Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
/*
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * Copyright 2016-2018 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_flexcan.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcan"
#endif

#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
/*! @name DBG1 - Debug 1 register */
#if !(defined(CAN_DBG1_CFSM_MASK) && defined(CAN_DBG1_CBN_MASK))
#define CAN_DBG1_CFSM_MASK (0x7FU)
#define CAN_DBG1_CFSM_SHIFT (0U)
#define CAN_DBG1_CFSM(x) (((uint32_t)(((uint32_t)(x)) << CAN_DBG1_CFSM_SHIFT)) & CAN_DBG1_CFSM_MASK)
#define CAN_DBG1_CBN_MASK (0x3FF0000U)
#define CAN_DBG1_CBN_SHIFT (16U)
#define CAN_DBG1_CBN(x) (((uint32_t)(((uint32_t)(x)) << CAN_DBG1_CBN_SHIFT)) & CAN_DBG1_CBN_MASK)
#endif

#define OFFSET_DBG1 (0x58U)
#define RXINTERMISSION (CAN_DBG1_CFSM(0x2f))
#define TXINTERMISSION (CAN_DBG1_CFSM(0x14))
#define BUSIDLE (CAN_DBG1_CFSM(0x02))
#define CBN_VALUE3 (CAN_DBG1_CBN(0x03))
#define DELAY_BUSIDLE (200)
#endif

/*! @brief FlexCAN Internal State. */
enum _flexcan_state
{
    kFLEXCAN_StateIdle = 0x0,     /*!< MB/RxFIFO idle.*/
    kFLEXCAN_StateRxData = 0x1,   /*!< MB receiving.*/
    kFLEXCAN_StateRxRemote = 0x2, /*!< MB receiving remote reply.*/
    kFLEXCAN_StateTxData = 0x3,   /*!< MB transmitting.*/
    kFLEXCAN_StateTxRemote = 0x4, /*!< MB transmitting remote request.*/
    kFLEXCAN_StateRxFifo = 0x5,   /*!< RxFIFO receiving.*/
};

/*! @brief FlexCAN message buffer CODE for Rx buffers. */
enum _flexcan_mb_code_rx
{
    kFLEXCAN_RxMbInactive = 0x0, /*!< MB is not active.*/
    kFLEXCAN_RxMbFull = 0x2,     /*!< MB is full.*/
    kFLEXCAN_RxMbEmpty = 0x4,    /*!< MB is active and empty.*/
    kFLEXCAN_RxMbOverrun = 0x6,  /*!< MB is overwritten into a full buffer.*/
    kFLEXCAN_RxMbBusy = 0x8,     /*!< FlexCAN is updating the contents of the MB.*/
                                 /*!  The CPU must not access the MB.*/
    kFLEXCAN_RxMbRanswer = 0xA,  /*!< A frame was configured to recognize a Remote Request Frame */
                                 /*!  and transmit a Response Frame in return.*/
    kFLEXCAN_RxMbNotUsed = 0xF,  /*!< Not used.*/
};

/*! @brief FlexCAN message buffer CODE FOR Tx buffers. */
enum _flexcan_mb_code_tx
{
    kFLEXCAN_TxMbInactive = 0x8,     /*!< MB is not active.*/
    kFLEXCAN_TxMbAbort = 0x9,        /*!< MB is aborted.*/
    kFLEXCAN_TxMbDataOrRemote = 0xC, /*!< MB is a TX Data Frame(when MB RTR = 0) or */
                                     /*!< MB is a TX Remote Request Frame (when MB RTR = 1).*/
    kFLEXCAN_TxMbTanswer = 0xE,      /*!< MB is a TX Response Request Frame from */
                                     /*!  an incoming Remote Request Frame.*/
    kFLEXCAN_TxMbNotUsed = 0xF,      /*!< Not used.*/
};

/* Typedef for interrupt handler. */
typedef void (*flexcan_isr_t)(CAN_Type *base, flexcan_handle_t *handle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*!
 * @brief Enter FlexCAN Freeze Mode.
 *
 * This function makes the FlexCAN work under Freeze Mode.
 *
 * @param base FlexCAN peripheral base address.
 */
static void FLEXCAN_EnterFreezeMode(CAN_Type *base);

/*!
 * @brief Exit FlexCAN Freeze Mode.
 *
 * This function makes the FlexCAN leave Freeze Mode.
 *
 * @param base FlexCAN peripheral base address.
 */
static void FLEXCAN_ExitFreezeMode(CAN_Type *base);

#if !defined(NDEBUG)
/*!
 * @brief Check if Message Buffer is occupied by Rx FIFO.
 *
 * This function check if Message Buffer is occupied by Rx FIFO.
 *
 * @param base FlexCAN peripheral base address.
 * @param mbIdx The FlexCAN Message Buffer index.
 */
static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx);
#endif

#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
/*!
 * @brief Get the first valid Message buffer ID of give FlexCAN instance.
 *
 * This function is a helper function for Errata 5641 workaround.
 *
 * @param base FlexCAN peripheral base address.
 * @return The first valid Message Buffer Number.
 */
static uint32_t FLEXCAN_GetFirstValidMb(CAN_Type *base);
#endif

/*!
 * @brief Check if Message Buffer interrupt is enabled.
 *
 * This function check if Message Buffer interrupt is enabled.
 *
 * @param base FlexCAN peripheral base address.
 * @param mbIdx The FlexCAN Message Buffer index.
 */
static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx);

/*!
 * @brief Reset the FlexCAN Instance.
 *
 * Restores the FlexCAN module to reset state, notice that this function
 * will set all the registers to reset state so the FlexCAN module can not work
 * after calling this API.
 *
 * @param base FlexCAN peripheral base address.
*/
static void FLEXCAN_Reset(CAN_Type *base);

/*!
 * @brief Set Baud Rate of FlexCAN.
 *
 * This function set the baud rate of FlexCAN.
 *
 * @param base FlexCAN peripheral base address.
 * @param sourceClock_Hz Source Clock in Hz.
 * @param baudRate_Bps Baud Rate in Bps.
 * @param timingConfig FlexCAN timingConfig.
 */
static void FLEXCAN_SetBaudRate(CAN_Type *base,
                                uint32_t sourceClock_Hz,
                                uint32_t baudRate_Bps,
                                flexcan_timing_config_t timingConfig);

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * @brief Set Baud Rate of FlexCAN FD frame.
 *
 * This function set the baud rate of FlexCAN FD frame.
 *
 * @param base FlexCAN peripheral base address.
 * @param sourceClock_Hz Source Clock in Hz.
 * @param baudRateFD_Bps FD frame Baud Rate in Bps.
 * @param timingConfig FlexCAN timingConfig.
 */
static void FLEXCAN_SetFDBaudRate(CAN_Type *base,
                                  uint32_t sourceClock_Hz,
                                  uint32_t baudRateFD_Bps,
                                  flexcan_timing_config_t timingConfig);

/*!
 * @brief Get Mailbox offset number by dword.
 *
 * This function gets the offset number of the specified mailbox.
 * Mailbox is not consecutive between memory regions when payload is not 8 bytes
 * so need to calculate the specified mailbox address.
 * For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes
 * payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword
 * after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
 *
 * @param base FlexCAN peripheral base address.
 * @param mbIdx Mailbox index.
 */
static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx);
#endif

/*******************************************************************************
 * Variables
 ******************************************************************************/

/* Array of FlexCAN peripheral base address. */
static CAN_Type *const s_flexcanBases[] = CAN_BASE_PTRS;

/* Array of FlexCAN IRQ number. */
static const IRQn_Type s_flexcanRxWarningIRQ[] = CAN_Rx_Warning_IRQS;
static const IRQn_Type s_flexcanTxWarningIRQ[] = CAN_Tx_Warning_IRQS;
static const IRQn_Type s_flexcanWakeUpIRQ[] = CAN_Wake_Up_IRQS;
static const IRQn_Type s_flexcanErrorIRQ[] = CAN_Error_IRQS;
static const IRQn_Type s_flexcanBusOffIRQ[] = CAN_Bus_Off_IRQS;
static const IRQn_Type s_flexcanMbIRQ[] = CAN_ORed_Message_buffer_IRQS;

/* Array of FlexCAN handle. */
static flexcan_handle_t *s_flexcanHandle[ARRAY_SIZE(s_flexcanBases)];

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Array of FlexCAN clock name. */
static const clock_ip_name_t s_flexcanClock[] = FLEXCAN_CLOCKS;
#if defined(FLEXCAN_PERIPH_CLOCKS)
/* Array of FlexCAN serial clock name. */
static const clock_ip_name_t s_flexcanPeriphClock[] = FLEXCAN_PERIPH_CLOCKS;
#endif /* FLEXCAN_PERIPH_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/* FlexCAN ISR for transactional APIs. */
static flexcan_isr_t s_flexcanIsr;

/*******************************************************************************
 * Code
 ******************************************************************************/

/*!
 * brief Get the FlexCAN instance from peripheral base address.
 *
 * param base FlexCAN peripheral base address.
 * return FlexCAN instance.
 */
uint32_t FLEXCAN_GetInstance(CAN_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_flexcanBases); instance++)
    {
        if (s_flexcanBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_flexcanBases));

    return instance;
}

static void FLEXCAN_EnterFreezeMode(CAN_Type *base)
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
    uint32_t u32TempMCR = 0U;
    uint32_t u32TimeoutCount = 0U;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    uint32_t u32TempIMASK2 = 0U;
#endif
    uint32_t u32TempIMASK1 = 0U;
#endif
    /* Set Freeze, Halt bits. */
    base->MCR |= CAN_MCR_FRZ_MASK;
    base->MCR |= CAN_MCR_HALT_MASK;
    /* Wait until the FlexCAN Module enter freeze mode. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
    u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
    do
    {
        u32TempMCR = base->MCR;
        u32TimeoutCount--;
    } while ((!(u32TempMCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0));

    if (!(u32TempMCR & CAN_MCR_FRZACK_MASK))
    {
        /* Backup IMASK register */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        u32TempIMASK2 = base->IMASK2;
#endif
        u32TempIMASK1 = base->IMASK1;
        base->MCR |= CAN_MCR_SOFTRST_MASK;

