MpuFault(esf, 1, recoverable);
		} else if (SCB_BFSR != 0) {
			reason = BusFault(esf, 1, recoverable);
		} else if (SCB_UFSR != 0) {
			reason = UsageFault(esf);
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
		} else if (SAU->SFSR != 0) {
			SecureFault(esf);
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
		}
	}
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */

	return reason;
}

/**
 *
 * @brief Dump reserved exception information
 *
 * See _FaultDump() for example.
 *
 * @return N/A
 */
static void ReservedException(const z_arch_esf_t *esf, int fault)
{
	ARG_UNUSED(esf);

	PR_FAULT_INFO("***** %s %d) *****",
	       fault < 16 ? "Reserved Exception (" : "Spurious interrupt (IRQ ",
	       fault - 16);
}

/* Handler function for ARM fault conditions. */
static u32_t FaultHandle(z_arch_esf_t *esf, int fault, bool *recoverable)
{
	u32_t reason = K_ERR_CPU_EXCEPTION;

	*recoverable = false;

	switch (fault) {
	case 3:
		reason = HardFault(esf, recoverable);
		break;
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
	/* HardFault is used for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	case 4:
		reason = MpuFault(esf, 0, recoverable);
		break;
	case 5:
		reason = BusFault(esf, 0, recoverable);
		break;
	case 6:
		reason = UsageFault(esf);
		break;
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
	case 7:
		SecureFault(esf);
		break;
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
	case 12:
		DebugMonitor(esf);
		break;
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
	default:
		ReservedException(esf, fault);
		break;
	}

	if ((*recoverable) == false) {
		/* Dump generic information about the fault. */
		FaultShow(esf, fault);
	}

	return reason;
}

#if defined(CONFIG_ARM_SECURE_FIRMWARE)
#if (CONFIG_FAULT_DUMP == 2)
/**
 * @brief Dump the Secure Stack information for an exception that
 * has occurred in Non-Secure state.
 *
 * @param secure_esf Pointer to the secure stack frame.
 */
static void SecureStackDump(const z_arch_esf_t *secure_esf)
{
	/*
	 * In case a Non-Secure exception interrupted the Secure
	 * execution, the Secure state has stacked the additional
	 * state context and the top of the stack contains the
	 * integrity signature.
	 *
	 * In case of a Non-Secure function call the top of the
	 * stack contains the return address to Secure state.
	 */
	u32_t *top_of_sec_stack = (u32_t *)secure_esf;
	u32_t sec_ret_addr;
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
	if ((*top_of_sec_stack == INTEGRITY_SIGNATURE_STD) ||
		(*top_of_sec_stack == INTEGRITY_SIGNATURE_EXT)) {
#else
	if (*top_of_sec_stack == INTEGRITY_SIGNATURE) {
#endif /* CONFIG_ARMV7_M_ARMV8_M_FP */
		/* Secure state interrupted by a Non-Secure exception.
		 * The return address after the additional state
		 * context, stacked by the Secure code upon
		 * Non-Secure exception entry.
		 */
		top_of_sec_stack += ADDITIONAL_STATE_CONTEXT_WORDS;
		secure_esf = (const z_arch_esf_t *)top_of_sec_stack;
		sec_ret_addr = secure_esf->basic.pc;
	} else {
		/* Exception during Non-Secure function call.
		 * The return address is located on top of stack.
		 */
		sec_ret_addr = *top_of_sec_stack;
	}
	PR_FAULT_INFO("  S instruction address:  0x%x", sec_ret_addr);

}
#define SECURE_STACK_DUMP(esf) SecureStackDump(esf)
#else
/* We do not dump the Secure stack information for lower dump levels. */
#define SECURE_STACK_DUMP(esf)
#endif /* CONFIG_FAULT_DUMP== 2 */
#endif /* CONFIG_ARM_SECURE_FIRMWARE */

/**
 *
 * @brief ARM Fault handler
 *
 * This routine is called when fatal error conditions are detected by hardware
 * and is responsible for:
 * - resetting the processor fault status registers (for the case when the
 *   error handling policy allows the system to recover from the error),
 * - reporting the error information,
 * - determining the error reason to be provided as input to the user-
 *   provided routine, k_sys_fatal_error_handler().
 * The k_sys_fatal_error_handler() is invoked once the above operations are
 * completed, and is responsible for implementing the error handling policy.
 *
 * The provided ESF pointer points to the exception stack frame of the current
 * security state. Note that the current security state might not be the actual
 * state in which the processor was executing, when the exception occurred.
 * The actual state may need to be determined by inspecting the EXC_RETURN
 * value, which is provided as argument to the Fault handler.
 *
 * @param esf Pointer to the exception stack frame of the current security
 * state. The stack frame may be either on the Main stack (MSP) or Process
 * stack (PSP) depending at what execution state the exception was taken.
 *
 * @param exc_return EXC_RETURN value present in LR after exception entry.
 *
 * Note: exc_return argument shall only be used by the Fault handler if we are
 * running a Secure Firmware.
 */
void _Fault(z_arch_esf_t *esf, u32_t exc_return)
{
	u32_t reason = K_ERR_CPU_EXCEPTION;
	int fault = SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk;
	bool recoverable;

