Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/*  NVS: non volatile storage in flash
 *
 * Copyright (c) 2018 Laczen
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <drivers/flash.h>
#include <string.h>
#include <errno.h>
#include <inttypes.h>
#include <fs/nvs.h>
#include <sys/crc.h>
#include "nvs_priv.h"

#include <logging/log.h>
LOG_MODULE_REGISTER(fs_nvs, CONFIG_NVS_LOG_LEVEL);


/* basic routines */
/* nvs_al_size returns size aligned to fs->write_block_size */
static inline size_t nvs_al_size(struct nvs_fs *fs, size_t len)
{
	if (fs->write_block_size <= 1U) {
		return len;
	}
	return (len + (fs->write_block_size - 1U)) & ~(fs->write_block_size - 1U);
}
/* end basic routines */

/* flash routines */
/* basic aligned flash write to nvs address */
static int nvs_flash_al_wrt(struct nvs_fs *fs, u32_t addr, const void *data,
			     size_t len)
{
	const u8_t *data8 = (const u8_t *)data;
	int rc = 0;
	off_t offset;
	size_t blen;
	u8_t buf[NVS_BLOCK_SIZE];

	if (!len) {
		/* Nothing to write, avoid changing the flash protection */
		return 0;
	}

	offset = fs->offset;
	offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
	offset += addr & ADDR_OFFS_MASK;

	rc = flash_write_protection_set(fs->flash_device, 0);
	if (rc) {
		/* flash protection set error */
		return rc;
	}
	blen = len & ~(fs->write_block_size - 1U);
	if (blen > 0) {
		rc = flash_write(fs->flash_device, offset, data8, blen);
		if (rc) {
			/* flash write error */
			goto end;
		}
		len -= blen;
		offset += blen;
		data8 += blen;
	}
	if (len) {
		memcpy(buf, data8, len);
		(void)memset(buf + len, 0xff, fs->write_block_size - len);
		rc = flash_write(fs->flash_device, offset, buf,
				 fs->write_block_size);
		if (rc) {
			/* flash write error */
			goto end;
		}
	}

end:
	(void) flash_write_protection_set(fs->flash_device, 1);
	return rc;
}

/* basic flash read from nvs address */
static int nvs_flash_rd(struct nvs_fs *fs, u32_t addr, void *data,
			 size_t len)
{
	int rc;
	off_t offset;

	offset = fs->offset;
	offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
	offset += addr & ADDR_OFFS_MASK;

	rc = flash_read(fs->flash_device, offset, data, len);
	return rc;

}

/* allocation entry write */
static int nvs_flash_ate_wrt(struct nvs_fs *fs, const struct nvs_ate *entry)
{
	int rc;

	rc = nvs_flash_al_wrt(fs, fs->ate_wra, entry,
			       sizeof(struct nvs_ate));
	fs->ate_wra -= nvs_al_size(fs, sizeof(struct nvs_ate));

	return rc;
}

/* data write */
static int nvs_flash_data_wrt(struct nvs_fs *fs, const void *data, size_t len)
{
	int rc;

	rc = nvs_flash_al_wrt(fs, fs->data_wra, data, len);
	fs->data_wra += nvs_al_size(fs, len);

	return rc;
}

/* flash ate read */
static int nvs_flash_ate_rd(struct nvs_fs *fs, u32_t addr,
			     struct nvs_ate *entry)
{
	return nvs_flash_rd(fs, addr, entry, sizeof(struct nvs_ate));
}