        /* Wait until until the Soft Reset (SOFTRST in MCR) bit is cleared */
        u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
        do
        {
            u32TempMCR = base->MCR;
            u32TimeoutCount--;
        } while ((!(u32TempMCR & CAN_MCR_SOFTRST_MASK)) && (u32TimeoutCount > 0));
        /* Reconfigure the MCR and all Interrupt Mask Registers (IMASKn) */
        base->MCR = u32TempMCR;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        base->IMASK2 = u32TempIMASK2;
#endif
        base->IMASK1 = u32TempIMASK1;
    }
#else
    while (!(base->MCR & CAN_MCR_FRZACK_MASK))
    {
    }
#endif
}

static void FLEXCAN_ExitFreezeMode(CAN_Type *base)
{
    /* Clear Freeze, Halt bits. */
    base->MCR &= ~CAN_MCR_HALT_MASK;
    base->MCR &= ~CAN_MCR_FRZ_MASK;

    /* Wait until the FlexCAN Module exit freeze mode. */
    while (base->MCR & CAN_MCR_FRZACK_MASK)
    {
    }
}

#if !defined(NDEBUG)
static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx)
{
    uint8_t lastOccupiedMb;

    /* Is Rx FIFO enabled? */
    if (base->MCR & CAN_MCR_RFEN_MASK)
    {
        /* Get RFFN value. */
        lastOccupiedMb = ((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
        /* Calculate the number of last Message Buffer occupied by Rx FIFO. */
        lastOccupiedMb = ((lastOccupiedMb + 1) * 2) + 5;

#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
        if (mbIdx <= (lastOccupiedMb + 1))
#else
        if (mbIdx <= lastOccupiedMb)
#endif
        {
            return true;
        }
        else
        {
            return false;
        }
    }
    else
    {
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
        if (0 == mbIdx)
        {
            return true;
        }
        else
        {
            return false;
        }
#else
        return false;
#endif
    }
}
#endif

#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
static uint32_t FLEXCAN_GetFirstValidMb(CAN_Type *base)
{
    uint32_t firstValidMbNum;

    if (base->MCR & CAN_MCR_RFEN_MASK)
    {
        firstValidMbNum = ((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
        firstValidMbNum = ((firstValidMbNum + 1) * 2) + 6;
    }
    else
    {
        firstValidMbNum = 0;
    }

    return firstValidMbNum;
}
#endif

static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx)
{
    /* Assertion. */
    assert(mbIdx < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base));

#if (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    if (mbIdx < 32)
    {
#endif
        if (base->IMASK1 & ((uint32_t)(1 << mbIdx)))
        {
            return true;
        }
        else
        {
            return false;
        }
#if (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    }
    else
    {
        if (base->IMASK2 & ((uint32_t)(1 << (mbIdx - 32))))
        {
            return true;
        }
        else
        {
            return false;
        }
    }
#endif
}

static void FLEXCAN_Reset(CAN_Type *base)
{
    /* The module must should be first exit from low power
     * mode, and then soft reset can be applied.
     */
    assert(!(base->MCR & CAN_MCR_MDIS_MASK));

    uint8_t i;

#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
    if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))
    {
        /* De-assert DOZE Enable Bit. */
        base->MCR &= ~CAN_MCR_DOZE_MASK;
    }
#endif

    /* Wait until FlexCAN exit from any Low Power Mode. */
    while (base->MCR & CAN_MCR_LPMACK_MASK)
    {
    }

    /* Assert Soft Reset Signal. */
    base->MCR |= CAN_MCR_SOFTRST_MASK;
    /* Wait until FlexCAN reset completes. */
    while (base->MCR & CAN_MCR_SOFTRST_MASK)
    {
    }

/* Reset MCR register. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER) && FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER)
    base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_WAKSRC_MASK |
                 CAN_MCR_MAXMB(FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1);
#else
    base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_MAXMB(FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1);
#endif

/* Reset CTRL1 and CTRL2 register. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
    /* SMP bit cannot be asserted when CAN FD is enabled */
    if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
    {
        base->CTRL1 = 0x0;
    }
    else
    {
        base->CTRL1 = CAN_CTRL1_SMP_MASK;
    }
#else
    base->CTRL1 = CAN_CTRL1_SMP_MASK;
#endif
    base->CTRL2 = CAN_CTRL2_TASD(0x16) | CAN_CTRL2_RRS_MASK | CAN_CTRL2_EACEN_MASK;

    /* Clean all individual Rx Mask of Message Buffers. */
    for (i = 0; i < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
    {
        base->RXIMR[i] = 0x3FFFFFFF;
    }

    /* Clean Global Mask of Message Buffers. */
    base->RXMGMASK = 0x3FFFFFFF;
    /* Clean Global Mask of Message Buffer 14. */
    base->RX14MASK = 0x3FFFFFFF;
    /* Clean Global Mask of Message Buffer 15. */
    base->RX15MASK = 0x3FFFFFFF;
    /* Clean Global Mask of Rx FIFO. */
    base->RXFGMASK = 0x3FFFFFFF;

    /* Clean all Message Buffer CS fields. */
    for (i = 0; i < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
    {
        base->MB[i].CS = 0x0;
    }
}

static void FLEXCAN_SetBaudRate(CAN_Type *base,
                                uint32_t sourceClock_Hz,
                                uint32_t baudRate_Bps,
                                flexcan_timing_config_t timingConfig)
{
    /* FlexCAN timing setting formula:
     * quantum = 1 + (PSEG1 + 1) + (PSEG2 + 1) + (PROPSEG + 1);
     */
    uint32_t quantum = 1 + (timingConfig.phaseSeg1 + 1) + (timingConfig.phaseSeg2 + 1) + (timingConfig.propSeg + 1);
    uint32_t priDiv = baudRate_Bps * quantum;

    /* Assertion: Desired baud rate is too high. */
    assert(baudRate_Bps <= 1000000U);
    /* Assertion: Source clock should greater than baud rate * quantum. */
    assert(priDiv <= sourceClock_Hz);

    if (0 == priDiv)
    {
        priDiv = 1;
    }

    priDiv = (sourceClock_Hz / priDiv) - 1;

    /* Desired baud rate is too low. */
    if (priDiv > 0xFF)
    {
        priDiv = 0xFF;
    }

    timingConfig.preDivider = priDiv;

    /* Update actual timing characteristic. */
    FLEXCAN_SetTimingConfig(base, &timingConfig);
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
static void FLEXCAN_SetFDBaudRate(CAN_Type *base,
                                  uint32_t sourceClock_Hz,
                                  uint32_t baudRateFD_Bps,
                                  flexcan_timing_config_t timingConfig)
{
    /* FlexCAN FD timing setting formula:
     * quantum = 1 + (FPSEG1 + 1) + (FPSEG2 + 1) + FPROPSEG;
     */
    uint32_t quantum = 1 + (timingConfig.fphaseSeg1 + 1) + (timingConfig.fphaseSeg2 + 1) + timingConfig.fpropSeg;
    uint32_t priDiv = baudRateFD_Bps * quantum;

    /* Assertion: Desired baud rate is too high. */
    assert(baudRateFD_Bps <= 8000000U);
    /* Assertion: Source clock should greater than baud rate * FLEXCAN_TIME_QUANTA_NUM. */
    assert(priDiv <= sourceClock_Hz);

    if (0 == priDiv)
    {
        priDiv = 1;
    }

    priDiv = (sourceClock_Hz / priDiv) - 1;

    /* Desired baud rate is too low. */
    if (priDiv > 0xFF)
    {
        priDiv = 0xFF;
    }

    timingConfig.fpreDivider = priDiv;

    /* Update actual timing characteristic. */
    FLEXCAN_SetFDTimingConfig(base, &timingConfig);
}
#endif

/*!
 * brief Initializes a FlexCAN instance.
 *
 * This function initializes the FlexCAN module with user-defined settings.
 * This example shows how to set up the flexcan_config_t parameters and how
 * to call the FLEXCAN_Init function by passing in these parameters.
 *  code
 *   flexcan_config_t flexcanConfig;
 *   flexcanConfig.clkSrc            = kFLEXCAN_ClkSrcOsc;
 *   flexcanConfig.baudRate          = 1000000U;
 *   flexcanConfig.maxMbNum          = 16;
 *   flexcanConfig.enableLoopBack    = false;
 *   flexcanConfig.enableSelfWakeup  = false;
 *   flexcanConfig.enableIndividMask = false;
 *   flexcanConfig.enableDoze        = false;
 *   flexcanConfig.timingConfig      = timingConfig;
 *   FLEXCAN_Init(CAN0, &flexcanConfig, 8000000UL);
 *   endcode
 *
 * param base FlexCAN peripheral base address.
 * param config Pointer to the user-defined configuration structure.
 * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
 */
void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *config, uint32_t sourceClock_Hz)
{
    uint32_t mcrTemp;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    uint32_t instance;
#endif

    /* Assertion. */
    assert(config);
    assert((config->maxMbNum > 0) && (config->maxMbNum <= FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)));

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    instance = FLEXCAN_GetInstance(base);
    /* Enable FlexCAN clock. */
    CLOCK_EnableClock(s_flexcanClock[instance]);
#if defined(FLEXCAN_PERIPH_CLOCKS)
    /* Enable FlexCAN serial clock. */
    CLOCK_EnableClock(s_flexcanPeriphClock[instance]);
#endif /* FLEXCAN_PERIPH_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

#if (!defined(FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE)) || !FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE
    /* Disable FlexCAN Module. */
    FLEXCAN_Enable(base, false);

    /* Protocol-Engine clock source selection, This bit must be set
     * when FlexCAN Module in Disable Mode.
     */
    base->CTRL1 = (kFLEXCAN_ClkSrcOsc == config->clkSrc) ? base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK :
                                                           base->CTRL1 | CAN_CTRL1_CLKSRC_MASK;
#else
#if defined(CAN_CTRL1_CLKSRC_MASK)
    if (!FSL_FEATURE_FLEXCAN_INSTANCE_SUPPORT_ENGINE_CLK_SEL_REMOVEn(base))
    {
        /* Disable FlexCAN Module. */
        FLEXCAN_Enable(base, false);