#if defined(CONFIG_ARM_SECURE_FIRMWARE)
	if ((exc_return & EXC_RETURN_INDICATOR_PREFIX) !=
			EXC_RETURN_INDICATOR_PREFIX) {
		/* Invalid EXC_RETURN value */
		goto _exit_fatal;
	}
	if ((exc_return & EXC_RETURN_EXCEPTION_SECURE_Secure) == 0U) {
		/* Secure Firmware shall only handle Secure Exceptions.
		 * This is a fatal error.
		 */
		goto _exit_fatal;
	}

	if (exc_return & EXC_RETURN_RETURN_STACK_Secure) {
		/* Exception entry occurred in Secure stack. */
	} else {
		/* Exception entry occurred in Non-Secure stack. Therefore, 'esf'
		 * holds the Secure stack information, however, the actual
		 * exception stack frame is located in the Non-Secure stack.
		 */

		/* Dump the Secure stack before handling the actual fault. */
		SECURE_STACK_DUMP(esf);

		/* Handle the actual fault.
		 * Extract the correct stack frame from the Non-Secure state
		 * and supply it to the fault handing function.
		 */
		if (exc_return & EXC_RETURN_MODE_THREAD) {
			esf = (z_arch_esf_t *)__TZ_get_PSP_NS();
			if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) == 0) {
				PR_EXC("RETTOBASE does not match EXC_RETURN");
				goto _exit_fatal;
			}
		} else {
			esf = (z_arch_esf_t *)__TZ_get_MSP_NS();
			if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) != 0) {
				PR_EXC("RETTOBASE does not match EXC_RETURN");
				goto _exit_fatal;
			}
		}
	}
#elif defined(CONFIG_ARM_NONSECURE_FIRMWARE)
	if ((exc_return & EXC_RETURN_INDICATOR_PREFIX) !=
			EXC_RETURN_INDICATOR_PREFIX) {
		/* Invalid EXC_RETURN value */
		goto _exit_fatal;
	}
	if (exc_return & EXC_RETURN_EXCEPTION_SECURE_Secure) {
		/* Non-Secure Firmware shall only handle Non-Secure Exceptions.
		 * This is a fatal error.
		 */
		goto _exit_fatal;
	}

	if (exc_return & EXC_RETURN_RETURN_STACK_Secure) {
		/* Exception entry occurred in Secure stack.
		 *
		 * Note that Non-Secure firmware cannot inspect the Secure
		 * stack to determine the root cause of the fault. Fault
		 * inspection will indicate the Non-Secure instruction
		 * that performed the branch to the Secure domain.
		 */
		PR_FAULT_INFO("Exception occurred in Secure State");
	}
#else
	(void) exc_return;
#endif /* CONFIG_ARM_SECURE_FIRMWARE */

	reason = FaultHandle(esf, fault, &recoverable);
	if (recoverable) {
		return;
	}

#if defined(CONFIG_ARM_SECURE_FIRMWARE) || \
	defined(CONFIG_ARM_NONSECURE_FIRMWARE)
_exit_fatal:
#endif
	z_arm_fatal_error(reason, esf);
}

/**
 *
 * @brief Initialization of fault handling
 *
 * Turns on the desired hardware faults.
 *
 * @return N/A
 */
void z_FaultInit(void)
{
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
	SCB->CCR |= SCB_CCR_DIV_0_TRP_Msk;
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
#if defined(CONFIG_BUILTIN_STACK_GUARD)
	/* If Stack guarding via SP limit checking is enabled, disable
	 * SP limit checking inside HardFault and NMI. This is done
	 * in order to allow for the desired fault logging to execute
	 * properly in all cases.
	 *
	 * Note that this could allow a Secure Firmware Main Stack
	 * to descend into non-secure region during HardFault and
	 * NMI exception entry. To prevent from this, non-secure
	 * memory regions must be located higher than secure memory
	 * regions.
	 *
	 * For Non-Secure Firmware this could allow the Non-Secure Main
	 * Stack to attempt to descend into secure region, in which case a
	 * Secure Hard Fault will occur and we can track the fault from there.
	 */
	SCB->CCR |= SCB_CCR_STKOFHFNMIGN_Msk;
#endif /* CONFIG_BUILTIN_STACK_GUARD */
}