/* end of basic flash routines */

/* advanced flash routines */

/* nvs_flash_block_cmp compares the data in flash at addr to data
 * in blocks of size NVS_BLOCK_SIZE aligned to fs->write_block_size
 * returns 0 if equal, 1 if not equal, errcode if error
 */
static int nvs_flash_block_cmp(struct nvs_fs *fs, u32_t addr, const void *data,
				size_t len)
{
	const u8_t *data8 = (const u8_t *)data;
	int rc;
	size_t bytes_to_cmp, block_size;
	u8_t buf[NVS_BLOCK_SIZE];

	block_size = NVS_BLOCK_SIZE & ~(fs->write_block_size - 1U);
	while (len) {
		bytes_to_cmp = MIN(block_size, len);
		rc = nvs_flash_rd(fs, addr, buf, bytes_to_cmp);
		if (rc) {
			return rc;
		}
		rc = memcmp(data8, buf, bytes_to_cmp);
		if (rc) {
			return 1;
		}
		len -= bytes_to_cmp;
		addr += bytes_to_cmp;
		data8 += bytes_to_cmp;
	}
	return 0;
}

/* nvs_flash_cmp_const compares the data in flash at addr to a constant
 * value. returns 0 if all data in flash is equal to value, 1 if not equal,
 * errcode if error
 */
static int nvs_flash_cmp_const(struct nvs_fs *fs, u32_t addr, u8_t value,
				size_t len)
{
	int rc;
	size_t bytes_to_cmp, block_size;
	u8_t cmp[NVS_BLOCK_SIZE];

	block_size = NVS_BLOCK_SIZE & ~(fs->write_block_size - 1U);
	(void)memset(cmp, value, block_size);
	while (len) {
		bytes_to_cmp = MIN(block_size, len);
		rc = nvs_flash_block_cmp(fs, addr, cmp, bytes_to_cmp);
		if (rc) {
			return rc;
		}
		len -= bytes_to_cmp;
		addr += bytes_to_cmp;
	}
	return 0;
}

/* flash block move: move a block at addr to the current data write location
 * and updates the data write location.
 */
static int nvs_flash_block_move(struct nvs_fs *fs, u32_t addr, size_t len)
{
	int rc;
	size_t bytes_to_copy, block_size;
	u8_t buf[NVS_BLOCK_SIZE];

	block_size = NVS_BLOCK_SIZE & ~(fs->write_block_size - 1U);

	while (len) {
		bytes_to_copy = MIN(block_size, len);
		rc = nvs_flash_rd(fs, addr, buf, bytes_to_copy);
		if (rc) {
			return rc;
		}
		rc = nvs_flash_data_wrt(fs, buf, bytes_to_copy);
		if (rc) {
			return rc;
		}
		len -= bytes_to_copy;
		addr += bytes_to_copy;
	}
	return 0;
}

/* erase a sector by first checking it is used and then erasing if required
 * return 0 if OK, errorcode on error.
 */
static int nvs_flash_erase_sector(struct nvs_fs *fs, u32_t addr)
{
	int rc;
	off_t offset;

	addr &= ADDR_SECT_MASK;
	rc = nvs_flash_cmp_const(fs, addr, 0xff, fs->sector_size);
	if (rc <= 0) {
		/* flash error or empty sector */
		return rc;
	}

	offset = fs->offset;
	offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);

	rc = flash_write_protection_set(fs->flash_device, 0);
	if (rc) {
		/* flash protection set error */
		return rc;
	}
	LOG_DBG("Erasing flash at %lx, len %d", (long int) offset,
		fs->sector_size);
	rc = flash_erase(fs->flash_device, offset, fs->sector_size);
	if (rc) {
		/* flash erase error */
		return rc;
	}
	(void) flash_write_protection_set(fs->flash_device, 1);
	return 0;
}

/* crc update on allocation entry */
static void nvs_ate_crc8_update(struct nvs_ate *entry)
{
	u8_t crc8;

	crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
	entry->crc8 = crc8;
}

/* crc check on allocation entry
 * returns 0 if OK, 1 on crc fail
 */
static int nvs_ate_crc8_check(const struct nvs_ate *entry)
{
	u8_t crc8;

	crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
	if (crc8 == entry->crc8) {
		return 0;
	}
	return 1;
}

