Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | /* * Copyright (c) 2016 Nordic Semiconductor ASA * Copyright (c) 2016 Vinayak Kariappa Chettimada * * SPDX-License-Identifier: Apache-2.0 */ #include <errno.h> #include <stddef.h> #include <string.h> #include <zephyr.h> #include <soc.h> #include <init.h> #include <device.h> #include <drivers/clock_control.h> #include <sys/atomic.h> #include <sys/util.h> #include <debug/stack.h> #include <sys/byteorder.h> #include <bluetooth/bluetooth.h> #include <bluetooth/hci.h> #include <drivers/bluetooth/hci_driver.h> #ifdef CONFIG_CLOCK_CONTROL_NRF #include <drivers/clock_control/nrf_clock_control.h> #endif #define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_DRIVER) #define LOG_MODULE_NAME bt_ctlr_hci_driver #include "common/log.h" #include "util/util.h" #include "util/memq.h" #include "hal/ccm.h" #if defined(CONFIG_SOC_FAMILY_NRF) #include "hal/radio.h" #endif /* CONFIG_SOC_FAMILY_NRF */ #include "ll_sw/pdu.h" #include "ll_sw/lll.h" #include "ll.h" #include "hci_internal.h" #include "hal/debug.h" static K_SEM_DEFINE(sem_prio_recv, 0, UINT_MAX); static K_FIFO_DEFINE(recv_fifo); struct k_thread prio_recv_thread_data; static K_THREAD_STACK_DEFINE(prio_recv_thread_stack, CONFIG_BT_CTLR_RX_PRIO_STACK_SIZE); struct k_thread recv_thread_data; static K_THREAD_STACK_DEFINE(recv_thread_stack, CONFIG_BT_RX_STACK_SIZE); #if defined(CONFIG_INIT_STACKS) static u32_t prio_ts; static u32_t rx_ts; #endif #if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL) static struct k_poll_signal hbuf_signal = K_POLL_SIGNAL_INITIALIZER(hbuf_signal); static sys_slist_t hbuf_pend; static s32_t hbuf_count; #endif /** * @brief Handover from Controller thread to Host thread * @details Execution context: Controller thread * Pull from memq_ll_rx and push up to Host thread recv_thread() via recv_fifo * @param p1 Unused. Required to conform with Zephyr thread protoype * @param p2 Unused. Required to conform with Zephyr thread protoype * @param p3 Unused. Required to conform with Zephyr thread protoype */ static void prio_recv_thread(void *p1, void *p2, void *p3) { while (1) { void *node_rx; u8_t num_cmplt; u16_t handle; /* While there are completed rx nodes */ while ((num_cmplt = ll_rx_get(&node_rx, &handle))) { #if defined(CONFIG_BT_CONN) struct net_buf *buf; buf = bt_buf_get_evt(BT_HCI_EVT_NUM_COMPLETED_PACKETS, false, K_FOREVER); hci_num_cmplt_encode(buf, handle, num_cmplt); BT_DBG("Num Complete: 0x%04x:%u", handle, num_cmplt); bt_recv_prio(buf); k_yield(); #endif } if (node_rx) { /* Until now we've only peeked, now we really do * the handover */ ll_rx_dequeue(); /* Send the rx node up to Host thread, recv_thread() */ BT_DBG("RX node enqueue"); k_fifo_put(&recv_fifo, node_rx); /* There may still be completed nodes, continue * pushing all those up to Host before waiting for * ULL mayfly */ continue; } BT_DBG("sem take..."); /* Wait until ULL mayfly has something to give us. * Blocking-take of the semaphore; we take it once ULL mayfly * has let it go in ll_rx_sched(). */ k_sem_take(&sem_prio_recv, K_FOREVER); /* Now, ULL mayfly has something to give to us */ BT_DBG("sem taken"); #if defined(CONFIG_INIT_STACKS) if (k_uptime_get_32() - prio_ts > K_SECONDS(5)) { STACK_ANALYZE("prio recv thread stack", prio_recv_thread_stack); prio_ts = k_uptime_get_32(); } #endif } } static inline struct net_buf *encode_node(struct node_rx_pdu *node_rx, s8_t class) { struct net_buf *buf = NULL; /* Check if we need to generate an HCI event or ACL data */ switch (class) { case HCI_CLASS_EVT_DISCARDABLE: case HCI_CLASS_EVT_REQUIRED: case HCI_CLASS_EVT_CONNECTION: if (class == HCI_CLASS_EVT_DISCARDABLE) { buf = bt_buf_get_evt(BT_HCI_EVT_UNKNOWN, true, K_NO_WAIT); } else { buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER); } if (buf) { hci_evt_encode(node_rx, buf); } break; #if defined(CONFIG_BT_CONN) case HCI_CLASS_ACL_DATA: /* generate ACL data */ buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER); hci_acl_encode(node_rx, buf); break; #endif default: LL_ASSERT(0); break; } #if defined(CONFIG_BT_LL_SW_LEGACY) { extern u8_t radio_rx_fc_set(u16_t handle, u8_t fc); radio_rx_fc_set(node_rx->hdr.handle, 0); } #endif /* CONFIG_BT_LL_SW_LEGACY */ node_rx->hdr.next = NULL; ll_rx_mem_release((void **)&node_rx); return buf; } static inline struct net_buf *process_node(struct node_rx_pdu *node_rx) { s8_t class = hci_get_class(node_rx); struct net_buf *buf = NULL; #if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL) if (hbuf_count != -1) { bool pend = !sys_slist_is_empty(&hbuf_pend); /* controller to host flow control enabled */ switch (class) { case HCI_CLASS_EVT_DISCARDABLE: case HCI_CLASS_EVT_REQUIRED: break; case HCI_CLASS_EVT_CONNECTION: /* for conn-related events, only pend is relevant */ hbuf_count = 1; /* fallthrough */ case HCI_CLASS_ACL_DATA: if (pend || !hbuf_count) { sys_slist_append(&hbuf_pend, (void *)node_rx); BT_DBG("FC: Queuing item: %d", class); return NULL; } break; default: LL_ASSERT(0); break; } } #endif /* process regular node from radio */ buf = encode_node(node_rx, class); return buf; } #if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL) static inline struct net_buf *process_hbuf(struct node_rx_pdu *n) { /* shadow total count in case of preemption */ struct node_rx_pdu *node_rx = NULL; s32_t hbuf_total = hci_hbuf_total; struct net_buf *buf = NULL; s8_t class; int reset; reset = atomic_test_and_clear_bit(&hci_state_mask, HCI_STATE_BIT_RESET); if (reset) { /* flush queue, no need to free, the LL has already done it */ sys_slist_init(&hbuf_pend); } if (hbuf_total <= 0) { hbuf_count = -1; return NULL; } /* available host buffers */ hbuf_count = hbuf_total - (hci_hbuf_sent - hci_hbuf_acked); /* host acked ACL packets, try to dequeue from hbuf */ node_rx = (void *)sys_slist_peek_head(&hbuf_pend); if (!node_rx) { return NULL; } /* Return early if this iteration already has a node to process */ class = hci_get_class(node_rx); if (n) { if (class == HCI_CLASS_EVT_CONNECTION || (class == HCI_CLASS_ACL_DATA && hbuf_count)) { /* node to process later, schedule an iteration */ BT_DBG("FC: signalling"); k_poll_signal_raise(&hbuf_signal, 0x0); } return NULL; } switch (class) { case HCI_CLASS_EVT_CONNECTION: BT_DBG("FC: dequeueing event"); (void) sys_slist_get(&hbuf_pend); break; case HCI_CLASS_ACL_DATA: if (hbuf_count) { BT_DBG("FC: dequeueing ACL data"); (void) sys_slist_get(&hbuf_pend); } else { /* no buffers, HCI will signal */ node_rx = NULL; } break; case HCI_CLASS_EVT_DISCARDABLE: case HCI_CLASS_EVT_REQUIRED: default: LL_ASSERT(0); break; } if (node_rx) { buf = encode_node(node_rx, class); /* Update host buffers after encoding */ hbuf_count = hbuf_total - (hci_hbuf_sent - hci_hbuf_acked); /* next node */ node_rx = (void *)sys_slist_peek_head(&hbuf_pend); if (node_rx) { class = hci_get_class(node_rx); if (class == HCI_CLASS_EVT_CONNECTION || (class == HCI_CLASS_ACL_DATA && hbuf_count)) { /* more to process, schedule an * iteration */ BT_DBG("FC: signalling"); k_poll_signal_raise(&hbuf_signal, 0x0); } } } return buf; } #endif /** * @brief Blockingly pull from Controller thread's recv_fifo * @details Execution context: Host thread */ static void recv_thread(void *p1, void *p2, void *p3) { #if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL) /* @todo: check if the events structure really needs to be static */ static struct k_poll_event events[2] = { K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_SIGNAL, K_POLL_MODE_NOTIFY_ONLY, &hbuf_signal, 0), K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE, K_POLL_MODE_NOTIFY_ONLY, &recv_fifo, 0), }; #endif while (1) { struct node_rx_pdu *node_rx = NULL; struct net_buf *buf = NULL; BT_DBG("blocking"); #if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL) int err; err = k_poll(events, 2, K_FOREVER); LL_ASSERT(err == 0); if (events[0].state == K_POLL_STATE_SIGNALED) { events[0].signal->signaled = 0U; } else if (events[1].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) { node_rx = k_fifo_get(events[1].fifo, 0); } events[0].state = K_POLL_STATE_NOT_READY; events[1].state = K_POLL_STATE_NOT_READY; /* process host buffers first if any */ buf = process_hbuf(node_rx); #else node_rx = k_fifo_get(&recv_fifo, K_FOREVER); #endif BT_DBG("unblocked"); if (node_rx && !buf) { /* process regular node from radio */ buf = process_node(node_rx); } if (buf) { if (buf->len) { BT_DBG("Packet in: type:%u len:%u", bt_buf_get_type(buf), buf->len); bt_recv(buf); } else { net_buf_unref(buf); } } k_yield(); #if defined(CONFIG_INIT_STACKS) if (k_uptime_get_32() - rx_ts > K_SECONDS(5)) { STACK_ANALYZE("recv thread stack", recv_thread_stack); rx_ts = k_uptime_get_32(); } #endif } } static int cmd_handle(struct net_buf *buf) { void *node_rx = NULL; struct net_buf *evt; evt = hci_cmd_handle(buf, &node_rx); if (evt) { BT_DBG("Replying with event of %u bytes", evt->len); bt_recv_prio(evt); if (node_rx) { BT_DBG("RX node enqueue"); k_fifo_put(&recv_fifo, node_rx); } } return 0; } #if defined(CONFIG_BT_CONN) static int acl_handle(struct net_buf *buf) { struct net_buf *evt; int err; err = hci_acl_handle(buf, &evt); if (evt) { BT_DBG("Replying with event of %u bytes", evt->len); bt_recv_prio(evt); } return err; } #endif /* CONFIG_BT_CONN */ static int hci_driver_send(struct net_buf *buf) { u8_t type; int err; BT_DBG("enter"); if (!buf->len) { BT_ERR("Empty HCI packet"); return -EINVAL; } type = bt_buf_get_type(buf); switch (type) { #if defined(CONFIG_BT_CONN) case BT_BUF_ACL_OUT: err = acl_handle(buf); break; #endif /* CONFIG_BT_CONN */ case BT_BUF_CMD: err = cmd_handle(buf); break; default: BT_ERR("Unknown HCI type %u", type); return -EINVAL; } if (!err) { net_buf_unref(buf); } BT_DBG("exit: %d", err); return err; } static int hci_driver_open(void) { u32_t err; DEBUG_INIT(); err = ll_init(&sem_prio_recv); if (err) { BT_ERR("LL initialization failed: %u", err); return err; } #if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL) hci_init(&hbuf_signal); #else hci_init(NULL); #endif k_thread_create(&prio_recv_thread_data, prio_recv_thread_stack, K_THREAD_STACK_SIZEOF(prio_recv_thread_stack), prio_recv_thread, NULL, NULL, NULL, K_PRIO_COOP(CONFIG_BT_CTLR_RX_PRIO), 0, K_NO_WAIT); k_thread_name_set(&prio_recv_thread_data, "BT RX pri"); k_thread_create(&recv_thread_data, recv_thread_stack, K_THREAD_STACK_SIZEOF(recv_thread_stack), recv_thread, NULL, NULL, NULL, K_PRIO_COOP(CONFIG_BT_RX_PRIO), 0, K_NO_WAIT); k_thread_name_set(&recv_thread_data, "BT RX"); BT_DBG("Success."); return 0; } static const struct bt_hci_driver drv = { .name = "Controller", .bus = BT_HCI_DRIVER_BUS_VIRTUAL, .open = hci_driver_open, .send = hci_driver_send, }; static int hci_driver_init(struct device *unused) { ARG_UNUSED(unused); bt_hci_driver_register(&drv); return 0; } SYS_INIT(hci_driver_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE); |