Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
/*
 * Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_uart.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.uart"
#endif

/* UART transfer state. */
enum _uart_tansfer_states
{
    kUART_TxIdle,         /* TX idle. */
    kUART_TxBusy,         /* TX busy. */
    kUART_RxIdle,         /* RX idle. */
    kUART_RxBusy,         /* RX busy. */
    kUART_RxFramingError, /* Rx framing error */
    kUART_RxParityError   /* Rx parity error */
};

/* Typedef for interrupt handler. */
typedef void (*uart_isr_t)(UART_Type *base, uart_handle_t *handle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/
/*!
 * @brief Check whether the RX ring buffer is full.
 *
 * @param handle UART handle pointer.
 * @retval true  RX ring buffer is full.
 * @retval false RX ring buffer is not full.
 */
static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle);

/*!
 * @brief Read RX register using non-blocking method.
 *
 * This function reads data from the TX register directly, upper layer must make
 * sure the RX register is full or TX FIFO has data before calling this function.
 *
 * @param base UART peripheral base address.
 * @param data Start addresss of the buffer to store the received data.
 * @param length Size of the buffer.
 */
static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length);

/*!
 * @brief Write to TX register using non-blocking method.
 *
 * This function writes data to the TX register directly, upper layer must make
 * sure the TX register is empty or TX FIFO has empty room before calling this function.
 *
 * @note This function does not check whether all the data has been sent out to bus,
 * so before disable TX, check kUART_TransmissionCompleteFlag to ensure the TX is
 * finished.
 *
 * @param base UART peripheral base address.
 * @param data Start address of the data to write.
 * @param length Size of the buffer to be sent.
 */
static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length);

/*******************************************************************************
 * Variables
 ******************************************************************************/
/* Array of UART handle. */
#if (defined(UART5))
#define UART_HANDLE_ARRAY_SIZE 6
#else /* UART5 */
#if (defined(UART4))
#define UART_HANDLE_ARRAY_SIZE 5
#else /* UART4 */
#if (defined(UART3))
#define UART_HANDLE_ARRAY_SIZE 4
#else /* UART3 */
#if (defined(UART2))
#define UART_HANDLE_ARRAY_SIZE 3
#else /* UART2 */
#if (defined(UART1))
#define UART_HANDLE_ARRAY_SIZE 2
#else /* UART1 */
#if (defined(UART0))
#define UART_HANDLE_ARRAY_SIZE 1
#else /* UART0 */
#error No UART instance.
#endif /* UART 0 */
#endif /* UART 1 */
#endif /* UART 2 */
#endif /* UART 3 */
#endif /* UART 4 */
#endif /* UART 5 */
static uart_handle_t *s_uartHandle[UART_HANDLE_ARRAY_SIZE];
/* Array of UART peripheral base address. */
static UART_Type *const s_uartBases[] = UART_BASE_PTRS;

/* Array of UART IRQ number. */
static const IRQn_Type s_uartIRQ[] = UART_RX_TX_IRQS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Array of UART clock name. */
static const clock_ip_name_t s_uartClock[] = UART_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/* UART ISR for transactional APIs. */
static uart_isr_t s_uartIsr;

/*******************************************************************************
 * Code
 ******************************************************************************/

/*!
 * brief Get the UART instance from peripheral base address.
 *
 * param base UART peripheral base address.
 * return UART instance.
 */
uint32_t UART_GetInstance(UART_Type *base)
{
    uint32_t instance;
    uint32_t uartArrayCount = (sizeof(s_uartBases) / sizeof(s_uartBases[0]));

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < uartArrayCount; instance++)
    {
        if (s_uartBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < uartArrayCount);

    return instance;
}

/*!
 * brief Get the length of received data in RX ring buffer.
 *
 * param handle UART handle pointer.
 * return Length of received data in RX ring buffer.
 */
size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle)
{
    assert(handle);

    size_t size;

    if (handle->rxRingBufferTail > handle->rxRingBufferHead)
    {
        size = (size_t)(handle->rxRingBufferHead + handle->rxRingBufferSize - handle->rxRingBufferTail);
    }
    else
    {
        size = (size_t)(handle->rxRingBufferHead - handle->rxRingBufferTail);
    }

    return size;
}

static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle)
{
    assert(handle);

    bool full;

    if (UART_TransferGetRxRingBufferLength(handle) == (handle->rxRingBufferSize - 1U))
    {
        full = true;
    }
    else
    {
        full = false;
    }

    return full;
}

/*!
 * brief Initializes a UART instance with a user configuration structure and peripheral clock.
 *
 * This function configures the UART module with the user-defined settings. The user can configure the configuration
 * structure and also get the default configuration by using the UART_GetDefaultConfig() function.
 * The example below shows how to use this API to configure UART.
 * code
 *  uart_config_t uartConfig;
 *  uartConfig.baudRate_Bps = 115200U;
 *  uartConfig.parityMode = kUART_ParityDisabled;
 *  uartConfig.stopBitCount = kUART_OneStopBit;
 *  uartConfig.txFifoWatermark = 0;
 *  uartConfig.rxFifoWatermark = 1;
 *  UART_Init(UART1, &uartConfig, 20000000U);
 * endcode
 *
 * param base UART peripheral base address.
 * param config Pointer to the user-defined configuration structure.
 * param srcClock_Hz UART clock source frequency in HZ.
 * retval kStatus_UART_BaudrateNotSupport Baudrate is not support in current clock source.
 * retval kStatus_Success Status UART initialize succeed
 */
status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)
{
    assert(config);
    assert(config->baudRate_Bps);
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    assert(FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->txFifoWatermark);
    assert(FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->rxFifoWatermark);
#endif

    uint16_t sbr = 0;
    uint8_t temp = 0;
    uint32_t baudDiff = 0;