        /* Protocol-Engine clock source selection, This bit must be set
         * when FlexCAN Module in Disable Mode.
         */
        base->CTRL1 = (kFLEXCAN_ClkSrcOsc == config->clkSrc) ? base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK :
                                                               base->CTRL1 | CAN_CTRL1_CLKSRC_MASK;
    }
#endif
#endif /* FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE */

    /* Enable FlexCAN Module for configuration. */
    FLEXCAN_Enable(base, true);

    /* Reset to known status. */
    FLEXCAN_Reset(base);

    /* Save current MCR value and enable to enter Freeze mode(enabled by default). */
    mcrTemp = base->MCR;

    /* Set the maximum number of Message Buffers */
    mcrTemp = (mcrTemp & ~CAN_MCR_MAXMB_MASK) | CAN_MCR_MAXMB(config->maxMbNum - 1);

    /* Enable Loop Back Mode? */
    base->CTRL1 = (config->enableLoopBack) ? base->CTRL1 | CAN_CTRL1_LPB_MASK : base->CTRL1 & ~CAN_CTRL1_LPB_MASK;

    /* Enable Timer Sync? */
    base->CTRL1 = (config->enableTimerSync) ? base->CTRL1 | CAN_CTRL1_TSYN_MASK : base->CTRL1 & ~CAN_CTRL1_TSYN_MASK;

    /* Enable Self Wake Up Mode and configure the wake up source. */
    mcrTemp = (config->enableSelfWakeup) ? mcrTemp | CAN_MCR_SLFWAK_MASK : mcrTemp & ~CAN_MCR_SLFWAK_MASK;
    mcrTemp = (kFLEXCAN_WakeupSrcFiltered == config->wakeupSrc) ? mcrTemp | CAN_MCR_WAKSRC_MASK :
                                                                  mcrTemp & ~CAN_MCR_WAKSRC_MASK;

    /* Enable Individual Rx Masking? */
    mcrTemp = (config->enableIndividMask) ? mcrTemp | CAN_MCR_IRMQ_MASK : mcrTemp & ~CAN_MCR_IRMQ_MASK;

#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
    if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))
    {
        /* Enable Doze Mode? */
        mcrTemp = (config->enableDoze) ? mcrTemp | CAN_MCR_DOZE_MASK : mcrTemp & ~CAN_MCR_DOZE_MASK;
    }
#endif

    /* Save MCR Configuration. */
    base->MCR = mcrTemp;

    /* Baud Rate Configuration.*/
    FLEXCAN_SetBaudRate(base, sourceClock_Hz, config->baudRate, config->timingConfig);
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Initializes a FlexCAN instance.
 *
 * This function initializes the FlexCAN module with user-defined settings.
 * This example shows how to set up the flexcan_config_t parameters and how
 * to call the FLEXCAN_FDInit function by passing in these parameters.
 *  code
 *   flexcan_config_t flexcanConfig;
 *   flexcanConfig.clkSrc            = kFLEXCAN_ClkSrcOsc;
 *   flexcanConfig.baudRate          = 1000000U;
 *   flexcanConfig.baudRateFD        = 2000000U;
 *   flexcanConfig.maxMbNum          = 16;
 *   flexcanConfig.enableLoopBack    = false;
 *   flexcanConfig.enableSelfWakeup  = false;
 *   flexcanConfig.enableIndividMask = false;
 *   flexcanConfig.enableDoze        = false;
 *   flexcanConfig.timingConfig      = timingConfig;
 *   FLEXCAN_FDInit(CAN0, &flexcanConfig, 8000000UL, kFLEXCAN_16BperMB, false);
 *   endcode
 *
 * param base FlexCAN peripheral base address.
 * param config Pointer to the user-defined configuration structure.
 * param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
 * param dataSize FlexCAN FD frame payload size.
 * param brs If bitrate switch is enabled in FD mode.
 */
void FLEXCAN_FDInit(
    CAN_Type *base, const flexcan_config_t *config, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)
{
    assert(dataSize <= 3U);

    /* Initialization of classical CAN. */
    FLEXCAN_Init(base, config, sourceClock_Hz);

    /* Extra bitrate setting for CANFD. */
    FLEXCAN_SetFDBaudRate(base, sourceClock_Hz, config->baudRateFD, config->timingConfig);

    /* Enable FD operation and set bitrate switch. */
    if (brs)
    {
        base->FDCTRL &= CAN_FDCTRL_FDRATE_MASK;
    }
    else
    {
        base->FDCTRL &= ~CAN_FDCTRL_FDRATE_MASK;
    }
    /* Enter Freeze Mode. */
    FLEXCAN_EnterFreezeMode(base);
    if (brs && (!config->enableLoopBack))
    {
        base->FDCTRL |= CAN_FDCTRL_TDCEN_MASK | CAN_FDCTRL_TDCOFF(0x2U);
    }
    base->MCR |= CAN_MCR_FDEN_MASK;
    base->FDCTRL |= CAN_FDCTRL_MBDSR0(dataSize);
#if defined(CAN_FDCTRL_MBDSR1_MASK)
    base->FDCTRL |= CAN_FDCTRL_MBDSR1(dataSize);
#endif
#if defined(CAN_FDCTRL_MBDSR2_MASK)
    base->FDCTRL |= CAN_FDCTRL_MBDSR2(dataSize);
#endif
#if defined(CAN_FDCTRL_MBDSR3_MASK)
    base->FDCTRL |= CAN_FDCTRL_MBDSR3(dataSize);
#endif
    /* Exit Freeze Mode. */
    FLEXCAN_ExitFreezeMode(base);
}
#endif

/*!
 * brief De-initializes a FlexCAN instance.
 *
 * This function disables the FlexCAN module clock and sets all register values
 * to the reset value.
 *
 * param base FlexCAN peripheral base address.
 */
void FLEXCAN_Deinit(CAN_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    uint32_t instance;
#endif
    /* Reset all Register Contents. */
    FLEXCAN_Reset(base);

    /* Disable FlexCAN module. */
    FLEXCAN_Enable(base, false);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    instance = FLEXCAN_GetInstance(base);
#if defined(FLEXCAN_PERIPH_CLOCKS)
    /* Disable FlexCAN serial clock. */
    CLOCK_DisableClock(s_flexcanPeriphClock[instance]);
#endif /* FLEXCAN_PERIPH_CLOCKS */
    /* Disable FlexCAN clock. */
    CLOCK_DisableClock(s_flexcanClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * brief Gets the default configuration structure.
 *
 * This function initializes the FlexCAN configuration structure to default values. The default
 * values are as follows.
 *   flexcanConfig->clkSrc            = kFLEXCAN_ClkSrcOsc;
 *   flexcanConfig->baudRate          = 1000000U;
 *   flexcanConfig->baudRateFD        = 2000000U;
 *   flexcanConfig->maxMbNum          = 16;
 *   flexcanConfig->enableLoopBack    = false;
 *   flexcanConfig->enableSelfWakeup  = false;
 *   flexcanConfig->enableIndividMask = false;
 *   flexcanConfig->enableDoze        = false;
 *   flexcanConfig.timingConfig       = timingConfig;
 *
 * param config Pointer to the FlexCAN configuration structure.
 */
void FLEXCAN_GetDefaultConfig(flexcan_config_t *config)
{
    /* Assertion. */
    assert(config);

    /* Initializes the configure structure to zero. */
    memset(config, 0, sizeof(*config));

    /* Initialize FlexCAN Module config struct with default value. */
    config->clkSrc = kFLEXCAN_ClkSrcOsc;
    config->baudRate = 1000000U;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
    config->baudRateFD = 2000000U;
#endif
    config->maxMbNum = 16;
    config->enableLoopBack = false;
    config->enableTimerSync = true;
    config->enableSelfWakeup = false;
    config->wakeupSrc = kFLEXCAN_WakeupSrcUnfiltered;
    config->enableIndividMask = false;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
    config->enableDoze = false;
#endif
    /* Default protocol timing configuration, time quantum is 10. */
    config->timingConfig.phaseSeg1 = 3;
    config->timingConfig.phaseSeg2 = 2;
    config->timingConfig.propSeg = 1;
    config->timingConfig.rJumpwidth = 1;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
    config->timingConfig.fphaseSeg1 = 3;
    config->timingConfig.fphaseSeg2 = 3;
    config->timingConfig.fpropSeg = 1;
    config->timingConfig.frJumpwidth = 1;
#endif
}

/*!
 * brief Sets the FlexCAN protocol timing characteristic.
 *
 * This function gives user settings to CAN bus timing characteristic.
 * The function is for an experienced user. For less experienced users, call
 * the FLEXCAN_Init() and fill the baud rate field with a desired value.
 * This provides the default timing characteristics to the module.
 *
 * Note that calling FLEXCAN_SetTimingConfig() overrides the baud rate set
 * in FLEXCAN_Init().
 *
 * param base FlexCAN peripheral base address.
 * param config Pointer to the timing configuration structure.
 */
void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *config)
{
    /* Assertion. */
    assert(config);

    /* Enter Freeze Mode. */
    FLEXCAN_EnterFreezeMode(base);

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
    if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
    {
        /* Cleaning previous Timing Setting. */
        base->CBT &= ~(CAN_CBT_EPRESDIV_MASK | CAN_CBT_ERJW_MASK | CAN_CBT_EPSEG1_MASK | CAN_CBT_EPSEG2_MASK |
                       CAN_CBT_EPROPSEG_MASK);

        /* Updating Timing Setting according to configuration structure. */
        base->CBT |=
            (CAN_CBT_EPRESDIV(config->preDivider) | CAN_CBT_ERJW(config->rJumpwidth) |
             CAN_CBT_EPSEG1(config->phaseSeg1) | CAN_CBT_EPSEG2(config->phaseSeg2) | CAN_CBT_EPROPSEG(config->propSeg));
    }
    else
    {
        /* Cleaning previous Timing Setting. */
        base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
                         CAN_CTRL1_PROPSEG_MASK);