/* nvs_ate_cmp_const compares an ATE to a constant value. returns 0 if
 * the whole ATE is equal to value, 1 if not equal.
 */

static int nvs_ate_cmp_const(const struct nvs_ate *entry, u8_t value)
{
	const u8_t *data8 = (const u8_t *)entry;
	int i;

	for (i = 0; i < sizeof(struct nvs_ate); i++) {
		if (data8[i] != value) {
			return 1;
		}
	}

	return 0;
}

/* store an entry in flash */
static int nvs_flash_wrt_entry(struct nvs_fs *fs, u16_t id, const void *data,
				size_t len)
{
	int rc;
	struct nvs_ate entry;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	entry.id = id;
	entry.offset = (u16_t)(fs->data_wra & ADDR_OFFS_MASK);
	entry.len = (u16_t)len;
	entry.part = 0xff;

	nvs_ate_crc8_update(&entry);

	rc = nvs_flash_data_wrt(fs, data, len);
	if (rc) {
		return rc;
	}
	rc = nvs_flash_ate_wrt(fs, &entry);
	if (rc) {
		return rc;
	}

	return 0;
}
/* end of flash routines */

/* walking through allocation entry list, from newest to oldest entries
 * read ate from addr, modify addr to the previous ate
 */
static int nvs_prev_ate(struct nvs_fs *fs, u32_t *addr, struct nvs_ate *ate)
{
	int rc;
	struct nvs_ate close_ate, end_ate;
	u32_t data_end_addr, ate_end_addr;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	rc = nvs_flash_ate_rd(fs, *addr, ate);
	if (rc) {
		return rc;
	}

	*addr += ate_size;
	if (((*addr) & ADDR_OFFS_MASK) != (fs->sector_size - ate_size)) {
		return 0;
	}

	/* last ate in sector, do jump to previous sector */
	if (((*addr) >> ADDR_SECT_SHIFT) == 0U) {
		*addr += ((fs->sector_count - 1) << ADDR_SECT_SHIFT);
	} else {
		*addr -= (1 << ADDR_SECT_SHIFT);
	}

	rc = nvs_flash_ate_rd(fs, *addr, &close_ate);
	if (rc) {
		return rc;
	}

	rc = nvs_ate_cmp_const(&close_ate, 0xff);
	/* at the end of filesystem */
	if (!rc) {
		*addr = fs->ate_wra;
		return 0;
	}

	if (!nvs_ate_crc8_check(&close_ate)) {
		/* update the address so it points to the last added ate.
		 * do a check on close_ate.offset so that it does not point
		 * outside a sector and is aligned to ate size.
		 */
		if (close_ate.offset < (fs->sector_size - ate_size) &&
		    !(close_ate.offset % ate_size)) {
			(*addr) &= ADDR_SECT_MASK;
			(*addr) += close_ate.offset;
			return 0;
		}
	}
	/* The close_ate had an invalid CRC8 or the last added ate offset was
	 * recognized as incorrect, `lets find out the last valid ate
	 * and point the address to this found ate.
	 */
	*addr -= ate_size;
	ate_end_addr = *addr;
	data_end_addr = *addr & ADDR_SECT_MASK;
	while (ate_end_addr > data_end_addr) {
		rc = nvs_flash_ate_rd(fs, ate_end_addr, &end_ate);
		if (rc) {
			return rc;
		}
		if (!nvs_ate_crc8_check(&end_ate)) {
			/* found a valid ate, update data_end_addr and *addr */
			data_end_addr &= ADDR_SECT_MASK;
			data_end_addr += end_ate.offset + end_ate.len;
			*addr = ate_end_addr;
		}
		ate_end_addr -= ate_size;
	}
	/* remark: if there was absolutely no valid data in the sector *addr
	 * is kept at sector_end - 2*ate_size, the next read will contain
	 * invalid data and continue with a sector jump
	 */
	return 0;
}

static void nvs_sector_advance(struct nvs_fs *fs, u32_t *addr)
{
	*addr += (1 << ADDR_SECT_SHIFT);
	if ((*addr >> ADDR_SECT_SHIFT) == fs->sector_count) {
		*addr -= (fs->sector_count << ADDR_SECT_SHIFT);
	}
}

/* allocation entry close (this closes the current sector) by writing offset
 * of last ate to the sector end.
 */
static int nvs_sector_close(struct nvs_fs *fs)
{
	int rc;
	struct nvs_ate close_ate;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	close_ate.id = 0xFFFF;
	close_ate.len = 0U;
	close_ate.offset = (u16_t)((fs->ate_wra + ate_size) & ADDR_OFFS_MASK);

	fs->ate_wra &= ADDR_SECT_MASK;
	fs->ate_wra += (fs->sector_size - ate_size);

	nvs_ate_crc8_update(&close_ate);

	rc = nvs_flash_ate_wrt(fs, &close_ate);

	nvs_sector_advance(fs, &fs->ate_wra);

	fs->data_wra = fs->ate_wra & ADDR_SECT_MASK;

	return 0;
}


/* garbage collection: the address ate_wra has been updated to the new sector
 * that has just been started. The data to gc is in the sector after this new
 * sector.
 */
static int nvs_gc(struct nvs_fs *fs)
{
	int rc;
	struct nvs_ate close_ate, gc_ate, wlk_ate;
	u32_t sec_addr, gc_addr, gc_prev_addr, wlk_addr, wlk_prev_addr,
	      data_addr, stop_addr;
	size_t ate_size;

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	sec_addr = (fs->ate_wra & ADDR_SECT_MASK);
	nvs_sector_advance(fs, &sec_addr);
	gc_addr = sec_addr + fs->sector_size - ate_size;

	/* if the sector is not closed don't do gc */
	rc = nvs_flash_ate_rd(fs, gc_addr, &close_ate);
	if (rc < 0) {
		/* flash error */
		return rc;
	}

	rc = nvs_ate_cmp_const(&close_ate, 0xff);
	if (!rc) {
		rc = nvs_flash_erase_sector(fs, sec_addr);
		if (rc) {
			return rc;
		}
		return 0;
	}

	stop_addr = gc_addr - ate_size;

	gc_addr &= ADDR_SECT_MASK;
	gc_addr += close_ate.offset;

	while (1) {
		gc_prev_addr = gc_addr;
		rc = nvs_prev_ate(fs, &gc_addr, &gc_ate);
		if (rc) {
			return rc;
		}
		wlk_addr = fs->ate_wra;
		while (1) {
			wlk_prev_addr = wlk_addr;
			rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
			if (rc) {
				return rc;
			}
			/* if ate with same id is reached we might need to copy.
			 * only consider valid wlk_ate's. Something wrong might
			 * have been written that has the same ate but is
			 * invalid, don't consider these as a match.
			 */
			if ((wlk_ate.id == gc_ate.id) &&
			    (!nvs_ate_crc8_check(&wlk_ate))) {
				break;
			}
		}
		/* if walk has reached the same address as gc_addr copy is
		 * needed unless it is a deleted item.
		 */
		if ((wlk_prev_addr == gc_prev_addr) && gc_ate.len) {
			/* copy needed */
			LOG_DBG("Moving %d, len %d", gc_ate.id, gc_ate.len);

			data_addr = (gc_prev_addr & ADDR_SECT_MASK);
			data_addr += gc_ate.offset;

			gc_ate.offset = (u16_t)(fs->data_wra & ADDR_OFFS_MASK);
			nvs_ate_crc8_update(&gc_ate);

			rc = nvs_flash_block_move(fs, data_addr, gc_ate.len);
			if (rc) {
				return rc;
			}

			rc = nvs_flash_ate_wrt(fs, &gc_ate);
			if (rc) {
				return rc;
			}
		}

		/* stop gc at end of the sector */
		if (gc_prev_addr == stop_addr) {
			break;
		}
	}

	rc = nvs_flash_erase_sector(fs, sec_addr);
	if (rc) {
		return rc;
	}
	return 0;
}

static int nvs_startup(struct nvs_fs *fs)
{
	int rc;
	struct nvs_ate last_ate;
	size_t ate_size, empty_len;
	/* Initialize addr to 0 for the case fs->sector_count == 0. This
	 * should never happen as this is verified in nvs_init() but both
	 * Coverity and GCC believe the contrary.
	 */
	u32_t addr = 0U;
	u16_t i, closed_sectors = 0;

	k_mutex_lock(&fs->nvs_lock, K_FOREVER);

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
	/* step through the sectors to find a open sector following
	 * a closed sector, this is where NVS can to write.
	 */
	for (i = 0; i < fs->sector_count; i++) {
		addr = (i << ADDR_SECT_SHIFT) + fs->sector_size - ate_size;
		rc = nvs_flash_cmp_const(fs, addr, 0xff,
					  sizeof(struct nvs_ate));
		if (rc) {
			/* closed sector */
			closed_sectors++;
			nvs_sector_advance(fs, &addr);
			rc = nvs_flash_cmp_const(fs, addr, 0xff,
						  sizeof(struct nvs_ate));
			if (!rc) {
				/* open sector */
				break;
			}
		}
	}
	/* all sectors are closed, this is not a nvs fs */
	if (closed_sectors == fs->sector_count) {
		return -EDEADLK;
	}

	if (i == fs->sector_count) {
		/* none of the sectors where closed, in most cases we can set
		 * the address to the first sector, except when there are only
		 * two sectors. Then we can only set it to the first sector if
		 * the last sector contains no ate's. So we check this first
		 */
		rc = nvs_flash_cmp_const(fs, addr - ate_size, 0xff,
				  sizeof(struct nvs_ate));
		if (!rc) {
			/* empty ate */
			nvs_sector_advance(fs, &addr);
		}
	}

	/* addr contains address of the last ate in the most recent sector
	 * search for the first ate containing all 0xff
	 */
	fs->ate_wra = addr - ate_size;
	fs->data_wra = addr & ADDR_SECT_MASK;

	while (fs->ate_wra >= fs->data_wra) {
		rc = nvs_flash_ate_rd(fs, fs->ate_wra, &last_ate);
		if (rc) {
			goto end;
		}

		rc = nvs_ate_cmp_const(&last_ate, 0xff);
		if (!rc) {
			/* found ff empty location */
			break;
		}

		if (!nvs_ate_crc8_check(&last_ate)) {
			/* crc8 is ok, complete write of ate was performed */
			fs->data_wra = addr & ADDR_SECT_MASK;
			fs->data_wra += last_ate.offset;
			fs->data_wra += nvs_al_size(fs, last_ate.len);

			/* ate on the last possition within the sector is
			 * reserved for deletion an entry
			 */
			if (fs->ate_wra == fs->data_wra && last_ate.len) {
				/* not a delete ate */
				return -ESPIPE;
			}
		}

		fs->ate_wra -= ate_size;
	}

	/* possible data write after last ate write, update data_wra */
	while (fs->ate_wra > fs->data_wra) {
		empty_len = fs->ate_wra - fs->data_wra;

		rc = nvs_flash_cmp_const(fs, fs->data_wra, 0xff, empty_len);
		if (rc < 0) {
			goto end;
		}
		if (!rc) {
			break;
		}

		fs->data_wra += fs->write_block_size;
	}

	/* if the sector after the write sector is not empty gc was interrupted
	 * we need to restart gc, first erase the sector before restarting gc
	 * otherwise the data may not fit into the sector.
	 */
	addr = fs->ate_wra & ADDR_SECT_MASK;
	nvs_sector_advance(fs, &addr);
	rc = nvs_flash_cmp_const(fs, addr, 0xff, fs->sector_size);
	if (rc < 0) {
		goto end;
	}
	if (rc) {
		/* the sector after fs->ate_wrt is not empty */
		rc = nvs_flash_erase_sector(fs, fs->ate_wra);
		if (rc) {
			goto end;
		}
		fs->ate_wra &= ADDR_SECT_MASK;
		fs->ate_wra += (fs->sector_size - 2 * ate_size);
		fs->data_wra = (fs->ate_wra & ADDR_SECT_MASK);
		rc = nvs_gc(fs);
		if (rc) {
			goto end;
		}
	}

end:
	k_mutex_unlock(&fs->nvs_lock);
	return rc;
}

int nvs_clear(struct nvs_fs *fs)
{
	int rc;
	off_t addr;

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	for (u16_t i = 0; i < fs->sector_count; i++) {
		addr = i << ADDR_SECT_SHIFT;
		rc = nvs_flash_erase_sector(fs, addr);
		if (rc) {
			return rc;
		}
	}
	return 0;
}

int nvs_init(struct nvs_fs *fs, const char *dev_name)
{

	int rc;
	struct flash_pages_info info;

	k_mutex_init(&fs->nvs_lock);

	fs->flash_device = device_get_binding(dev_name);
	if (!fs->flash_device) {
		LOG_ERR("No valid flash device found");
		return -ENXIO;
	}

	fs->write_block_size = flash_get_write_block_size(fs->flash_device);

	/* check that the write block size is supported */
	if (fs->write_block_size > NVS_BLOCK_SIZE) {
		LOG_ERR("Unsupported write block size");
		return -EINVAL;
	}

	/* check that sector size is a multiple of pagesize */
	rc = flash_get_page_info_by_offs(fs->flash_device, fs->offset, &info);
	if (rc) {
		LOG_ERR("Unable to get page info");
		return -EINVAL;
	}
	if (!fs->sector_size || fs->sector_size % info.size) {
		LOG_ERR("Invalid sector size");
		return -EINVAL;
	}

	/* check the number of sectors, it should be at least 2 */
	if (fs->sector_count < 2) {
		LOG_ERR("Configuration error - sector count");
		return -EINVAL;
	}

	rc = nvs_startup(fs);
	if (rc) {
		return rc;
	}

	/* nvs is ready for use */
	fs->ready = true;

	LOG_INF("%d Sectors of %d bytes", fs->sector_count, fs->sector_size);
	LOG_INF("alloc wra: %d, %x",
		(fs->ate_wra >> ADDR_SECT_SHIFT),
		(fs->ate_wra & ADDR_OFFS_MASK));
	LOG_INF("data wra: %d, %x",
		(fs->data_wra >> ADDR_SECT_SHIFT),
		(fs->data_wra & ADDR_OFFS_MASK));

	return 0;
}

ssize_t nvs_write(struct nvs_fs *fs, u16_t id, const void *data, size_t len)
{
	int rc, gc_count;
	size_t ate_size, data_size;
	struct nvs_ate wlk_ate;
	u32_t wlk_addr, rd_addr;
	u16_t required_space = 0U; /* no space, appropriate for delete ate */

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
	data_size = nvs_al_size(fs, len);

	/* The maximum data size is sector size - 3 ate
	 * where: 1 ate for data, 1 ate for sector close
	 * and 1 ate to always allow a delete.
	 */
	if ((len > (fs->sector_size - 3 * ate_size)) ||
	    ((len > 0) && (data == NULL))) {
		return -EINVAL;
	}

	/* find latest entry with same id */
	wlk_addr = fs->ate_wra;
	rd_addr = wlk_addr;

	while (1) {
		rd_addr = wlk_addr;
		rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
		if (rc) {
			return rc;
		}
		if ((wlk_ate.id == id) && (!nvs_ate_crc8_check(&wlk_ate))) {
			break;
		}
		if (wlk_addr == fs->ate_wra) {
			break;
		}
	}

	if (wlk_addr != fs->ate_wra) {
		/* previous entry found */
		rd_addr &= ADDR_SECT_MASK;
		rd_addr += wlk_ate.offset;

		if (len == 0) {
			/* do not try to compare with empty data */
			if (wlk_ate.len == 0U) {
				/* skip delete entry as it is already the
				 * last one
				 */
				return 0;
			}
		} else {
			/* compare the data and if equal return 0 */
			rc = nvs_flash_block_cmp(fs, rd_addr, data, len);
			if (rc <= 0) {
				return rc;
			}
		}
	} else {
		/* skip delete entry for non-existing entry */
		if (len == 0) {
			return 0;
		}
	}

	/* calculate required space if the entry contains data */
	if (data_size) {
		/* Leave space for delete ate */
		required_space = data_size + ate_size;
	}

	k_mutex_lock(&fs->nvs_lock, K_FOREVER);

	gc_count = 0;
	while (1) {
		if (gc_count == fs->sector_count) {
			/* gc'ed all sectors, no extra space will be created
			 * by extra gc.
			 */
			rc = -ENOSPC;
			goto end;
		}

		if (fs->ate_wra >= fs->data_wra + required_space) {

			rc = nvs_flash_wrt_entry(fs, id, data, len);
			if (rc) {
				goto end;
			}
			break;
		}


		rc = nvs_sector_close(fs);
		if (rc) {
			goto end;
		}

		rc = nvs_gc(fs);
		if (rc) {
			goto end;
		}
		gc_count++;
	}
	rc = len;
end:
	k_mutex_unlock(&fs->nvs_lock);
	return rc;
}

int nvs_delete(struct nvs_fs *fs, u16_t id)
{
	return nvs_write(fs, id, NULL, 0);
}

ssize_t nvs_read_hist(struct nvs_fs *fs, u16_t id, void *data, size_t len,
		      u16_t cnt)
{
	int rc;
	u32_t wlk_addr, rd_addr;
	u16_t cnt_his;
	struct nvs_ate wlk_ate;
	size_t ate_size;

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	if (len > (fs->sector_size - 2 * ate_size)) {
		return -EINVAL;
	}

	cnt_his = 0U;

	wlk_addr = fs->ate_wra;
	rd_addr = wlk_addr;

	while (cnt_his <= cnt) {
		rd_addr = wlk_addr;
		rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
		if (rc) {
			goto err;
		}
		if ((wlk_ate.id == id) &&  (!nvs_ate_crc8_check(&wlk_ate))) {
			cnt_his++;
		}
		if (wlk_addr == fs->ate_wra) {
			break;
		}
	}

	if (((wlk_addr == fs->ate_wra) && (wlk_ate.id != id)) ||
	    (wlk_ate.len == 0U) || (cnt_his < cnt)) {
		return -ENOENT;
	}

	rd_addr &= ADDR_SECT_MASK;
	rd_addr += wlk_ate.offset;
	rc = nvs_flash_rd(fs, rd_addr, data, MIN(len, wlk_ate.len));
	if (rc) {
		goto err;
	}

	return wlk_ate.len;

err:
	return rc;
}

ssize_t nvs_read(struct nvs_fs *fs, u16_t id, void *data, size_t len)
{
	int rc;

	rc = nvs_read_hist(fs, id, data, len, 0);
	return rc;
}

ssize_t nvs_calc_free_space(struct nvs_fs *fs)
{

	int rc;
	struct nvs_ate step_ate, wlk_ate;
	u32_t step_addr, wlk_addr;
	size_t ate_size, free_space;

	if (!fs->ready) {
		LOG_ERR("NVS not initialized");
		return -EACCES;
	}

	ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));

	free_space = 0;
	for (u16_t i = 1; i < fs->sector_count; i++) {
		free_space += (fs->sector_size - ate_size);
	}

	step_addr = fs->ate_wra;

	while (1) {
		rc = nvs_prev_ate(fs, &step_addr, &step_ate);
		if (rc) {
			return rc;
		}

		wlk_addr = fs->ate_wra;

		while (1) {
			rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
			if (rc) {
				return rc;
			}
			if ((wlk_ate.id == step_ate.id) ||
			    (wlk_addr == fs->ate_wra)) {
				break;
			}
		}

		if ((wlk_addr == step_addr) && step_ate.len &&
		    (!nvs_ate_crc8_check(&step_ate))) {
			/* count needed */
			free_space -= nvs_al_size(fs, step_ate.len);
			free_space -= ate_size;
		}

		if (step_addr == fs->ate_wra) {
			break;
		}

	}
	return free_space;
}