    /* Calculate the baud rate modulo divisor, sbr*/
    sbr = srcClock_Hz / (config->baudRate_Bps * 16);
    /* set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate */
    if (sbr == 0)
    {
        sbr = 1;
    }
#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
    /* Determine if a fractional divider is needed to fine tune closer to the
     * desired baud, each value of brfa is in 1/32 increments,
     * hence the multiply-by-32. */
    uint32_t tempBaud = 0;

    uint16_t brfa = (2 * srcClock_Hz / (config->baudRate_Bps)) - 32 * sbr;

    /* Calculate the baud rate based on the temporary SBR values and BRFA */
    tempBaud = (srcClock_Hz * 2 / ((sbr * 32 + brfa)));
    baudDiff =
        (tempBaud > config->baudRate_Bps) ? (tempBaud - config->baudRate_Bps) : (config->baudRate_Bps - tempBaud);

#else
    /* Calculate the baud rate based on the temporary SBR values */
    baudDiff = (srcClock_Hz / (sbr * 16)) - config->baudRate_Bps;

    /* Select the better value between sbr and (sbr + 1) */
    if (baudDiff > (config->baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1)))))
    {
        baudDiff = config->baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1)));
        sbr++;
    }
#endif

    /* next, check to see if actual baud rate is within 3% of desired baud rate
     * based on the calculate SBR value */
    if (baudDiff > ((config->baudRate_Bps / 100) * 3))
    {
        /* Unacceptable baud rate difference of more than 3%*/
        return kStatus_UART_BaudrateNotSupport;
    }

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Enable uart clock */
    CLOCK_EnableClock(s_uartClock[UART_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Disable UART TX RX before setting. */
    base->C2 &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK);

    /* Write the sbr value to the BDH and BDL registers*/
    base->BDH = (base->BDH & ~UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8);
    base->BDL = (uint8_t)sbr;

#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
    /* Write the brfa value to the register*/
    base->C4 = (base->C4 & ~UART_C4_BRFA_MASK) | (brfa & UART_C4_BRFA_MASK);
#endif

    /* Set bit count/parity mode/idle type. */
    temp = base->C1 & ~(UART_C1_PE_MASK | UART_C1_PT_MASK | UART_C1_M_MASK | UART_C1_ILT_MASK);

    temp |= UART_C1_ILT(config->idleType);

    if (kUART_ParityDisabled != config->parityMode)
    {
        temp |= (UART_C1_M_MASK | (uint8_t)config->parityMode);
    }

    base->C1 = temp;

#if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
    /* Set stop bit per char */
    base->BDH = (base->BDH & ~UART_BDH_SBNS_MASK) | UART_BDH_SBNS((uint8_t)config->stopBitCount);
#endif

#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    /* Set tx/rx FIFO watermark
       Note:
       Take care of the RX FIFO, RX interrupt request only assert when received bytes
       equal or more than RX water mark, there is potential issue if RX water
       mark larger than 1.
       For example, if RX FIFO water mark is 2, upper layer needs 5 bytes and
       5 bytes are received. the last byte will be saved in FIFO but not trigger
       RX interrupt because the water mark is 2.
     */
    base->TWFIFO = config->txFifoWatermark;
    base->RWFIFO = config->rxFifoWatermark;

    /* Enable tx/rx FIFO */
    base->PFIFO |= (UART_PFIFO_TXFE_MASK | UART_PFIFO_RXFE_MASK);

    /* Flush FIFO */
    base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK);
#endif
#if defined(FSL_FEATURE_UART_HAS_MODEM_SUPPORT) && FSL_FEATURE_UART_HAS_MODEM_SUPPORT
    if (config->enableRxRTS)
    {
        /* Enable receiver RTS(request-to-send) function. */
        base->MODEM |= UART_MODEM_RXRTSE_MASK;
    }
    if (config->enableTxCTS)
    {
        /* Enable transmitter CTS(clear-to-send) function. */
        base->MODEM |= UART_MODEM_TXCTSE_MASK;
    }
#endif

    /* Enable TX/RX base on configure structure. */
    temp = base->C2;

    if (config->enableTx)
    {
        temp |= UART_C2_TE_MASK;
    }

    if (config->enableRx)
    {
        temp |= UART_C2_RE_MASK;
    }

    base->C2 = temp;

    return kStatus_Success;
}

/*!
 * brief Deinitializes a UART instance.
 *
 * This function waits for TX complete, disables TX and RX, and disables the UART clock.
 *
 * param base UART peripheral base address.
 */
void UART_Deinit(UART_Type *base)
{
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    /* Wait tx FIFO send out*/
    while (0 != base->TCFIFO)
    {
    }
#endif
    /* Wait last char shoft out */
    while (0 == (base->S1 & UART_S1_TC_MASK))
    {
    }

    /* Disable the module. */
    base->C2 = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Disable uart clock */
    CLOCK_DisableClock(s_uartClock[UART_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * brief Gets the default configuration structure.
 *
 * This function initializes the UART configuration structure to a default value. The default
 * values are as follows.
 *   uartConfig->baudRate_Bps = 115200U;
 *   uartConfig->bitCountPerChar = kUART_8BitsPerChar;
 *   uartConfig->parityMode = kUART_ParityDisabled;
 *   uartConfig->stopBitCount = kUART_OneStopBit;
 *   uartConfig->txFifoWatermark = 0;
 *   uartConfig->rxFifoWatermark = 1;
 *   uartConfig->idleType = kUART_IdleTypeStartBit;
 *   uartConfig->enableTx = false;
 *   uartConfig->enableRx = false;
 *
 * param config Pointer to configuration structure.
 */
void UART_GetDefaultConfig(uart_config_t *config)
{
    assert(config);