        /* Updating Timing Setting according to configuration structure. */
        base->CTRL1 |= (CAN_CTRL1_PRESDIV(config->preDivider) | CAN_CTRL1_RJW(config->rJumpwidth) |
                        CAN_CTRL1_PSEG1(config->phaseSeg1) | CAN_CTRL1_PSEG2(config->phaseSeg2) |
                        CAN_CTRL1_PROPSEG(config->propSeg));
    }
#else
    /* Cleaning previous Timing Setting. */
    base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
                     CAN_CTRL1_PROPSEG_MASK);

    /* Updating Timing Setting according to configuration structure. */
    base->CTRL1 |=
        (CAN_CTRL1_PRESDIV(config->preDivider) | CAN_CTRL1_RJW(config->rJumpwidth) |
         CAN_CTRL1_PSEG1(config->phaseSeg1) | CAN_CTRL1_PSEG2(config->phaseSeg2) | CAN_CTRL1_PROPSEG(config->propSeg));
#endif

    /* Exit Freeze Mode. */
    FLEXCAN_ExitFreezeMode(base);
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Sets the FlexCAN FD protocol timing characteristic.
 *
 * This function gives user settings to CAN bus timing characteristic.
 * The function is for an experienced user. For less experienced users, call
 * the FLEXCAN_Init() and fill the baud rate field with a desired value.
 * This provides the default timing characteristics to the module.
 *
 * Note that calling FLEXCAN_SetFDTimingConfig() overrides the baud rate set
 * in FLEXCAN_Init().
 *
 * param base FlexCAN peripheral base address.
 * param config Pointer to the timing configuration structure.
 */
void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *config)
{
    /* Assertion. */
    assert(config);

    /* Enter Freeze Mode. */
    FLEXCAN_EnterFreezeMode(base);

    base->CBT |= CAN_CBT_BTF(1);
    /* Cleaning previous Timing Setting. */
    base->FDCBT &= ~(CAN_FDCBT_FPRESDIV_MASK | CAN_FDCBT_FRJW_MASK | CAN_FDCBT_FPSEG1_MASK | CAN_FDCBT_FPSEG2_MASK |
                     CAN_FDCBT_FPROPSEG_MASK);

    /* Updating Timing Setting according to configuration structure. */
    base->FDCBT |= (CAN_FDCBT_FPRESDIV(config->fpreDivider) | CAN_FDCBT_FRJW(config->frJumpwidth) |
                    CAN_FDCBT_FPSEG1(config->fphaseSeg1) | CAN_FDCBT_FPSEG2(config->fphaseSeg2) |
                    CAN_FDCBT_FPROPSEG(config->fpropSeg));

    /* Exit Freeze Mode. */
    FLEXCAN_ExitFreezeMode(base);
}
#endif

/*!
 * brief Sets the FlexCAN receive message buffer global mask.
 *
 * This function sets the global mask for the FlexCAN message buffer in a matching process.
 * The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init().
 *
 * param base FlexCAN peripheral base address.
 * param mask Rx Message Buffer Global Mask value.
 */
void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
{
    /* Enter Freeze Mode. */
    FLEXCAN_EnterFreezeMode(base);

    /* Setting Rx Message Buffer Global Mask value. */
    base->RXMGMASK = mask;
    base->RX14MASK = mask;
    base->RX15MASK = mask;

    /* Exit Freeze Mode. */
    FLEXCAN_ExitFreezeMode(base);
}

/*!
 * brief Sets the FlexCAN receive FIFO global mask.
 *
 * This function sets the global mask for FlexCAN FIFO in a matching process.
 *
 * param base FlexCAN peripheral base address.
 * param mask Rx Fifo Global Mask value.
 */
void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
{
    /* Enter Freeze Mode. */
    FLEXCAN_EnterFreezeMode(base);

    /* Setting Rx FIFO Global Mask value. */
    base->RXFGMASK = mask;

    /* Exit Freeze Mode. */
    FLEXCAN_ExitFreezeMode(base);
}

/*!
 * brief Sets the FlexCAN receive individual mask.
 *
 * This function sets the individual mask for the FlexCAN matching process.
 * The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init().
 * If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer.
 * If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to
 * the Rx Filter with the same index. Note that only the first 32
 * individual masks can be used as the Rx FIFO filter mask.
 *
 * param base FlexCAN peripheral base address.
 * param maskIdx The Index of individual Mask.
 * param mask Rx Individual Mask value.
 */
void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
{
    assert(maskIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));

    /* Enter Freeze Mode. */
    FLEXCAN_EnterFreezeMode(base);

    /* Setting Rx Individual Mask value. */
    base->RXIMR[maskIdx] = mask;

    /* Exit Freeze Mode. */
    FLEXCAN_ExitFreezeMode(base);
}

/*!
 * brief Configures a FlexCAN transmit message buffer.
 *
 * This function aborts the previous transmission, cleans the Message Buffer, and
 * configures it as a Transmit Message Buffer.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The Message Buffer index.
 * param enable Enable/disable Tx Message Buffer.
 *               - true: Enable Tx Message Buffer.
 *               - false: Disable Tx Message Buffer.
 */
void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

    /* Inactivate Message Buffer. */
    if (enable)
    {
        base->MB[mbIdx].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
    }
    else
    {
        base->MB[mbIdx].CS = 0;
    }

    /* Clean Message Buffer content. */
    base->MB[mbIdx].ID = 0x0;
    base->MB[mbIdx].WORD0 = 0x0;
    base->MB[mbIdx].WORD1 = 0x0;
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx)
{
    uint32_t dataSize;
    uint32_t offset = 0;
    dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
    switch (dataSize)
    {
        case kFLEXCAN_8BperMB:
            offset = (mbIdx / 32) * 512 + mbIdx % 32 * 16;
            break;
        case kFLEXCAN_16BperMB:
            offset = (mbIdx / 21) * 512 + mbIdx % 21 * 24;
            break;
        case kFLEXCAN_32BperMB:
            offset = (mbIdx / 12) * 512 + mbIdx % 12 * 40;
            break;
        case kFLEXCAN_64BperMB:
            offset = (mbIdx / 7) * 512 + mbIdx % 7 * 72;
            break;
        default:
            break;
    }
    /* To get the dword aligned offset, need to divide by 4. */
    offset = offset / 4;
    return offset;
}
#endif

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Configures a FlexCAN transmit message buffer.
 *
 * This function aborts the previous transmission, cleans the Message Buffer, and
 * configures it as a Transmit Message Buffer.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The Message Buffer index.
 * param enable Enable/disable Tx Message Buffer.
 *               - true: Enable Tx Message Buffer.
 *               - false: Disable Tx Message Buffer.
 */
void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
    uint8_t cnt = 0;
    uint8_t payload_dword = 1;
    uint32_t dataSize;
    dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
    volatile uint32_t *mbAddr = &(base->MB[0].CS);
    uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
    uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
#endif

    /* Inactivate Message Buffer. */
    if (enable)
    {
        /* Inactivate by writing CS. */
        mbAddr[offset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
    }
    else
    {
        mbAddr[offset] = 0x0;
    }

    /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
       Bytes payload. */
    for (cnt = 0; cnt < dataSize + 1; cnt++)
    {
        payload_dword *= 2;
    }

    /* Clean ID. */
    mbAddr[offset + 1] = 0x0;
    /* Clean Message Buffer content, DWORD by DWORD. */
    for (cnt = 0; cnt < payload_dword; cnt++)
    {
        mbAddr[offset + 2 + cnt] = 0x0;
    }

#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
    mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif
}
#endif

/*!
 * brief Configures a FlexCAN Receive Message Buffer.
 *
 * This function cleans a FlexCAN build-in Message Buffer and configures it
 * as a Receive Message Buffer.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The Message Buffer index.
 * param config Pointer to the FlexCAN Message Buffer configuration structure.
 * param enable Enable/disable Rx Message Buffer.
 *               - true: Enable Rx Message Buffer.
 *               - false: Disable Rx Message Buffer.
 */
void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *config, bool enable)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(((config) || (false == enable)));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

    uint32_t cs_temp = 0;

    /* Inactivate Message Buffer. */
    base->MB[mbIdx].CS = 0;

    /* Clean Message Buffer content. */
    base->MB[mbIdx].ID = 0x0;
    base->MB[mbIdx].WORD0 = 0x0;
    base->MB[mbIdx].WORD1 = 0x0;

    if (enable)
    {
        /* Setup Message Buffer ID. */
        base->MB[mbIdx].ID = config->id;

        /* Setup Message Buffer format. */
        if (kFLEXCAN_FrameFormatExtend == config->format)
        {
            cs_temp |= CAN_CS_IDE_MASK;
        }

        /* Setup Message Buffer type. */
        if (kFLEXCAN_FrameTypeRemote == config->type)
        {
            cs_temp |= CAN_CS_RTR_MASK;
        }

        /* Activate Rx Message Buffer. */
        cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
        base->MB[mbIdx].CS = cs_temp;
    }
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Configures a FlexCAN Receive Message Buffer.
 *
 * This function cleans a FlexCAN build-in Message Buffer and configures it
 * as a Receive Message Buffer.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The Message Buffer index.
 * param config Pointer to the FlexCAN Message Buffer configuration structure.
 * param enable Enable/disable Rx Message Buffer.
 *               - true: Enable Rx Message Buffer.
 *               - false: Disable Rx Message Buffer.
 */
void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *config, bool enable)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(((config) || (false == enable)));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

    uint32_t cs_temp = 0;
    uint8_t cnt = 0;
    volatile uint32_t *mbAddr = &(base->MB[0].CS);
    uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);

    /* Inactivate all mailboxes first, clean ID and Message Buffer content. */
    for (cnt = 0; cnt < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); cnt++)
    {
        base->MB[cnt].CS = 0;
        base->MB[cnt].ID = 0;
        base->MB[cnt].WORD0 = 0;
        base->MB[cnt].WORD1 = 0;
    }

    if (enable)
    {
        /* Setup Message Buffer ID. */
        mbAddr[offset + 1] = config->id;

        /* Setup Message Buffer format. */
        if (kFLEXCAN_FrameFormatExtend == config->format)
        {
            cs_temp |= CAN_CS_IDE_MASK;
        }

        /* Activate Rx Message Buffer. */
        cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
        mbAddr[offset] = cs_temp;
    }
}
#endif

/*!
 * brief Configures the FlexCAN Rx FIFO.
 *
 * This function configures the Rx FIFO with given Rx FIFO configuration.
 *
 * param base FlexCAN peripheral base address.
 * param config Pointer to the FlexCAN Rx FIFO configuration structure.
 * param enable Enable/disable Rx FIFO.
 *               - true: Enable Rx FIFO.
 *               - false: Disable Rx FIFO.
 */
void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *config, bool enable)
{
    /* Assertion. */
    assert((config) || (false == enable));

    volatile uint32_t *idFilterRegion = (volatile uint32_t *)(&base->MB[6].CS);
    uint8_t setup_mb, i, rffn = 0;

    /* Enter Freeze Mode. */
    FLEXCAN_EnterFreezeMode(base);

    if (enable)
    {
        assert(config->idFilterNum <= 128);

        /* Get the setup_mb value. */
        setup_mb = (base->MCR & CAN_MCR_MAXMB_MASK) >> CAN_MCR_MAXMB_SHIFT;
        setup_mb = (setup_mb < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)) ?
                       setup_mb :
                       FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base);

        /* Determine RFFN value. */
        for (i = 0; i <= 0xF; i++)
        {
            if ((8 * (i + 1)) >= config->idFilterNum)
            {
                rffn = i;
                assert(((setup_mb - 8) - (2 * rffn)) > 0);

                base->CTRL2 = (base->CTRL2 & ~CAN_CTRL2_RFFN_MASK) | CAN_CTRL2_RFFN(rffn);
                break;
            }
        }
    }
    else
    {
        rffn = (base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT;
    }

    /* Clean ID filter table occuyied Message Buffer Region. */
    rffn = (rffn + 1) * 8;
    for (i = 0; i < rffn; i++)
    {
        idFilterRegion[i] = 0x0;
    }

    if (enable)
    {
        /* Disable unused Rx FIFO Filter. */
        for (i = config->idFilterNum; i < rffn; i++)
        {
            idFilterRegion[i] = 0xFFFFFFFFU;
        }

        /* Copy ID filter table to Message Buffer Region. */
        for (i = 0; i < config->idFilterNum; i++)
        {
            idFilterRegion[i] = config->idFilterTable[i];
        }

        /* Setup ID Fitlter Type. */
        switch (config->idFilterType)
        {
            case kFLEXCAN_RxFifoFilterTypeA:
                base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x0);
                break;
            case kFLEXCAN_RxFifoFilterTypeB:
                base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x1);
                break;
            case kFLEXCAN_RxFifoFilterTypeC:
                base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x2);
                break;
            case kFLEXCAN_RxFifoFilterTypeD:
                /* All frames rejected. */
                base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x3);
                break;
            default:
                break;
        }

        /* Setting Message Reception Priority. */
        base->CTRL2 = (config->priority == kFLEXCAN_RxFifoPrioHigh) ? base->CTRL2 & ~CAN_CTRL2_MRP_MASK :
                                                                      base->CTRL2 | CAN_CTRL2_MRP_MASK;

        /* Enable Rx Message FIFO. */
        base->MCR |= CAN_MCR_RFEN_MASK;
    }
    else
    {
        /* Disable Rx Message FIFO. */
        base->MCR &= ~CAN_MCR_RFEN_MASK;

        /* Clean MB0 ~ MB5. */
        FLEXCAN_SetRxMbConfig(base, 0, NULL, false);
        FLEXCAN_SetRxMbConfig(base, 1, NULL, false);
        FLEXCAN_SetRxMbConfig(base, 2, NULL, false);
        FLEXCAN_SetRxMbConfig(base, 3, NULL, false);
        FLEXCAN_SetRxMbConfig(base, 4, NULL, false);
        FLEXCAN_SetRxMbConfig(base, 5, NULL, false);
    }

    /* Exit Freeze Mode. */
    FLEXCAN_ExitFreezeMode(base);
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA) && FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA)
/*!
 * brief Enables or disables the FlexCAN Rx FIFO DMA request.
 *
 * This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.
 *
 * param base FlexCAN peripheral base address.
 * param enable true to enable, false to disable.
 */
void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
{
    if (enable)
    {
        /* Enter Freeze Mode. */
        FLEXCAN_EnterFreezeMode(base);

        /* Enable FlexCAN DMA. */
        base->MCR |= CAN_MCR_DMA_MASK;

        /* Exit Freeze Mode. */
        FLEXCAN_ExitFreezeMode(base);
    }
    else
    {
        /* Enter Freeze Mode. */
        FLEXCAN_EnterFreezeMode(base);

        /* Disable FlexCAN DMA. */
        base->MCR &= ~CAN_MCR_DMA_MASK;

        /* Exit Freeze Mode. */
        FLEXCAN_ExitFreezeMode(base);
    }
}
#endif /* FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA */

#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
/*!
 * FlexCAN: A frame with wrong ID or payload is transmitted into
 * the CAN bus when the Message Buffer under transmission is
 * either aborted or deactivated while the CAN bus is in the Bus Idle state
 *
 * This function to do workaround for ERR006032
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The FlexCAN Message Buffer index.
 */
static void FLEXCAN_ERRATA_6032(CAN_Type *base, uint8_t mbIdx)
{
    uint32_t dbg_temp = 0U;
    volatile const uint32_t *dbg1Addr = &(base->MCR) + OFFSET_DBG1 / 4;
    /*after backup all interruption, disable ALL interruption*/
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    uint32_t u32TempIMASK2 = base->IMASK2;
    base->IMASK2 = 0;
#endif
    uint32_t u32TempIMASK1 = base->IMASK1;
    base->IMASK1 = 0;
    dbg_temp = (uint32_t)(*dbg1Addr);
    switch (dbg_temp & CAN_DBG1_CBN_MASK)
    {
        case RXINTERMISSION:
            if ((dbg_temp & CAN_DBG1_CBN_MASK) == CBN_VALUE3)
            {
                /*wait until CFSM is different from RXINTERMISSION */
                while ((((uint32_t)(*dbg1Addr)) & CAN_DBG1_CBN_MASK) == RXINTERMISSION)
                {
                    __NOP();
                }
            }
            break;
        case TXINTERMISSION:
            if ((dbg_temp & CAN_DBG1_CBN_MASK) == CBN_VALUE3)
            {
                /*wait until CFSM is different from TXINTERMISSION*/
                while ((((uint32_t)(*dbg1Addr)) & CAN_DBG1_CBN_MASK) == TXINTERMISSION)
                {
                    __NOP();
                }
            }
            break;
        default:
            break;
    }
    /*Anyway, BUSIDLE need to delay*/
    if ((((uint32_t)(*dbg1Addr)) & CAN_DBG1_CBN_MASK) == BUSIDLE)
    {
        uint32_t n = DELAY_BUSIDLE;
        while (n-- > 0)
        {
            __NOP();
        }
    }
    /*Write 0x0 into Code field of CS word.*/
    base->MB[mbIdx].CS &= ~CAN_CS_CODE_MASK;
/*restore interruption*/
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    base->IMASK2 = u32TempIMASK2;
#endif
    base->IMASK1 = u32TempIMASK1;
}
#endif

/*!
 * brief Writes a FlexCAN Message to the Transmit Message Buffer.
 *
 * This function writes a CAN Message to the specified Transmit Message Buffer
 * and changes the Message Buffer state to start CAN Message transmit. After
 * that the function returns immediately.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The FlexCAN Message Buffer index.
 * param txFrame Pointer to CAN message frame to be sent.
 * retval kStatus_Success - Write Tx Message Buffer Successfully.
 * retval kStatus_Fail    - Tx Message Buffer is currently in use.
 */
status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *txFrame)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(txFrame);
    assert(txFrame->length <= 8);
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

    uint32_t cs_temp = 0;

#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
    FLEXCAN_ERRATA_6032(base, mbIdx);
#endif
    /* Check if Message Buffer is available. */
    if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (base->MB[mbIdx].CS & CAN_CS_CODE_MASK))
    {
        /* Inactive Tx Message Buffer. */
        base->MB[mbIdx].CS = (base->MB[mbIdx].CS & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);

        /* Fill Message ID field. */
        base->MB[mbIdx].ID = txFrame->id;

        /* Fill Message Format field. */
        if (kFLEXCAN_FrameFormatExtend == txFrame->format)
        {
            cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
        }

        /* Fill Message Type field. */
        if (kFLEXCAN_FrameTypeRemote == txFrame->type)
        {
            cs_temp |= CAN_CS_RTR_MASK;
        }

        cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(txFrame->length);

        /* Load Message Payload. */
        base->MB[mbIdx].WORD0 = txFrame->dataWord0;
        base->MB[mbIdx].WORD1 = txFrame->dataWord1;

        /* Activate Tx Message Buffer. */
        base->MB[mbIdx].CS = cs_temp;

#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
        base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
        base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif

        return kStatus_Success;
    }
    else
    {
        /* Tx Message Buffer is activated, return immediately. */
        return kStatus_Fail;
    }
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Writes a FlexCAN FD Message to the Transmit Message Buffer.
 *
 * This function writes a CAN FD Message to the specified Transmit Message Buffer
 * and changes the Message Buffer state to start CAN FD Message transmit. After
 * that the function returns immediately.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The FlexCAN FD Message Buffer index.
 * param txFrame Pointer to CAN FD message frame to be sent.
 * retval kStatus_Success - Write Tx Message Buffer Successfully.
 * retval kStatus_Fail    - Tx Message Buffer is currently in use.
 */
status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *txFrame)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(txFrame);
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

    uint32_t cs_temp = 0;
    uint8_t cnt = 0;
    uint32_t can_cs = 0;
    uint8_t payload_dword = 1;
    uint32_t dataSize;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
    FLEXCAN_ERRATA_6032(base, mbIdx);
#endif
    dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
    uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
#endif
    volatile uint32_t *mbAddr = &(base->MB[0].CS);
    uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);

    can_cs = mbAddr[0];
    /* Check if Message Buffer is available. */
    if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (can_cs & CAN_CS_CODE_MASK))
    {
        /* Inactive Tx Message Buffer and Fill Message ID field. */
        mbAddr[offset] = (can_cs & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
        mbAddr[offset + 1] = txFrame->id;

        /* Fill Message Format field. */
        if (kFLEXCAN_FrameFormatExtend == txFrame->format)
        {
            cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
        }

        cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(txFrame->length) | CAN_CS_EDL(1) |
                   CAN_CS_BRS(txFrame->brs);

        /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
           Bytes payload. */
        for (cnt = 0; cnt < dataSize + 1; cnt++)
        {
            payload_dword *= 2;
        }

        /* Load Message Payload and Activate Tx Message Buffer. */
        for (cnt = 0; cnt < payload_dword; cnt++)
        {
            mbAddr[offset + 2 + cnt] = txFrame->dataWord[cnt];
        }
        mbAddr[offset] = cs_temp;

#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
     (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
        mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
        mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif

        return kStatus_Success;
    }
    else
    {
        /* Tx Message Buffer is activated, return immediately. */
        return kStatus_Fail;
    }
}
#endif

/*!
 * brief Reads a FlexCAN Message from Receive Message Buffer.
 *
 * This function reads a CAN message from a specified Receive Message Buffer.
 * The function fills a receive CAN message frame structure with
 * just received data and activates the Message Buffer again.
 * The function returns immediately.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The FlexCAN Message Buffer index.
 * param rxFrame Pointer to CAN message frame structure for reception.
 * retval kStatus_Success            - Rx Message Buffer is full and has been read successfully.
 * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
 * retval kStatus_Fail               - Rx Message Buffer is empty.
 */
status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *rxFrame)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(rxFrame);
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

    uint32_t cs_temp;
    uint8_t rx_code;

    /* Read CS field of Rx Message Buffer to lock Message Buffer. */
    cs_temp = base->MB[mbIdx].CS;
    /* Get Rx Message Buffer Code field. */
    rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT;

    /* Check to see if Rx Message Buffer is full. */
    if ((kFLEXCAN_RxMbFull == rx_code) || (kFLEXCAN_RxMbOverrun == rx_code))
    {
        /* Store Message ID. */
        rxFrame->id = base->MB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);

        /* Get the message ID and format. */
        rxFrame->format = (cs_temp & CAN_CS_IDE_MASK) ? kFLEXCAN_FrameFormatExtend : kFLEXCAN_FrameFormatStandard;

        /* Get the message type. */
        rxFrame->type = (cs_temp & CAN_CS_RTR_MASK) ? kFLEXCAN_FrameTypeRemote : kFLEXCAN_FrameTypeData;

        /* Get the message length. */
        rxFrame->length = (cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT;

        /* Get the time stamp. */
        rxFrame->timestamp = (cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT;

        /* Store Message Payload. */
        rxFrame->dataWord0 = base->MB[mbIdx].WORD0;
        rxFrame->dataWord1 = base->MB[mbIdx].WORD1;

        /* Read free-running timer to unlock Rx Message Buffer. */
        (void)base->TIMER;

        if (kFLEXCAN_RxMbFull == rx_code)
        {
            return kStatus_Success;
        }
        else
        {
            return kStatus_FLEXCAN_RxOverflow;
        }
    }
    else
    {
        /* Read free-running timer to unlock Rx Message Buffer. */
        (void)base->TIMER;

        return kStatus_Fail;
    }
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Reads a FlexCAN FD Message from Receive Message Buffer.
 *
 * This function reads a CAN FD message from a specified Receive Message Buffer.
 * The function fills a receive CAN FD message frame structure with
 * just received data and activates the Message Buffer again.
 * The function returns immediately.
 *
 * param base FlexCAN peripheral base address.
 * param mbIdx The FlexCAN FD Message Buffer index.
 * param rxFrame Pointer to CAN FD message frame structure for reception.
 * retval kStatus_Success            - Rx Message Buffer is full and has been read successfully.
 * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
 * retval kStatus_Fail               - Rx Message Buffer is empty.
 */
status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *rxFrame)
{
    /* Assertion. */
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(rxFrame);
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

    uint32_t cs_temp;
    uint8_t rx_code;
    uint8_t cnt = 0;
    uint32_t can_id = 0;
    uint32_t dataSize;
    dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
    uint8_t payload_dword = 1;
    volatile uint32_t *mbAddr = &(base->MB[0].CS);
    uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);

    /* Read CS field of Rx Message Buffer to lock Message Buffer. */
    cs_temp = mbAddr[offset];
    can_id = mbAddr[offset + 1];

    /* Get Rx Message Buffer Code field. */
    rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT;

    /* Check to see if Rx Message Buffer is full. */
    if ((kFLEXCAN_RxMbFull == rx_code) || (kFLEXCAN_RxMbOverrun == rx_code))
    {
        /* Store Message ID. */
        rxFrame->id = can_id & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);

        /* Get the message ID and format. */
        rxFrame->format = (cs_temp & CAN_CS_IDE_MASK) ? kFLEXCAN_FrameFormatExtend : kFLEXCAN_FrameFormatStandard;

        /* Get the message type. */
        rxFrame->type = (cs_temp & CAN_CS_RTR_MASK) ? kFLEXCAN_FrameTypeRemote : kFLEXCAN_FrameTypeData;

        /* Get the message length. */
        rxFrame->length = (cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT;

        /* Get the time stamp. */
        rxFrame->timestamp = (cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT;

        /* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
           Bytes payload. */
        for (cnt = 0; cnt < dataSize + 1; cnt++)
        {
            payload_dword *= 2;
        }

        /* Store Message Payload. */
        for (cnt = 0; cnt < payload_dword; cnt++)
        {
            rxFrame->dataWord[cnt] = mbAddr[offset + 2 + cnt];
        }

        /* Read free-running timer to unlock Rx Message Buffer. */
        (void)base->TIMER;

        if (kFLEXCAN_RxMbFull == rx_code)
        {
            return kStatus_Success;
        }
        else
        {
            return kStatus_FLEXCAN_RxOverflow;
        }
    }
    else
    {
        /* Read free-running timer to unlock Rx Message Buffer. */
        (void)base->TIMER;

        return kStatus_Fail;
    }
}
#endif

/*!
 * brief Reads a FlexCAN Message from Rx FIFO.
 *
 * This function reads a CAN message from the FlexCAN build-in Rx FIFO.
 *
 * param base FlexCAN peripheral base address.
 * param rxFrame Pointer to CAN message frame structure for reception.
 * retval kStatus_Success - Read Message from Rx FIFO successfully.
 * retval kStatus_Fail    - Rx FIFO is not enabled.
 */
status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *rxFrame)
{
    /* Assertion. */
    assert(rxFrame);

    uint32_t cs_temp;

    /* Check if Rx FIFO is Enabled. */
    if (base->MCR & CAN_MCR_RFEN_MASK)
    {
        /* Read CS field of Rx Message Buffer to lock Message Buffer. */
        cs_temp = base->MB[0].CS;

        /* Read data from Rx FIFO output port. */
        /* Store Message ID. */
        rxFrame->id = base->MB[0].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);

        /* Get the message ID and format. */
        rxFrame->format = (cs_temp & CAN_CS_IDE_MASK) ? kFLEXCAN_FrameFormatExtend : kFLEXCAN_FrameFormatStandard;

        /* Get the message type. */
        rxFrame->type = (cs_temp & CAN_CS_RTR_MASK) ? kFLEXCAN_FrameTypeRemote : kFLEXCAN_FrameTypeData;

        /* Get the message length. */
        rxFrame->length = (cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT;

        /* Store Message Payload. */
        rxFrame->dataWord0 = base->MB[0].WORD0;
        rxFrame->dataWord1 = base->MB[0].WORD1;

        /* Store ID Filter Hit Index. */
        rxFrame->idhit = (uint8_t)(base->RXFIR & CAN_RXFIR_IDHIT_MASK);

        /* Read free-running timer to unlock Rx Message Buffer. */
        (void)base->TIMER;

        return kStatus_Success;
    }
    else
    {
        return kStatus_Fail;
    }
}

/*!
 * brief Performs a polling send transaction on the CAN bus.
 *
 * Note that a transfer handle does not need to be created  before calling this API.
 *
 * param base FlexCAN peripheral base pointer.
 * param mbIdx The FlexCAN Message Buffer index.
 * param txFrame Pointer to CAN message frame to be sent.
 * retval kStatus_Success - Write Tx Message Buffer Successfully.
 * retval kStatus_Fail    - Tx Message Buffer is currently in use.
 */
status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *txFrame)
{
    /* Write Tx Message Buffer to initiate a data sending. */
    if (kStatus_Success == FLEXCAN_WriteTxMb(base, mbIdx, txFrame))
    {
/* Wait until CAN Message send out. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
        while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
        {
        }

/* Clean Tx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
        FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif

        return kStatus_Success;
    }
    else
    {
        return kStatus_Fail;
    }
}

/*!
 * brief Performs a polling receive transaction on the CAN bus.
 *
 * Note that a transfer handle does not need to be created  before calling this API.
 *
 * param base FlexCAN peripheral base pointer.
 * param mbIdx The FlexCAN Message Buffer index.
 * param rxFrame Pointer to CAN message frame structure for reception.
 * retval kStatus_Success            - Rx Message Buffer is full and has been read successfully.
 * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
 * retval kStatus_Fail               - Rx Message Buffer is empty.
 */
status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *rxFrame)
{
/* Wait until Rx Message Buffer non-empty. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
    while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
    {
    }

/* Clean Rx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
    FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif

    /* Read Received CAN Message. */
    return FLEXCAN_ReadRxMb(base, mbIdx, rxFrame);
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Performs a polling send transaction on the CAN bus.
 *
 * Note that a transfer handle does not need to be created before calling this API.
 *
 * param base FlexCAN peripheral base pointer.
 * param mbIdx The FlexCAN FD Message Buffer index.
 * param txFrame Pointer to CAN FD message frame to be sent.
 * retval kStatus_Success - Write Tx Message Buffer Successfully.
 * retval kStatus_Fail    - Tx Message Buffer is currently in use.
 */
status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *txFrame)
{
    /* Write Tx Message Buffer to initiate a data sending. */
    if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, mbIdx, txFrame))
    {
/* Wait until CAN Message send out. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
        while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
        {
        }

/* Clean Tx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
        FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif

        return kStatus_Success;
    }
    else
    {
        return kStatus_Fail;
    }
}

/*!
 * brief Performs a polling receive transaction on the CAN bus.
 *
 * Note that a transfer handle does not need to be created before calling this API.
 *
 * param base FlexCAN peripheral base pointer.
 * param mbIdx The FlexCAN FD Message Buffer index.
 * param rxFrame Pointer to CAN FD message frame structure for reception.
 * retval kStatus_Success            - Rx Message Buffer is full and has been read successfully.
 * retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
 * retval kStatus_Fail               - Rx Message Buffer is empty.
 */
status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *rxFrame)
{
/* Wait until Rx Message Buffer non-empty. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
    while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
    {
    }

/* Clean Rx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
    FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif

    /* Read Received CAN Message. */
    return FLEXCAN_ReadFDRxMb(base, mbIdx, rxFrame);
}
#endif

/*!
 * brief Performs a polling receive transaction from Rx FIFO on the CAN bus.
 *
 * Note that a transfer handle does not need to be created  before calling this API.
 *
 * param base FlexCAN peripheral base pointer.
 * param rxFrame Pointer to CAN message frame structure for reception.
 * retval kStatus_Success - Read Message from Rx FIFO successfully.
 * retval kStatus_Fail    - Rx FIFO is not enabled.
 */
status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *rxFrame)
{
    status_t rxFifoStatus;

    /* Wait until Rx FIFO non-empty. */
    while (!FLEXCAN_GetMbStatusFlags(base, kFLEXCAN_RxFifoFrameAvlFlag))
    {
    }

    /*  */
    rxFifoStatus = FLEXCAN_ReadRxFifo(base, rxFrame);

    /* Clean Rx Fifo available flag. */
    FLEXCAN_ClearMbStatusFlags(base, kFLEXCAN_RxFifoFrameAvlFlag);

    return rxFifoStatus;
}

/*!
 * brief Initializes the FlexCAN handle.
 *
 * This function initializes the FlexCAN handle, which can be used for other FlexCAN
 * transactional APIs. Usually, for a specified FlexCAN instance,
 * call this API once to get the initialized handle.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param callback The callback function.
 * param userData The parameter of the callback function.
 */
void FLEXCAN_TransferCreateHandle(CAN_Type *base,
                                  flexcan_handle_t *handle,
                                  flexcan_transfer_callback_t callback,
                                  void *userData)
{
    assert(handle);

    uint8_t instance;

    /* Clean FlexCAN transfer handle. */
    memset(handle, 0, sizeof(*handle));

    /* Get instance from peripheral base address. */
    instance = FLEXCAN_GetInstance(base);

    /* Save the context in global variables to support the double weak mechanism. */
    s_flexcanHandle[instance] = handle;

    /* Register Callback function. */
    handle->callback = callback;
    handle->userData = userData;

    s_flexcanIsr = FLEXCAN_TransferHandleIRQ;

    /* We Enable Error & Status interrupt here, because this interrupt just
     * report current status of FlexCAN module through Callback function.
     * It is insignificance without a available callback function.
     */
    if (handle->callback != NULL)
    {
        FLEXCAN_EnableInterrupts(base, kFLEXCAN_BusOffInterruptEnable | kFLEXCAN_ErrorInterruptEnable |
                                           kFLEXCAN_RxWarningInterruptEnable | kFLEXCAN_TxWarningInterruptEnable |
                                           kFLEXCAN_WakeUpInterruptEnable);
    }
    else
    {
        FLEXCAN_DisableInterrupts(base, kFLEXCAN_BusOffInterruptEnable | kFLEXCAN_ErrorInterruptEnable |
                                            kFLEXCAN_RxWarningInterruptEnable | kFLEXCAN_TxWarningInterruptEnable |
                                            kFLEXCAN_WakeUpInterruptEnable);
    }

    /* Enable interrupts in NVIC. */
    EnableIRQ((IRQn_Type)(s_flexcanRxWarningIRQ[instance]));
    EnableIRQ((IRQn_Type)(s_flexcanTxWarningIRQ[instance]));
    EnableIRQ((IRQn_Type)(s_flexcanWakeUpIRQ[instance]));
    EnableIRQ((IRQn_Type)(s_flexcanErrorIRQ[instance]));
    EnableIRQ((IRQn_Type)(s_flexcanBusOffIRQ[instance]));
    EnableIRQ((IRQn_Type)(s_flexcanMbIRQ[instance]));
}

/*!
 * brief Sends a message using IRQ.
 *
 * This function sends a message using IRQ. This is a non-blocking function, which returns
 * right away. When messages have been sent out, the send callback function is called.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param xfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
 * retval kStatus_Success        Start Tx Message Buffer sending process successfully.
 * retval kStatus_Fail           Write Tx Message Buffer failed.
 * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
 */
status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
    /* Assertion. */
    assert(handle);
    assert(xfer);
    assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));

    /* Check if Message Buffer is idle. */
    if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
    {
        /* Distinguish transmit type. */
        if (kFLEXCAN_FrameTypeRemote == xfer->frame->type)
        {
            handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxRemote;

            /* Register user Frame buffer to receive remote Frame. */
            handle->mbFrameBuf[xfer->mbIdx] = xfer->frame;
        }
        else
        {
            handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxData;
        }

        if (kStatus_Success == FLEXCAN_WriteTxMb(base, xfer->mbIdx, xfer->frame))
        {
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
            FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
            FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif

            return kStatus_Success;
        }
        else
        {
            handle->mbState[xfer->mbIdx] = kFLEXCAN_StateIdle;
            return kStatus_Fail;
        }
    }
    else
    {
        return kStatus_FLEXCAN_TxBusy;
    }
}

/*!
 * brief Receives a message using IRQ.
 *
 * This function receives a message using IRQ. This is non-blocking function, which returns
 * right away. When the message has been received, the receive callback function is called.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param xfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
 * retval kStatus_Success        - Start Rx Message Buffer receiving process successfully.
 * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
 */
status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
    /* Assertion. */
    assert(handle);
    assert(xfer);
    assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));

    /* Check if Message Buffer is idle. */
    if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
    {
        handle->mbState[xfer->mbIdx] = kFLEXCAN_StateRxData;

        /* Register Message Buffer. */
        handle->mbFrameBuf[xfer->mbIdx] = xfer->frame;

/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
        FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif

        return kStatus_Success;
    }
    else
    {
        return kStatus_FLEXCAN_RxBusy;
    }
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Sends a message using IRQ.
 *
 * This function sends a message using IRQ. This is a non-blocking function, which returns
 * right away. When messages have been sent out, the send callback function is called.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param xfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
 * retval kStatus_Success        Start Tx Message Buffer sending process successfully.
 * retval kStatus_Fail           Write Tx Message Buffer failed.
 * retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
 */
status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
    /* Assertion. */
    assert(handle);
    assert(xfer);
    assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));

    /* Check if Message Buffer is idle. */
    if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
    {
        /* Distinguish transmit type. */
        if (kFLEXCAN_FrameTypeRemote == xfer->frame->type)
        {
            handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxRemote;

            /* Register user Frame buffer to receive remote Frame. */
            handle->mbFDFrameBuf[xfer->mbIdx] = xfer->framefd;
        }
        else
        {
            handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxData;
        }

        if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, xfer->mbIdx, xfer->framefd))
        {
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
            FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
            FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif

            return kStatus_Success;
        }
        else
        {
            handle->mbState[xfer->mbIdx] = kFLEXCAN_StateIdle;
            return kStatus_Fail;
        }
    }
    else
    {
        return kStatus_FLEXCAN_TxBusy;
    }
}

/*!
 * brief Receives a message using IRQ.
 *
 * This function receives a message using IRQ. This is non-blocking function, which returns
 * right away. When the message has been received, the receive callback function is called.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param xfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
 * retval kStatus_Success        - Start Rx Message Buffer receiving process successfully.
 * retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
 */
status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
    /* Assertion. */
    assert(handle);
    assert(xfer);
    assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));

    /* Check if Message Buffer is idle. */
    if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
    {
        handle->mbState[xfer->mbIdx] = kFLEXCAN_StateRxData;

        /* Register Message Buffer. */
        handle->mbFDFrameBuf[xfer->mbIdx] = xfer->framefd;

/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
        FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
        FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif

        return kStatus_Success;
    }
    else
    {
        return kStatus_FLEXCAN_RxBusy;
    }
}
#endif

/*!
 * brief Receives a message from Rx FIFO using IRQ.
 *
 * This function receives a message using IRQ. This is a non-blocking function, which returns
 * right away. When all messages have been received, the receive callback function is called.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param xfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.
 * retval kStatus_Success            - Start Rx FIFO receiving process successfully.
 * retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use.
 */
status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_fifo_transfer_t *xfer)
{
    /* Assertion. */
    assert(handle);
    assert(xfer);

    /* Check if Message Buffer is idle. */
    if (kFLEXCAN_StateIdle == handle->rxFifoState)
    {
        handle->rxFifoState = kFLEXCAN_StateRxFifo;

        /* Register Message Buffer. */
        handle->rxFifoFrameBuf = xfer->frame;

        /* Enable Message Buffer Interrupt. */
        FLEXCAN_EnableMbInterrupts(
            base, kFLEXCAN_RxFifoOverflowFlag | kFLEXCAN_RxFifoWarningFlag | kFLEXCAN_RxFifoFrameAvlFlag);

        return kStatus_Success;
    }
    else
    {
        return kStatus_FLEXCAN_RxFifoBusy;
    }
}

/*!
 * brief Aborts the interrupt driven message send process.
 *
 * This function aborts the interrupt driven message send process.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param mbIdx The FlexCAN Message Buffer index.
 */
void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
    /* Assertion. */
    assert(handle);
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
    FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif

    /* Un-register handle. */
    handle->mbFrameBuf[mbIdx] = 0x0;

    /* Clean Message Buffer. */
    FLEXCAN_SetTxMbConfig(base, mbIdx, true);

    handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}

#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
 * brief Aborts the interrupt driven message send process.
 *
 * This function aborts the interrupt driven message send process.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param mbIdx The FlexCAN FD Message Buffer index.
 */
void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
    /* Assertion. */
    assert(handle);
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
    FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif

    /* Un-register handle. */
    handle->mbFDFrameBuf[mbIdx] = 0x0;

    /* Clean Message Buffer. */
    FLEXCAN_SetFDTxMbConfig(base, mbIdx, true);

    handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}

void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
    /* Assertion. */
    assert(handle);
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
    FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif

    /* Un-register handle. */
    handle->mbFDFrameBuf[mbIdx] = 0x0;
    handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}
#endif

/*!
 * brief Aborts the interrupt driven message receive process.
 *
 * This function aborts the interrupt driven message receive process.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 * param mbIdx The FlexCAN Message Buffer index.
 */
void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
    /* Assertion. */
    assert(handle);
    assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
    assert(!FLEXCAN_IsMbOccupied(base, mbIdx));

/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
    FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif

    /* Un-register handle. */
    handle->mbFrameBuf[mbIdx] = 0x0;
    handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}

/*!
 * brief Aborts the interrupt driven message receive from Rx FIFO process.
 *
 * This function aborts the interrupt driven message receive from Rx FIFO process.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 */
void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
{
    /* Assertion. */
    assert(handle);

    /* Check if Rx FIFO is enabled. */
    if (base->MCR & CAN_MCR_RFEN_MASK)
    {
        /* Disable Rx Message FIFO Interrupts. */
        FLEXCAN_DisableMbInterrupts(
            base, kFLEXCAN_RxFifoOverflowFlag | kFLEXCAN_RxFifoWarningFlag | kFLEXCAN_RxFifoFrameAvlFlag);

        /* Un-register handle. */
        handle->rxFifoFrameBuf = 0x0;
    }

    handle->rxFifoState = kFLEXCAN_StateIdle;
}

/*!
 * brief FlexCAN IRQ handle function.
 *
 * This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.
 *
 * param base FlexCAN peripheral base address.
 * param handle FlexCAN handle pointer.
 */
void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
{
    /* Assertion. */
    assert(handle);

    status_t status = kStatus_FLEXCAN_UnHandled;
    uint32_t result;

    /* Store Current FlexCAN Module Error and Status. */
    result = base->ESR1;

    do
    {
        /* Solve FlexCAN Error and Status Interrupt. */
        if (result &
            (kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag | kFLEXCAN_BusOffIntFlag | kFLEXCAN_ErrorIntFlag))
        {
            status = kStatus_FLEXCAN_ErrorStatus;

            /* Clear FlexCAN Error and Status Interrupt. */
            FLEXCAN_ClearStatusFlags(base, kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag |
                                               kFLEXCAN_BusOffIntFlag | kFLEXCAN_ErrorIntFlag);
        }
        else if (result & kFLEXCAN_WakeUpIntFlag)
        {
            status = kStatus_FLEXCAN_WakeUp;
            FLEXCAN_ClearStatusFlags(base, kFLEXCAN_WakeUpIntFlag);
        }
        /* Solve FlexCAN Rx FIFO & Message Buffer Interrupt. */
        else
        {
            /* For this implementation, we solve the Message with lowest MB index first. */
            for (result = 0; result < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); result++)
            {
/* Get the lowest unhandled Message Buffer */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
                if ((FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << result)) && (FLEXCAN_IsMbIntEnabled(base, result)))
#else
                if ((FLEXCAN_GetMbStatusFlags(base, 1 << result)) && (FLEXCAN_IsMbIntEnabled(base, result)))
#endif
                {
                    break;
                }
            }

            /* Does not find Message to deal with. */
            if (result == FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base))
            {
                break;
            }

            /* Solve Rx FIFO interrupt. */
            if ((kFLEXCAN_StateIdle != handle->rxFifoState) && ((1 << result) <= kFLEXCAN_RxFifoOverflowFlag))
            {
                switch (1 << result)
                {
                    case kFLEXCAN_RxFifoOverflowFlag:
                        status = kStatus_FLEXCAN_RxFifoOverflow;
                        break;

                    case kFLEXCAN_RxFifoWarningFlag:
                        status = kStatus_FLEXCAN_RxFifoWarning;
                        break;

                    case kFLEXCAN_RxFifoFrameAvlFlag:
                        status = FLEXCAN_ReadRxFifo(base, handle->rxFifoFrameBuf);
                        if (kStatus_Success == status)
                        {
                            status = kStatus_FLEXCAN_RxFifoIdle;
                        }
                        FLEXCAN_TransferAbortReceiveFifo(base, handle);
                        break;

                    default:
                        status = kStatus_FLEXCAN_UnHandled;
                        break;
                }
            }
            else
            {
                /* Get current State of Message Buffer. */
                switch (handle->mbState[result])
                {
                    /* Solve Rx Data Frame. */
                    case kFLEXCAN_StateRxData:
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
                        if (base->MCR & CAN_MCR_FDEN_MASK)
                        {
                            status = FLEXCAN_ReadFDRxMb(base, result, handle->mbFDFrameBuf[result]);
                        }
                        else
                        {
                            status = FLEXCAN_ReadRxMb(base, result, handle->mbFrameBuf[result]);
                        }
#else
                        status = FLEXCAN_ReadRxMb(base, result, handle->mbFrameBuf[result]);
#endif
                        if (kStatus_Success == status)
                        {
                            status = kStatus_FLEXCAN_RxIdle;
                        }
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
                        if (base->MCR & CAN_MCR_FDEN_MASK)
                        {
                            FLEXCAN_TransferFDAbortReceive(base, handle, result);
                        }
                        else
                        {
                            FLEXCAN_TransferAbortReceive(base, handle, result);
                        }
#else
                        FLEXCAN_TransferAbortReceive(base, handle, result);
#endif
                        break;

                    /* Solve Rx Remote Frame. */
                    case kFLEXCAN_StateRxRemote:
                        status = FLEXCAN_ReadRxMb(base, result, handle->mbFrameBuf[result]);
                        if (kStatus_Success == status)
                        {
                            status = kStatus_FLEXCAN_RxIdle;
                        }
                        FLEXCAN_TransferAbortReceive(base, handle, result);
                        break;

                    /* Solve Tx Data Frame. */
                    case kFLEXCAN_StateTxData:
                        status = kStatus_FLEXCAN_TxIdle;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
                        if (base->MCR & CAN_MCR_FDEN_MASK)
                        {
                            FLEXCAN_TransferFDAbortSend(base, handle, result);
                        }
                        else
                        {
                            FLEXCAN_TransferAbortSend(base, handle, result);
                        }
#else
                        FLEXCAN_TransferAbortSend(base, handle, result);
#endif
                        break;

                    /* Solve Tx Remote Frame. */
                    case kFLEXCAN_StateTxRemote:
                        handle->mbState[result] = kFLEXCAN_StateRxRemote;
                        status = kStatus_FLEXCAN_TxSwitchToRx;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
                        if (base->MCR & CAN_MCR_FDEN_MASK)
                        {
                            FLEXCAN_TransferFDAbortReceive(base, handle, result);
                        }
                        else
                        {
                            FLEXCAN_TransferAbortReceive(base, handle, result);
                        }
#else
                        FLEXCAN_TransferAbortReceive(base, handle, result);
#endif
                        break;

                    default:
                        status = kStatus_FLEXCAN_UnHandled;
                        break;
                }
            }

/* Clear resolved Message Buffer IRQ. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
            FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << result);
#else
            FLEXCAN_ClearMbStatusFlags(base, 1 << result);
#endif
        }

        /* Calling Callback Function if has one. */
        if (handle->callback != NULL)
        {
            handle->callback(base, handle, status, result, handle->userData);
        }

        /* Reset return status */
        status = kStatus_FLEXCAN_UnHandled;

        /* Store Current FlexCAN Module Error and Status. */
        result = base->ESR1;
    }
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
    while ((0 != FLEXCAN_GetMbStatusFlags(base, 0xFFFFFFFFFFFFFFFFU)) ||
           (0 != (result & (kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag | kFLEXCAN_BusOffIntFlag |
                            kFLEXCAN_ErrorIntFlag | kFLEXCAN_WakeUpIntFlag))));
#else
    while ((0 != FLEXCAN_GetMbStatusFlags(base, 0xFFFFFFFFU)) ||
           (0 != (result & (kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag | kFLEXCAN_BusOffIntFlag |
                            kFLEXCAN_ErrorIntFlag | kFLEXCAN_WakeUpIntFlag))));
#endif
}

#if defined(CAN0)
void CAN0_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[0]);

    s_flexcanIsr(CAN0, s_flexcanHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(CAN1)
void CAN1_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[1]);

    s_flexcanIsr(CAN1, s_flexcanHandle[1]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(CAN2)
void CAN2_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[2]);

    s_flexcanIsr(CAN2, s_flexcanHandle[2]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(CAN3)
void CAN3_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[3]);

    s_flexcanIsr(CAN3, s_flexcanHandle[3]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(CAN4)
void CAN4_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[4]);

    s_flexcanIsr(CAN4, s_flexcanHandle[4]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(DMA__CAN0)
void DMA_FLEXCAN0_INT_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);

    s_flexcanIsr(DMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(DMA__CAN1)
void DMA_FLEXCAN1_INT_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);

    s_flexcanIsr(DMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(DMA__CAN2)
void DMA_FLEXCAN2_INT_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);

    s_flexcanIsr(DMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(ADMA__CAN0)
void ADMA_FLEXCAN0_INT_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);

    s_flexcanIsr(ADMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(ADMA__CAN1)
void ADMA_FLEXCAN1_INT_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);

    s_flexcanIsr(ADMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(ADMA__CAN2)
void ADMA_FLEXCAN2_INT_DriverIRQHandler(void)
{
    assert(s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);

    s_flexcanIsr(ADMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif