Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | /* * Copyright (c) 2012-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * Test memory pool and heap APIs * * This modules tests the following memory pool routines: * * - k_mem_pool_alloc(), * - k_mem_pool_free(), * - k_malloc(), * - k_free() */ #include <zephyr.h> #include <ztest.h> #include <tc_util.h> #include <sys/util.h> #define ONE_SECOND 1000 #define TENTH_SECOND 100 #define NUM_BLOCKS 64 /* size of stack area used by each thread */ #define STACKSIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE) K_SEM_DEFINE(ALTERNATE_SEM, 0, 1); K_SEM_DEFINE(REGRESS_SEM, 0, 1); K_SEM_DEFINE(HELPER_SEM, 0, 1); K_MEM_POOL_DEFINE(POOL_ID, 64, 4096, 1, 4); K_MEM_POOL_DEFINE(SECOND_POOL_ID, 16, 1024, 5, 4); struct TEST_CASE { struct k_mem_block *block; /* pointer to block data */ struct k_mem_pool *pool_id; /* pool ID */ int size; /* request size in bytes */ s32_t timeout; /* # of ticks to wait */ int rcode; /* expected return code */ }; typedef int (*pool_block_get_func_t)(struct k_mem_block *, struct k_mem_pool *, int, s32_t); typedef int (*pool_move_block_func_t)(struct k_mem_block *, struct k_mem_pool *); static volatile int evidence; static struct k_mem_block block_list[NUM_BLOCKS]; static struct k_mem_block helper_block; static struct TEST_CASE get_set[] = { { &block_list[0], &POOL_ID, 0, 0, 0 }, { &block_list[1], &POOL_ID, 1, 0, 0 }, { &block_list[2], &POOL_ID, 32, 0, 0 }, { &block_list[3], &POOL_ID, 64, 0, 0 }, { &block_list[4], &POOL_ID, 128, 0, 0 }, { &block_list[5], &POOL_ID, 256, 0, 0 }, { &block_list[6], &POOL_ID, 512, 0, 0 }, { &block_list[7], &POOL_ID, 1024, 0, 0 }, { &block_list[8], &POOL_ID, 2048, 0, -ENOMEM }, { &block_list[9], &POOL_ID, 4096, 0, -ENOMEM } }; static struct TEST_CASE get_set2[] = { { &block_list[0], &POOL_ID, 4096, 0, 0 }, { &block_list[1], &POOL_ID, 2048, 0, -ENOMEM }, { &block_list[2], &POOL_ID, 1024, 0, -ENOMEM }, { &block_list[3], &POOL_ID, 512, 0, -ENOMEM }, { &block_list[4], &POOL_ID, 256, 0, -ENOMEM } }; static struct TEST_CASE getwt_set[] = { { &block_list[0], &POOL_ID, 4096, TENTH_SECOND, 0 }, { &block_list[1], &POOL_ID, 2048, TENTH_SECOND, -EAGAIN }, { &block_list[2], &POOL_ID, 1024, TENTH_SECOND, -EAGAIN }, { &block_list[3], &POOL_ID, 512, TENTH_SECOND, -EAGAIN }, { &block_list[4], &POOL_ID, 256, TENTH_SECOND, -EAGAIN } }; /** * @brief Wrapper for k_mem_pool_alloc() * * @return k_mem_pool_alloc() return value */ static int pool_block_get_func(struct k_mem_block *block, struct k_mem_pool *pool, int size, s32_t unused) { ARG_UNUSED(unused); return k_mem_pool_alloc(pool, block, size, K_NO_WAIT); } /** * * @brief Wrapper for k_mem_pool_alloc(timeout) * * @return k_mem_pool_alloc(timeout) return value */ static int pool_block_get_wt_func(struct k_mem_block *block, struct k_mem_pool *pool, int size, s32_t timeout) { return k_mem_pool_alloc(pool, block, size, timeout); } /** * * @brief Free any blocks allocated in the test set * * @return N/A */ static void free_blocks(struct TEST_CASE *tests, int n_tests) { int i; for (i = 0; i < n_tests; i++) { if (tests[i].rcode == 0) { k_mem_pool_free(tests[i].block); } } } /** * @brief Perform the work of getting blocks * */ static void pool_block_get_work(char *string, pool_block_get_func_t func, struct TEST_CASE *tests, int n_tests) { int i; int rv; for (i = 0; i < n_tests; i++) { rv = func(tests[i].block, tests[i].pool_id, tests[i].size, tests[i].timeout); zassert_equal(rv, tests[i].rcode, "%s() expected %d, got %d\n" "size: %d, timeout: %d\n", string, tests[i].rcode, rv, tests[i].size, tests[i].timeout); } } /** * @ingroup kernel_memory_pool_tests * @brief Test the k_mem_pool_alloc(K_NO_WAIT) API * * The pool is 4 k_b in size. * * @see k_mem_pool_alloc() */ static void test_pool_block_get(void) { int j; /* loop counter */ for (j = 0; j < 8; j++) { pool_block_get_work("k_mem_pool_alloc", pool_block_get_func, get_set, ARRAY_SIZE(get_set)); free_blocks(get_set, ARRAY_SIZE(get_set)); pool_block_get_work("k_mem_pool_alloc", pool_block_get_func, get_set2, ARRAY_SIZE(get_set2)); free_blocks(get_set2, ARRAY_SIZE(get_set2)); } } /** * @brief Helper task to test_pool_block_get_timeout() * * @return N/A */ void helper_task(void) { k_sem_take(&HELPER_SEM, K_FOREVER); k_sem_give(®RESS_SEM); k_mem_pool_free(&helper_block); } /** * @ingroup kernel_memory_pool_tests * @brief Test k_mem_pool_alloc(timeout) * * @see k_mem_pool_alloc() */ static void test_pool_block_get_timeout(void) { struct k_mem_block block; int rv; /* return value from k_mem_pool_alloc() */ int j; /* loop counter */ for (j = 0; j < 8; j++) { pool_block_get_work("k_mem_pool_alloc", pool_block_get_wt_func, getwt_set, ARRAY_SIZE(getwt_set)); free_blocks(getwt_set, ARRAY_SIZE(getwt_set)); } rv = k_mem_pool_alloc(&POOL_ID, &helper_block, 3148, 5); zassert_true(rv == 0, "Failed to get size 3148 byte block from POOL_ID"); rv = k_mem_pool_alloc(&POOL_ID, &block, 3148, K_NO_WAIT); zassert_true(rv == -ENOMEM, "Unexpectedly got size 3148 " "byte block from POOL_ID"); k_sem_give(&HELPER_SEM); /* Activate helper_task */ rv = k_mem_pool_alloc(&POOL_ID, &block, 3148, 20); zassert_true(rv == 0, "Failed to get size 3148 byte block from POOL_ID"); rv = k_sem_take(®RESS_SEM, K_NO_WAIT); zassert_true(rv == 0, "Failed to get size 3148 " "byte block within 20 ticks"); k_mem_pool_free(&block); } /** * @ingroup kernel_memory_pool_tests * @see k_mem_pool_alloc(), k_mem_pool_free() */ static void test_pool_block_get_wait(void) { int rv; rv = k_mem_pool_alloc(&POOL_ID, &block_list[0], 3000, K_FOREVER); zassert_equal(rv, 0, "k_mem_pool_alloc(3000) expected %d, got %d\n", 0, rv); k_sem_give(&ALTERNATE_SEM); /* Wake alternate_task */ evidence = 0; rv = k_mem_pool_alloc(&POOL_ID, &block_list[1], 128, K_FOREVER); zassert_true(rv == 0, "k_mem_pool_alloc(128) expected %d, got %d\n", 0, rv); switch (evidence) { case 0: zassert_true(evidence == 0, "k_mem_pool_alloc(128) did not block!"); case 1: break; case 2: default: zassert_true(1, "Rescheduling did not occur " "after k_mem_pool_free()"); } k_mem_pool_free(&block_list[1]); } /** * @brief Alternate task in the test suite * * This routine runs at a lower priority than main thread. * * @return N/A */ void alternate_task(void) { k_sem_take(&ALTERNATE_SEM, K_FOREVER); evidence = 1; k_mem_pool_free(&block_list[0]); evidence = 2; } /** * @ingroup kernel_memory_pool_tests * @brief Test the k_malloc() and k_free() APIs * * The heap memory pool is 256 bytes in size, and thus has only 4 blocks * of 64 bytes or a single block of 256 bytes. (Each block has a lesser * amount of usable space, due to the hidden block descriptor info the * kernel adds at the start of any block allocated from this memory pool.) * * * @see k_malloc(), k_free() */ static void test_pool_malloc(void) { char *block[4]; int j; /* loop counter */ /* allocate a large block (which consumes the entire pool buffer) */ block[0] = k_malloc(150); zassert_not_null(block[0], "150 byte allocation failed"); /* ensure a small block can no longer be allocated */ block[1] = k_malloc(16); zassert_is_null(block[1], "16 byte allocation did not fail"); /* return the large block */ k_free(block[0]); /* allocate a small block (triggers block splitting)*/ block[0] = k_malloc(16); zassert_not_null(block[0], "16 byte allocation 0 failed"); /* ensure a large block can no longer be allocated */ block[1] = k_malloc(80); zassert_is_null(block[1], "80 byte allocation did not fail"); /* ensure all remaining small blocks can be allocated */ for (j = 1; j < 4; j++) { block[j] = k_malloc(16); zassert_not_null(block[j], "16 byte allocation %d failed\n", j); } /* ensure a small block can no longer be allocated */ zassert_is_null(k_malloc(8), "8 byte allocation did not fail"); /* return the small blocks to pool in a "random" order */ k_free(block[2]); k_free(block[0]); k_free(block[3]); k_free(block[1]); /* allocate large block (triggers autodefragmentation) */ block[0] = k_malloc(100); zassert_not_null(block[0], "100 byte allocation failed"); /* ensure a small block can no longer be allocated */ zassert_is_null(k_malloc(32), "32 byte allocation did not fail"); /* ensure overflow detection is working */ zassert_is_null(k_malloc(0xffffffff), "overflow check failed"); zassert_is_null(k_calloc(0xffffffff, 2), "overflow check failed"); } K_THREAD_DEFINE(t_alternate, STACKSIZE, alternate_task, NULL, NULL, NULL, 6, 0, K_NO_WAIT); K_THREAD_DEFINE(t_helper, STACKSIZE, helper_task, NULL, NULL, NULL, 7, 0, K_NO_WAIT); void test_main(void) { ztest_test_suite(mempool, ztest_unit_test(test_pool_block_get), ztest_unit_test(test_pool_block_get_timeout), ztest_unit_test(test_pool_block_get_wait), ztest_unit_test(test_pool_malloc) ); ztest_run_test_suite(mempool); } |