    /* Initializes the configure structure to zero. */
    memset(config, 0, sizeof(*config));

    config->baudRate_Bps = 115200U;
    config->parityMode = kUART_ParityDisabled;
#if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
    config->stopBitCount = kUART_OneStopBit;
#endif
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    config->txFifoWatermark = 0;
    config->rxFifoWatermark = 1;
#endif
#if defined(FSL_FEATURE_UART_HAS_MODEM_SUPPORT) && FSL_FEATURE_UART_HAS_MODEM_SUPPORT
    config->enableRxRTS = false;
    config->enableTxCTS = false;
#endif
    config->idleType = kUART_IdleTypeStartBit;
    config->enableTx = false;
    config->enableRx = false;
}

/*!
 * brief Sets the UART instance baud rate.
 *
 * This function configures the UART module baud rate. This function is used to update
 * the UART module baud rate after the UART module is initialized by the UART_Init.
 * code
 *  UART_SetBaudRate(UART1, 115200U, 20000000U);
 * endcode
 *
 * param base UART peripheral base address.
 * param baudRate_Bps UART baudrate to be set.
 * param srcClock_Hz UART clock source freqency in Hz.
 * retval kStatus_UART_BaudrateNotSupport Baudrate is not support in the current clock source.
 * retval kStatus_Success Set baudrate succeeded.
 */
status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
{
    assert(baudRate_Bps);

    uint16_t sbr = 0;
    uint32_t baudDiff = 0;
    uint8_t oldCtrl;

    /* Calculate the baud rate modulo divisor, sbr*/
    sbr = srcClock_Hz / (baudRate_Bps * 16);
    /* set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate */
    if (sbr == 0)
    {
        sbr = 1;
    }
#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
    /* Determine if a fractional divider is needed to fine tune closer to the
     * desired baud, each value of brfa is in 1/32 increments,
     * hence the multiply-by-32. */
    uint32_t tempBaud = 0;

    uint16_t brfa = (2 * srcClock_Hz / (baudRate_Bps)) - 32 * sbr;

    /* Calculate the baud rate based on the temporary SBR values and BRFA */
    tempBaud = (srcClock_Hz * 2 / ((sbr * 32 + brfa)));
    baudDiff = (tempBaud > baudRate_Bps) ? (tempBaud - baudRate_Bps) : (baudRate_Bps - tempBaud);
#else
    /* Calculate the baud rate based on the temporary SBR values */
    baudDiff = (srcClock_Hz / (sbr * 16)) - baudRate_Bps;

    /* Select the better value between sbr and (sbr + 1) */
    if (baudDiff > (baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1)))))
    {
        baudDiff = baudRate_Bps - (srcClock_Hz / (16 * (sbr + 1)));
        sbr++;
    }
#endif

    /* next, check to see if actual baud rate is within 3% of desired baud rate
     * based on the calculate SBR value */
    if (baudDiff < ((baudRate_Bps / 100) * 3))
    {
        /* Store C2 before disable Tx and Rx */
        oldCtrl = base->C2;

        /* Disable UART TX RX before setting. */
        base->C2 &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK);

        /* Write the sbr value to the BDH and BDL registers*/
        base->BDH = (base->BDH & ~UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8);
        base->BDL = (uint8_t)sbr;

#if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
        /* Write the brfa value to the register*/
        base->C4 = (base->C4 & ~UART_C4_BRFA_MASK) | (brfa & UART_C4_BRFA_MASK);
#endif
        /* Restore C2. */
        base->C2 = oldCtrl;

        return kStatus_Success;
    }
    else
    {
        /* Unacceptable baud rate difference of more than 3%*/
        return kStatus_UART_BaudrateNotSupport;
    }
}

/*!
 * brief Enables UART interrupts according to the provided mask.
 *
 * This function enables the UART interrupts according to the provided mask. The mask
 * is a logical OR of enumeration members. See ref _uart_interrupt_enable.
 * For example, to enable TX empty interrupt and RX full interrupt, do the following.
 * code
 *     UART_EnableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable);
 * endcode
 *
 * param base UART peripheral base address.
 * param mask The interrupts to enable. Logical OR of ref _uart_interrupt_enable.
 */
void UART_EnableInterrupts(UART_Type *base, uint32_t mask)
{
    mask &= kUART_AllInterruptsEnable;

    /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH))
     */
    base->BDH |= mask;
    base->C2 |= (mask >> 8);
    base->C3 |= (mask >> 16);

#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    base->CFIFO |= (mask >> 24);
#endif
}

/*!
 * brief Disables the UART interrupts according to the provided mask.
 *
 * This function disables the UART interrupts according to the provided mask. The mask
 * is a logical OR of enumeration members. See ref _uart_interrupt_enable.
 * For example, to disable TX empty interrupt and RX full interrupt do the following.
 * code
 *     UART_DisableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable);
 * endcode
 *
 * param base UART peripheral base address.
 * param mask The interrupts to disable. Logical OR of ref _uart_interrupt_enable.
 */
void UART_DisableInterrupts(UART_Type *base, uint32_t mask)
{
    mask &= kUART_AllInterruptsEnable;

    /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH))
     */
    base->BDH &= ~mask;
    base->C2 &= ~(mask >> 8);
    base->C3 &= ~(mask >> 16);

#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    base->CFIFO &= ~(mask >> 24);
#endif
}

/*!
 * brief Gets the enabled UART interrupts.
 *
 * This function gets the enabled UART interrupts. The enabled interrupts are returned
 * as the logical OR value of the enumerators ref _uart_interrupt_enable. To check
 * a specific interrupts enable status, compare the return value with enumerators
 * in ref _uart_interrupt_enable.
 * For example, to check whether TX empty interrupt is enabled, do the following.
 * code
 *     uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1);
 *
 *     if (kUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
 *     {
 *         ...
 *     }
 * endcode
 *
 * param base UART peripheral base address.
 * return UART interrupt flags which are logical OR of the enumerators in ref _uart_interrupt_enable.
 */
uint32_t UART_GetEnabledInterrupts(UART_Type *base)
{
    uint32_t temp;

    temp = base->BDH | ((uint32_t)(base->C2) << 8) | ((uint32_t)(base->C3) << 16);

#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    temp |= ((uint32_t)(base->CFIFO) << 24);
#endif

    return temp & kUART_AllInterruptsEnable;
}

/*!
 * brief Gets UART status flags.
 *
 * This function gets all UART status flags. The flags are returned as the logical
 * OR value of the enumerators ref _uart_flags. To check a specific status,
 * compare the return value with enumerators in ref _uart_flags.
 * For example, to check whether the TX is empty, do the following.
 * code
 *     if (kUART_TxDataRegEmptyFlag & UART_GetStatusFlags(UART1))
 *     {
 *         ...
 *     }
 * endcode
 *
 * param base UART peripheral base address.
 * return UART status flags which are ORed by the enumerators in the _uart_flags.
 */
uint32_t UART_GetStatusFlags(UART_Type *base)
{
    uint32_t status_flag;

    status_flag = base->S1 | ((uint32_t)(base->S2) << 8);

#if defined(FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS) && FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS
    status_flag |= ((uint32_t)(base->ED) << 16);
#endif

#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    status_flag |= ((uint32_t)(base->SFIFO) << 24);
#endif

    return status_flag;
}

/*!
 * brief Clears status flags with the provided mask.
 *
 * This function clears UART status flags with a provided mask. An automatically cleared flag
 * can't be cleared by this function.
 * These flags can only be cleared or set by hardware.
 *    kUART_TxDataRegEmptyFlag, kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag,
 *    kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag, kUART_ParityErrorInRxDataRegFlag,
 *    kUART_TxFifoEmptyFlag,kUART_RxFifoEmptyFlag
 * Note that this API should be called when the Tx/Rx is idle. Otherwise it has no effect.
 *
 * param base UART peripheral base address.
 * param mask The status flags to be cleared; it is logical OR value of ref _uart_flags.
 * retval kStatus_UART_FlagCannotClearManually The flag can't be cleared by this function but
 *         it is cleared automatically by hardware.
 * retval kStatus_Success Status in the mask is cleared.
 */
status_t UART_ClearStatusFlags(UART_Type *base, uint32_t mask)
{
    uint8_t reg = base->S2;
    status_t status;

#if defined(FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT
    reg &= ~(UART_S2_RXEDGIF_MASK | UART_S2_LBKDIF_MASK);
#else
    reg &= ~UART_S2_RXEDGIF_MASK;
#endif

    base->S2 = reg | (uint8_t)(mask >> 8);

#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
    base->SFIFO = (uint8_t)(mask >> 24);
#endif

    if (mask & (kUART_IdleLineFlag | kUART_NoiseErrorFlag | kUART_FramingErrorFlag | kUART_ParityErrorFlag))
    {
        /* Read base->D to clear the flags. */
        (void)base->S1;
        (void)base->D;
    }

    if (mask & kUART_RxOverrunFlag)
    {
        /* Read base->D to clear the flags and Flush all data in FIFO. */
        (void)base->S1;
        (void)base->D;
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
        base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
#endif
    }

    /* If some flags still pending. */
    if (mask & UART_GetStatusFlags(base))
    {
        /* Some flags can only clear or set by the hardware itself, these flags are: kUART_TxDataRegEmptyFlag,
        kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag, kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag,
        kUART_ParityErrorInRxDataRegFlag, kUART_TxFifoEmptyFlag, kUART_RxFifoEmptyFlag. */
        status = kStatus_UART_FlagCannotClearManually;
    }
    else
    {
        status = kStatus_Success;
    }

    return status;
}

/*!
 * brief Writes to the TX register using a blocking method.
 *
 * This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
 * to have room and writes data to the TX buffer.
 *
 * note This function does not check whether all data is sent out to the bus.
 * Before disabling the TX, check kUART_TransmissionCompleteFlag to ensure that the TX is
 * finished.
 *
 * param base UART peripheral base address.
 * param data Start address of the data to write.
 * param length Size of the data to write.
 */
void UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)
{
    /* This API can only ensure that the data is written into the data buffer but can't
    ensure all data in the data buffer are sent into the transmit shift buffer. */
    while (length--)
    {
        while (!(base->S1 & UART_S1_TDRE_MASK))
        {
        }
        base->D = *(data++);
    }
}

static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length)
{
    assert(data);

    size_t i;

    /* The Non Blocking write data API assume user have ensured there is enough space in
    peripheral to write. */
    for (i = 0; i < length; i++)
    {
        base->D = data[i];
    }
}

/*!
 * brief Read RX data register using a blocking method.
 *
 * This function polls the RX register, waits for the RX register to be full or for RX FIFO to
 * have data, and reads data from the TX register.
 *
 * param base UART peripheral base address.
 * param data Start address of the buffer to store the received data.
 * param length Size of the buffer.
 * retval kStatus_UART_RxHardwareOverrun Receiver overrun occurred while receiving data.
 * retval kStatus_UART_NoiseError A noise error occurred while receiving data.
 * retval kStatus_UART_FramingError A framing error occurred while receiving data.
 * retval kStatus_UART_ParityError A parity error occurred while receiving data.
 * retval kStatus_Success Successfully received all data.
 */
status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length)
{
    assert(data);

    uint32_t statusFlag;

    while (length--)
    {
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        while (!base->RCFIFO)
#else
        while (!(base->S1 & UART_S1_RDRF_MASK))
#endif
        {
            statusFlag = UART_GetStatusFlags(base);

            if (statusFlag & kUART_RxOverrunFlag)
            {
                return kStatus_UART_RxHardwareOverrun;
            }

            if (statusFlag & kUART_NoiseErrorFlag)
            {
                return kStatus_UART_NoiseError;
            }

            if (statusFlag & kUART_FramingErrorFlag)
            {
                return kStatus_UART_FramingError;
            }

            if (statusFlag & kUART_ParityErrorFlag)
            {
                return kStatus_UART_ParityError;
            }
        }
        *(data++) = base->D;
    }

    return kStatus_Success;
}

static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length)
{
    assert(data);

    size_t i;

    /* The Non Blocking read data API assume user have ensured there is enough space in
    peripheral to write. */
    for (i = 0; i < length; i++)
    {
        data[i] = base->D;
    }
}

/*!
 * brief Initializes the UART handle.
 *
 * This function initializes the UART handle which can be used for other UART
 * transactional APIs. Usually, for a specified UART instance,
 * call this API once to get the initialized handle.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 * param callback The callback function.
 * param userData The parameter of the callback function.
 */
void UART_TransferCreateHandle(UART_Type *base,
                               uart_handle_t *handle,
                               uart_transfer_callback_t callback,
                               void *userData)
{
    assert(handle);

    uint32_t instance;

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    /* Set the TX/RX state. */
    handle->rxState = kUART_RxIdle;
    handle->txState = kUART_TxIdle;

    /* Set the callback and user data. */
    handle->callback = callback;
    handle->userData = userData;

    /* Get instance from peripheral base address. */
    instance = UART_GetInstance(base);

    /* Save the handle in global variables to support the double weak mechanism. */
    s_uartHandle[instance] = handle;

    s_uartIsr = UART_TransferHandleIRQ;
    /* Enable interrupt in NVIC. */
    EnableIRQ(s_uartIRQ[instance]);
}

/*!
 * brief Sets up the RX ring buffer.
 *
 * This function sets up the RX ring buffer to a specific UART handle.
 *
 * When the RX ring buffer is used, data received are stored into the ring buffer even when the
 * user doesn't call the UART_TransferReceiveNonBlocking() API. If data is already received
 * in the ring buffer, the user can get the received data from the ring buffer directly.
 *
 * note When using the RX ring buffer, one byte is reserved for internal use. In other
 * words, if p ringBufferSize is 32, only 31 bytes are used for saving data.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 * param ringBuffer Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.
 * param ringBufferSize Size of the ring buffer.
 */
void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
{
    assert(handle);
    assert(ringBuffer);

    /* Setup the ringbuffer address */
    handle->rxRingBuffer = ringBuffer;
    handle->rxRingBufferSize = ringBufferSize;
    handle->rxRingBufferHead = 0U;
    handle->rxRingBufferTail = 0U;

    /* Enable the interrupt to accept the data when user need the ring buffer. */
    UART_EnableInterrupts(
        base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable | kUART_FramingErrorInterruptEnable);
    /* Enable parity error interrupt when parity mode is enable*/
    if (UART_C1_PE_MASK & base->C1)
    {
        UART_EnableInterrupts(base, kUART_ParityErrorInterruptEnable);
    }
}

/*!
 * brief Aborts the background transfer and uninstalls the ring buffer.
 *
 * This function aborts the background transfer and uninstalls the ring buffer.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 */
void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)
{
    assert(handle);

    if (handle->rxState == kUART_RxIdle)
    {
        UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable |
                                         kUART_FramingErrorInterruptEnable);
        /* Disable parity error interrupt when parity mode is enable*/
        if (UART_C1_PE_MASK & base->C1)
        {
            UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable);
        }
    }

    handle->rxRingBuffer = NULL;
    handle->rxRingBufferSize = 0U;
    handle->rxRingBufferHead = 0U;
    handle->rxRingBufferTail = 0U;
}

/*!
 * brief Transmits a buffer of data using the interrupt method.
 *
 * This function sends data using an interrupt method. This is a non-blocking function, which
 * returns directly without waiting for all data to be written to the TX register. When
 * all data is written to the TX register in the ISR, the UART driver calls the callback
 * function and passes the ref kStatus_UART_TxIdle as status parameter.
 *
 * note The kStatus_UART_TxIdle is passed to the upper layer when all data is written
 * to the TX register. However, it does not ensure that all data is sent out. Before disabling the TX,
 * check the kUART_TransmissionCompleteFlag to ensure that the TX is finished.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 * param xfer UART transfer structure. See  #uart_transfer_t.
 * retval kStatus_Success Successfully start the data transmission.
 * retval kStatus_UART_TxBusy Previous transmission still not finished; data not all written to TX register yet.
 * retval kStatus_InvalidArgument Invalid argument.
 */
status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer)
{
    assert(handle);
    assert(xfer);
    assert(xfer->dataSize);
    assert(xfer->data);

    status_t status;

    /* Return error if current TX busy. */
    if (kUART_TxBusy == handle->txState)
    {
        status = kStatus_UART_TxBusy;
    }
    else
    {
        handle->txData = xfer->data;
        handle->txDataSize = xfer->dataSize;
        handle->txDataSizeAll = xfer->dataSize;
        handle->txState = kUART_TxBusy;

        /* Enable transmitter interrupt. */
        UART_EnableInterrupts(base, kUART_TxDataRegEmptyInterruptEnable);

        status = kStatus_Success;
    }

    return status;
}

/*!
 * brief Aborts the interrupt-driven data transmit.
 *
 * This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out
 * how many bytes are not sent out.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 */
void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle)
{
    assert(handle);

    UART_DisableInterrupts(base, kUART_TxDataRegEmptyInterruptEnable | kUART_TransmissionCompleteInterruptEnable);

    handle->txDataSize = 0;
    handle->txState = kUART_TxIdle;
}

/*!
 * brief Gets the number of bytes written to the UART TX register.
 *
 * This function gets the number of bytes written to the UART TX
 * register by using the interrupt method.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 * param count Send bytes count.
 * retval kStatus_NoTransferInProgress No send in progress.
 * retval kStatus_InvalidArgument The parameter is invalid.
 * retval kStatus_Success Get successfully through the parameter \p count;
 */
status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
{
    assert(handle);
    assert(count);

    if (kUART_TxIdle == handle->txState)
    {
        return kStatus_NoTransferInProgress;
    }

    *count = handle->txDataSizeAll - handle->txDataSize;

    return kStatus_Success;
}

/*!
 * brief Receives a buffer of data using an interrupt method.
 *
 * This function receives data using an interrupt method. This is a non-blocking function, which
 *  returns without waiting for all data to be received.
 * If the RX ring buffer is used and not empty, the data in the ring buffer is copied and
 * the parameter p receivedBytes shows how many bytes are copied from the ring buffer.
 * After copying, if the data in the ring buffer is not enough to read, the receive
 * request is saved by the UART driver. When the new data arrives, the receive request
 * is serviced first. When all data is received, the UART driver notifies the upper layer
 * through a callback function and passes the status parameter ref kStatus_UART_RxIdle.
 * For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer.
 * The 5 bytes are copied to the xfer->data and this function returns with the
 * parameter p receivedBytes set to 5. For the left 5 bytes, newly arrived data is
 * saved from the xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer.
 * If the RX ring buffer is not enabled, this function enables the RX and RX interrupt
 * to receive data to the xfer->data. When all data is received, the upper layer is notified.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 * param xfer UART transfer structure, see #uart_transfer_t.
 * param receivedBytes Bytes received from the ring buffer directly.
 * retval kStatus_Success Successfully queue the transfer into transmit queue.
 * retval kStatus_UART_RxBusy Previous receive request is not finished.
 * retval kStatus_InvalidArgument Invalid argument.
 */
status_t UART_TransferReceiveNonBlocking(UART_Type *base,
                                         uart_handle_t *handle,
                                         uart_transfer_t *xfer,
                                         size_t *receivedBytes)
{
    assert(handle);
    assert(xfer);
    assert(xfer->data);
    assert(xfer->dataSize);

    uint32_t i;
    status_t status;
    /* How many bytes to copy from ring buffer to user memory. */
    size_t bytesToCopy = 0U;
    /* How many bytes to receive. */
    size_t bytesToReceive;
    /* How many bytes currently have received. */
    size_t bytesCurrentReceived;

    /* How to get data:
       1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize
          to uart handle, enable interrupt to store received data to xfer->data. When
          all data received, trigger callback.
       2. If RX ring buffer is enabled and not empty, get data from ring buffer first.
          If there are enough data in ring buffer, copy them to xfer->data and return.
          If there are not enough data in ring buffer, copy all of them to xfer->data,
          save the xfer->data remained empty space to uart handle, receive data
          to this empty space and trigger callback when finished. */

    if (kUART_RxBusy == handle->rxState)
    {
        status = kStatus_UART_RxBusy;
    }
    else
    {
        bytesToReceive = xfer->dataSize;
        bytesCurrentReceived = 0U;

        /* If RX ring buffer is used. */
        if (handle->rxRingBuffer)
        {
            /* Disable UART RX IRQ, protect ring buffer. */
            UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable);

            /* How many bytes in RX ring buffer currently. */
            bytesToCopy = UART_TransferGetRxRingBufferLength(handle);

            if (bytesToCopy)
            {
                bytesToCopy = MIN(bytesToReceive, bytesToCopy);

                bytesToReceive -= bytesToCopy;

                /* Copy data from ring buffer to user memory. */
                for (i = 0U; i < bytesToCopy; i++)
                {
                    xfer->data[bytesCurrentReceived++] = handle->rxRingBuffer[handle->rxRingBufferTail];

                    /* Wrap to 0. Not use modulo (%) because it might be large and slow. */
                    if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
                    {
                        handle->rxRingBufferTail = 0U;
                    }
                    else
                    {
                        handle->rxRingBufferTail++;
                    }
                }
            }

            /* If ring buffer does not have enough data, still need to read more data. */
            if (bytesToReceive)
            {
                /* No data in ring buffer, save the request to UART handle. */
                handle->rxData = xfer->data + bytesCurrentReceived;
                handle->rxDataSize = bytesToReceive;
                handle->rxDataSizeAll = bytesToReceive;
                handle->rxState = kUART_RxBusy;
            }

            /* Enable UART RX IRQ if previously enabled. */
            UART_EnableInterrupts(base, kUART_RxDataRegFullInterruptEnable);

            /* Call user callback since all data are received. */
            if (0 == bytesToReceive)
            {
                if (handle->callback)
                {
                    handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
                }
            }
        }
        /* Ring buffer not used. */
        else
        {
            handle->rxData = xfer->data + bytesCurrentReceived;
            handle->rxDataSize = bytesToReceive;
            handle->rxDataSizeAll = bytesToReceive;
            handle->rxState = kUART_RxBusy;

            /* Enable RX/Rx overrun/framing error/idle line interrupt. */
            UART_EnableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable |
                                            kUART_FramingErrorInterruptEnable | kUART_IdleLineInterruptEnable);
            /* Enable parity error interrupt when parity mode is enable*/
            if (UART_C1_PE_MASK & base->C1)
            {
                UART_EnableInterrupts(base, kUART_ParityErrorInterruptEnable);
            }
        }

        /* Return the how many bytes have read. */
        if (receivedBytes)
        {
            *receivedBytes = bytesCurrentReceived;
        }

        status = kStatus_Success;
    }

    return status;
}

/*!
 * brief Aborts the interrupt-driven data receiving.
 *
 * This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know
 * how many bytes are not received yet.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 */
void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle)
{
    assert(handle);

    /* Only abort the receive to handle->rxData, the RX ring buffer is still working. */
    if (!handle->rxRingBuffer)
    {
        /* Disable RX interrupt. */
        UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable |
                                         kUART_FramingErrorInterruptEnable | kUART_IdleLineInterruptEnable);
        /* Disable parity error interrupt when parity mode is enable*/
        if (UART_C1_PE_MASK & base->C1)
        {
            UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable);
        }
    }

    handle->rxDataSize = 0U;
    handle->rxState = kUART_RxIdle;
}

/*!
 * brief Gets the number of bytes that have been received.
 *
 * This function gets the number of bytes that have been received.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 * param count Receive bytes count.
 * retval kStatus_NoTransferInProgress No receive in progress.
 * retval kStatus_InvalidArgument Parameter is invalid.
 * retval kStatus_Success Get successfully through the parameter \p count;
 */
status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
{
    assert(handle);
    assert(count);

    if (kUART_RxIdle == handle->rxState)
    {
        return kStatus_NoTransferInProgress;
    }

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    *count = handle->rxDataSizeAll - handle->rxDataSize;

    return kStatus_Success;
}

/*!
 * brief UART IRQ handle function.
 *
 * This function handles the UART transmit and receive IRQ request.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 */
void UART_TransferHandleIRQ(UART_Type *base, uart_handle_t *handle)
{
    assert(handle);

    uint8_t count;
    uint8_t tempCount;
    uint32_t status = UART_GetStatusFlags(base);

    /* If RX framing error */
    if (kUART_FramingErrorFlag & status)
    {
        /* Read base->D to clear framing error flag, otherwise the RX does not work. */
        while (base->S1 & UART_S1_RDRF_MASK)
        {
            (void)base->D;
        }
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
        base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
#endif

        handle->rxState = kUART_RxFramingError;
        handle->rxDataSize = 0U;
        /* Trigger callback. */
        if (handle->callback)
        {
            handle->callback(base, handle, kStatus_UART_FramingError, handle->userData);
        }
    }

    /* If RX parity error */
    if (kUART_ParityErrorFlag & status)
    {
        /* Read base->D to clear parity error flag, otherwise the RX does not work. */
        while (base->S1 & UART_S1_RDRF_MASK)
        {
            (void)base->D;
        }
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
        base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
#endif

        handle->rxState = kUART_RxParityError;
        handle->rxDataSize = 0U;
        /* Trigger callback. */
        if (handle->callback)
        {
            handle->callback(base, handle, kStatus_UART_ParityError, handle->userData);
        }
    }

    /* If RX overrun. */
    if (kUART_RxOverrunFlag & status)
    {
        /* Read base->D to clear overrun flag, otherwise the RX does not work. */
        while (base->S1 & UART_S1_RDRF_MASK)
        {
            (void)base->D;
        }
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
        base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
#endif
        /* Trigger callback. */
        if (handle->callback)
        {
            handle->callback(base, handle, kStatus_UART_RxHardwareOverrun, handle->userData);
        }
    }

    /* If IDLE line was detected. */
    if ((kUART_IdleLineFlag & status) && (UART_C2_ILIE_MASK & base->C2))
    {
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        /* If still some data in the FIFO, read out these data to user data buffer. */
        count = base->RCFIFO;
        /* If handle->rxDataSize is not 0, first save data to handle->rxData. */
        while ((count) && (handle->rxDataSize))
        {
            tempCount = MIN(handle->rxDataSize, count);

            /* Using non block API to read the data from the registers. */
            UART_ReadNonBlocking(base, handle->rxData, tempCount);
            handle->rxData += tempCount;
            handle->rxDataSize -= tempCount;
            count -= tempCount;

            /* If all the data required for upper layer is ready, trigger callback. */
            if (!handle->rxDataSize)
            {
                handle->rxState = kUART_RxIdle;

                /* Disable RX interrupt/overrun interrupt/fram error/idle line detected interrupt */
                UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable |
                                                 kUART_FramingErrorInterruptEnable);

                /* Disable parity error interrupt when parity mode is enable*/
                if (UART_C1_PE_MASK & base->C1)
                {
                    UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable);
                }

                if (handle->callback)
                {
                    handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
                }
            }
        }
#endif
        /* To clear IDLE, read UART status S1 with IDLE set and then read D.*/
        while (UART_S1_IDLE_MASK & base->S1)
        {
            (void)base->D;
        }
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
        base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
#endif
        /* If rxDataSize is 0, disable idle line interrupt.*/
        if (!(handle->rxDataSize))
        {
            UART_DisableInterrupts(base, kUART_IdleLineInterruptEnable);
        }
        /* If callback is not NULL and rxDataSize is not 0. */
        if ((handle->callback) && (handle->rxDataSize))
        {
            handle->callback(base, handle, kStatus_UART_IdleLineDetected, handle->userData);
        }
    }
    /* Receive data register full */
    if ((kUART_RxDataRegFullFlag & status) && (UART_C2_RIE_MASK & base->C2))
    {
/* Get the size that can be stored into buffer for this interrupt. */
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        count = base->RCFIFO;
#else
        count = 1;
#endif

        /* If handle->rxDataSize is not 0, first save data to handle->rxData. */
        while ((count) && (handle->rxDataSize))
        {
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
            tempCount = MIN(handle->rxDataSize, count);
#else
            tempCount = 1;
#endif

            /* Using non block API to read the data from the registers. */
            UART_ReadNonBlocking(base, handle->rxData, tempCount);
            handle->rxData += tempCount;
            handle->rxDataSize -= tempCount;
            count -= tempCount;

            /* If all the data required for upper layer is ready, trigger callback. */
            if (!handle->rxDataSize)
            {
                handle->rxState = kUART_RxIdle;

                if (handle->callback)
                {
                    handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
                }
            }
        }

        /* If use RX ring buffer, receive data to ring buffer. */
        if (handle->rxRingBuffer)
        {
            while (count--)
            {
                /* If RX ring buffer is full, trigger callback to notify over run. */
                if (UART_TransferIsRxRingBufferFull(handle))
                {
                    if (handle->callback)
                    {
                        handle->callback(base, handle, kStatus_UART_RxRingBufferOverrun, handle->userData);
                    }
                }

                /* If ring buffer is still full after callback function, the oldest data is overrided. */
                if (UART_TransferIsRxRingBufferFull(handle))
                {
                    /* Increase handle->rxRingBufferTail to make room for new data. */
                    if (handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
                    {
                        handle->rxRingBufferTail = 0U;
                    }
                    else
                    {
                        handle->rxRingBufferTail++;
                    }
                }

                /* Read data. */
                handle->rxRingBuffer[handle->rxRingBufferHead] = base->D;

                /* Increase handle->rxRingBufferHead. */
                if (handle->rxRingBufferHead + 1U == handle->rxRingBufferSize)
                {
                    handle->rxRingBufferHead = 0U;
                }
                else
                {
                    handle->rxRingBufferHead++;
                }
            }
        }

        else if (!handle->rxDataSize)
        {
            /* Disable RX interrupt/overrun interrupt/fram error/idle line detected interrupt */
            UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable |
                                             kUART_FramingErrorInterruptEnable);

            /* Disable parity error interrupt when parity mode is enable*/
            if (UART_C1_PE_MASK & base->C1)
            {
                UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable);
            }
        }
        else
        {
        }
    }

    /* If framing error or parity error happened, stop the RX interrupt when ues no ring buffer */
    if (((handle->rxState == kUART_RxFramingError) || (handle->rxState == kUART_RxParityError)) &&
        (!handle->rxRingBuffer))
    {
        UART_DisableInterrupts(base, kUART_RxDataRegFullInterruptEnable | kUART_RxOverrunInterruptEnable |
                                         kUART_FramingErrorInterruptEnable | kUART_IdleLineInterruptEnable);

        /* Disable parity error interrupt when parity mode is enable*/
        if (UART_C1_PE_MASK & base->C1)
        {
            UART_DisableInterrupts(base, kUART_ParityErrorInterruptEnable);
        }
    }

    /* Send data register empty and the interrupt is enabled. */
    if ((kUART_TxDataRegEmptyFlag & status) && (base->C2 & UART_C2_TIE_MASK))
    {
/* Get the bytes that available at this moment. */
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
        count = FSL_FEATURE_UART_FIFO_SIZEn(base) - base->TCFIFO;
#else
        count = 1;
#endif

        while ((count) && (handle->txDataSize))
        {
#if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
            tempCount = MIN(handle->txDataSize, count);
#else
            tempCount = 1;
#endif

            /* Using non block API to write the data to the registers. */
            UART_WriteNonBlocking(base, handle->txData, tempCount);
            handle->txData += tempCount;
            handle->txDataSize -= tempCount;
            count -= tempCount;

            /* If all the data are written to data register, TX finished. */
            if (!handle->txDataSize)
            {
                handle->txState = kUART_TxIdle;

                /* Disable TX register empty interrupt. */
                base->C2 = (base->C2 & ~UART_C2_TIE_MASK);

                /* Trigger callback. */
                if (handle->callback)
                {
                    handle->callback(base, handle, kStatus_UART_TxIdle, handle->userData);
                }
            }
        }
    }
}

/*!
 * brief UART Error IRQ handle function.
 *
 * This function handles the UART error IRQ request.
 *
 * param base UART peripheral base address.
 * param handle UART handle pointer.
 */
void UART_TransferHandleErrorIRQ(UART_Type *base, uart_handle_t *handle)
{
    /* To be implemented by User. */
}

#if defined(UART0)
#if ((!(defined(FSL_FEATURE_SOC_LPSCI_COUNT))) || \
     ((defined(FSL_FEATURE_SOC_LPSCI_COUNT)) && (FSL_FEATURE_SOC_LPSCI_COUNT == 0)))
void UART0_DriverIRQHandler(void)
{
    s_uartIsr(UART0, s_uartHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void UART0_RX_TX_DriverIRQHandler(void)
{
    UART0_DriverIRQHandler();
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif
#endif

#if defined(UART1)
void UART1_DriverIRQHandler(void)
{
    s_uartIsr(UART1, s_uartHandle[1]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void UART1_RX_TX_DriverIRQHandler(void)
{
    UART1_DriverIRQHandler();
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(UART2)
void UART2_DriverIRQHandler(void)
{
    s_uartIsr(UART2, s_uartHandle[2]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void UART2_RX_TX_DriverIRQHandler(void)
{
    UART2_DriverIRQHandler();
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(UART3)
void UART3_DriverIRQHandler(void)
{
    s_uartIsr(UART3, s_uartHandle[3]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void UART3_RX_TX_DriverIRQHandler(void)
{
    UART3_DriverIRQHandler();
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(UART4)
void UART4_DriverIRQHandler(void)
{
    s_uartIsr(UART4, s_uartHandle[4]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void UART4_RX_TX_DriverIRQHandler(void)
{
    UART4_DriverIRQHandler();
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(UART5)
void UART5_DriverIRQHandler(void)
{
    s_uartIsr(UART5, s_uartHandle[5]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

void UART5_RX_TX_DriverIRQHandler(void)
{
    UART5_DriverIRQHandler();
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif