Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 | /* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2018 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_edma.h" /******************************************************************************* * Definitions ******************************************************************************/ /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.edma" #endif #define EDMA_TRANSFER_ENABLED_MASK 0x80U /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get instance number for EDMA. * * @param base EDMA peripheral base address. */ static uint32_t EDMA_GetInstance(DMA_Type *base); /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Array to map EDMA instance number to base pointer. */ static DMA_Type *const s_edmaBases[] = DMA_BASE_PTRS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Array to map EDMA instance number to clock name. */ static const clock_ip_name_t s_edmaClockName[] = EDMA_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /*! @brief Array to map EDMA instance number to IRQ number. */ static const IRQn_Type s_edmaIRQNumber[][FSL_FEATURE_EDMA_MODULE_CHANNEL] = DMA_CHN_IRQS; /*! @brief Pointers to transfer handle for each EDMA channel. */ static edma_handle_t *s_EDMAHandle[FSL_FEATURE_EDMA_MODULE_CHANNEL * FSL_FEATURE_SOC_EDMA_COUNT]; /******************************************************************************* * Code ******************************************************************************/ static uint32_t EDMA_GetInstance(DMA_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < ARRAY_SIZE(s_edmaBases); instance++) { if (s_edmaBases[instance] == base) { break; } } assert(instance < ARRAY_SIZE(s_edmaBases)); return instance; } /*! * brief Push content of TCD structure into hardware TCD register. * * param base EDMA peripheral base address. * param channel EDMA channel number. * param tcd Point to TCD structure. */ void EDMA_InstallTCD(DMA_Type *base, uint32_t channel, edma_tcd_t *tcd) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); assert(tcd != NULL); assert(((uint32_t)tcd & 0x1FU) == 0U); /* Push tcd into hardware TCD register */ base->TCD[channel].SADDR = tcd->SADDR; base->TCD[channel].SOFF = tcd->SOFF; base->TCD[channel].ATTR = tcd->ATTR; base->TCD[channel].NBYTES_MLNO = tcd->NBYTES; base->TCD[channel].SLAST = tcd->SLAST; base->TCD[channel].DADDR = tcd->DADDR; base->TCD[channel].DOFF = tcd->DOFF; base->TCD[channel].CITER_ELINKNO = tcd->CITER; base->TCD[channel].DLAST_SGA = tcd->DLAST_SGA; /* Clear DONE bit first, otherwise ESG cannot be set */ base->TCD[channel].CSR = 0; base->TCD[channel].CSR = tcd->CSR; base->TCD[channel].BITER_ELINKNO = tcd->BITER; } /*! * brief Initializes the eDMA peripheral. * * This function ungates the eDMA clock and configures the eDMA peripheral according * to the configuration structure. * * param base eDMA peripheral base address. * param config A pointer to the configuration structure, see "edma_config_t". * note This function enables the minor loop map feature. */ void EDMA_Init(DMA_Type *base, const edma_config_t *config) { assert(config != NULL); uint32_t tmpreg; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Ungate EDMA peripheral clock */ CLOCK_EnableClock(s_edmaClockName[EDMA_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* clear all the enabled request, status to make sure EDMA status is in normal condition */ base->ERQ = 0U; base->INT = 0xFFFFFFFFU; base->ERR = 0xFFFFFFFFU; /* Configure EDMA peripheral according to the configuration structure. */ tmpreg = base->CR; tmpreg &= ~(DMA_CR_ERCA_MASK | DMA_CR_HOE_MASK | DMA_CR_CLM_MASK | DMA_CR_EDBG_MASK); tmpreg |= (DMA_CR_ERCA(config->enableRoundRobinArbitration) | DMA_CR_HOE(config->enableHaltOnError) | DMA_CR_CLM(config->enableContinuousLinkMode) | DMA_CR_EDBG(config->enableDebugMode) | DMA_CR_EMLM(1U)); base->CR = tmpreg; } /*! * brief Deinitializes the eDMA peripheral. * * This function gates the eDMA clock. * * param base eDMA peripheral base address. */ void EDMA_Deinit(DMA_Type *base) { #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Gate EDMA peripheral clock */ CLOCK_DisableClock(s_edmaClockName[EDMA_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } /*! * brief Gets the eDMA default configuration structure. * * This function sets the configuration structure to default values. * The default configuration is set to the following values. * code * config.enableContinuousLinkMode = false; * config.enableHaltOnError = true; * config.enableRoundRobinArbitration = false; * config.enableDebugMode = false; * endcode * * param config A pointer to the eDMA configuration structure. */ void EDMA_GetDefaultConfig(edma_config_t *config) { assert(config != NULL); /* Initializes the configure structure to zero. */ (void)memset(config, 0, sizeof(*config)); config->enableRoundRobinArbitration = false; config->enableHaltOnError = true; config->enableContinuousLinkMode = false; config->enableDebugMode = false; } /*! * brief Sets all TCD registers to default values. * * This function sets TCD registers for this channel to default values. * * param base eDMA peripheral base address. * param channel eDMA channel number. * note This function must not be called while the channel transfer is ongoing * or it causes unpredictable results. * note This function enables the auto stop request feature. */ void EDMA_ResetChannel(DMA_Type *base, uint32_t channel) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); EDMA_TcdReset((edma_tcd_t *)(uint32_t)&base->TCD[channel]); } /*! * brief Configures the eDMA transfer attribute. * * This function configures the transfer attribute, including source address, destination address, * transfer size, address offset, and so on. It also configures the scatter gather feature if the * user supplies the TCD address. * Example: * code * edma_transfer_t config; * edma_tcd_t tcd; * config.srcAddr = ..; * config.destAddr = ..; * ... * EDMA_SetTransferConfig(DMA0, channel, &config, &stcd); * endcode * * param base eDMA peripheral base address. * param channel eDMA channel number. * param config Pointer to eDMA transfer configuration structure. * param nextTcd Point to TCD structure. It can be NULL if users * do not want to enable scatter/gather feature. * note If nextTcd is not NULL, it means scatter gather feature is enabled * and DREQ bit is cleared in the previous transfer configuration, which * is set in the eDMA_ResetChannel. */ void EDMA_SetTransferConfig(DMA_Type *base, uint32_t channel, const edma_transfer_config_t *config, edma_tcd_t *nextTcd) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); assert(config != NULL); assert(((uint32_t)nextTcd & 0x1FU) == 0U); EDMA_TcdSetTransferConfig((edma_tcd_t *)(uint32_t)&base->TCD[channel], config, nextTcd); } /*! * brief Configures the eDMA minor offset feature. * * The minor offset means that the signed-extended value is added to the source address or destination * address after each minor loop. * * param base eDMA peripheral base address. * param channel eDMA channel number. * param config A pointer to the minor offset configuration structure. */ void EDMA_SetMinorOffsetConfig(DMA_Type *base, uint32_t channel, const edma_minor_offset_config_t *config) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); assert(config != NULL); uint32_t tmpreg; tmpreg = base->TCD[channel].NBYTES_MLOFFYES; tmpreg &= ~(DMA_NBYTES_MLOFFYES_SMLOE_MASK | DMA_NBYTES_MLOFFYES_DMLOE_MASK | DMA_NBYTES_MLOFFYES_MLOFF_MASK); tmpreg |= (DMA_NBYTES_MLOFFYES_SMLOE(config->enableSrcMinorOffset) | DMA_NBYTES_MLOFFYES_DMLOE(config->enableDestMinorOffset) | DMA_NBYTES_MLOFFYES_MLOFF(config->minorOffset)); base->TCD[channel].NBYTES_MLOFFYES = tmpreg; } /*! * brief Sets the channel link for the eDMA transfer. * * This function configures either the minor link or the major link mode. The minor link means that the channel link is * triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is * exhausted. * * param base eDMA peripheral base address. * param channel eDMA channel number. * param type A channel link type, which can be one of the following: * arg kEDMA_LinkNone * arg kEDMA_MinorLink * arg kEDMA_MajorLink * param linkedChannel The linked channel number. * note Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid. */ void EDMA_SetChannelLink(DMA_Type *base, uint32_t channel, edma_channel_link_type_t type, uint32_t linkedChannel) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); assert(linkedChannel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); EDMA_TcdSetChannelLink((edma_tcd_t *)(uint32_t)&base->TCD[channel], type, linkedChannel); } /*! * brief Sets the bandwidth for the eDMA transfer. * * Because the eDMA processes the minor loop, it continuously generates read/write sequences * until the minor count is exhausted. The bandwidth forces the eDMA to stall after the completion of * each read/write access to control the bus request bandwidth seen by the crossbar switch. * * param base eDMA peripheral base address. * param channel eDMA channel number. * param bandWidth A bandwidth setting, which can be one of the following: * arg kEDMABandwidthStallNone * arg kEDMABandwidthStall4Cycle * arg kEDMABandwidthStall8Cycle */ void EDMA_SetBandWidth(DMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); base->TCD[channel].CSR = (uint16_t)((base->TCD[channel].CSR & (~DMA_CSR_BWC_MASK)) | DMA_CSR_BWC(bandWidth)); } /*! * brief Sets the source modulo and the destination modulo for the eDMA transfer. * * This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) * calculation is performed or the original register value. It provides the ability to implement a circular data * queue easily. * * param base eDMA peripheral base address. * param channel eDMA channel number. * param srcModulo A source modulo value. * param destModulo A destination modulo value. */ void EDMA_SetModulo(DMA_Type *base, uint32_t channel, edma_modulo_t srcModulo, edma_modulo_t destModulo) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); uint16_t tmpreg; tmpreg = base->TCD[channel].ATTR & (~(uint16_t)(DMA_ATTR_SMOD_MASK | DMA_ATTR_DMOD_MASK)); base->TCD[channel].ATTR = tmpreg | DMA_ATTR_DMOD(destModulo) | DMA_ATTR_SMOD(srcModulo); } /*! * brief Enables the interrupt source for the eDMA transfer. * * param base eDMA peripheral base address. * param channel eDMA channel number. * param mask The mask of interrupt source to be set. Users need to use * the defined edma_interrupt_enable_t type. */ void EDMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); /* Enable error interrupt */ if (0U != (mask & (uint32_t)kEDMA_ErrorInterruptEnable)) { base->EEI |= ((uint32_t)0x1U << channel); } /* Enable Major interrupt */ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable)) { base->TCD[channel].CSR |= DMA_CSR_INTMAJOR_MASK; } /* Enable Half major interrupt */ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable)) { base->TCD[channel].CSR |= DMA_CSR_INTHALF_MASK; } } /*! * brief Disables the interrupt source for the eDMA transfer. * * param base eDMA peripheral base address. * param channel eDMA channel number. * param mask The mask of the interrupt source to be set. Use * the defined edma_interrupt_enable_t type. */ void EDMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); /* Disable error interrupt */ if (0U != (mask & (uint32_t)kEDMA_ErrorInterruptEnable)) { base->EEI &= (uint32_t)(~(0x1U << channel)); } /* Disable Major interrupt */ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable)) { base->TCD[channel].CSR &= ~(uint16_t)DMA_CSR_INTMAJOR_MASK; } /* Disable Half major interrupt */ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable)) { base->TCD[channel].CSR &= ~(uint16_t)DMA_CSR_INTHALF_MASK; } } /*! * brief Sets all fields to default values for the TCD structure. * * This function sets all fields for this TCD structure to default value. * * param tcd Pointer to the TCD structure. * note This function enables the auto stop request feature. */ void EDMA_TcdReset(edma_tcd_t *tcd) { assert(tcd != NULL); assert(((uint32_t)tcd & 0x1FU) == 0U); /* Reset channel TCD */ tcd->SADDR = 0U; tcd->SOFF = 0U; tcd->ATTR = 0U; tcd->NBYTES = 0U; tcd->SLAST = 0U; tcd->DADDR = 0U; tcd->DOFF = 0U; tcd->CITER = 0U; tcd->DLAST_SGA = 0U; /* Enable auto disable request feature */ tcd->CSR = DMA_CSR_DREQ(true); tcd->BITER = 0U; } /*! * brief Configures the eDMA TCD transfer attribute. * * The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware TCD registers. * The STCD is used in the scatter-gather mode. * This function configures the TCD transfer attribute, including source address, destination address, * transfer size, address offset, and so on. It also configures the scatter gather feature if the * user supplies the next TCD address. * Example: * code * edma_transfer_t config = { * ... * } * edma_tcd_t tcd __aligned(32); * edma_tcd_t nextTcd __aligned(32); * EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd); * endcode * * param tcd Pointer to the TCD structure. * param config Pointer to eDMA transfer configuration structure. * param nextTcd Pointer to the next TCD structure. It can be NULL if users * do not want to enable scatter/gather feature. * note TCD address should be 32 bytes aligned or it causes an eDMA error. * note If the nextTcd is not NULL, the scatter gather feature is enabled * and DREQ bit is cleared in the previous transfer configuration, which * is set in the EDMA_TcdReset. */ void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config, edma_tcd_t *nextTcd) { assert(tcd != NULL); assert(((uint32_t)tcd & 0x1FU) == 0U); assert(config != NULL); assert(((uint32_t)nextTcd & 0x1FU) == 0U); /* source address */ tcd->SADDR = config->srcAddr; /* destination address */ tcd->DADDR = config->destAddr; /* Source data and destination data transfer size */ tcd->ATTR = DMA_ATTR_SSIZE(config->srcTransferSize) | DMA_ATTR_DSIZE(config->destTransferSize); /* Source address signed offset */ tcd->SOFF = (uint16_t)config->srcOffset; /* Destination address signed offset */ tcd->DOFF = (uint16_t)config->destOffset; /* Minor byte transfer count */ tcd->NBYTES = config->minorLoopBytes; /* Current major iteration count */ tcd->CITER = (uint16_t)config->majorLoopCounts; /* Starting major iteration count */ tcd->BITER = (uint16_t)config->majorLoopCounts; /* Enable scatter/gather processing */ if (nextTcd != NULL) { tcd->DLAST_SGA = (uint32_t)nextTcd; /* Before call EDMA_TcdSetTransferConfig or EDMA_SetTransferConfig, user must call EDMA_TcdReset or EDMA_ResetChannel which will set DREQ, so must use "|" or "&" rather than "=". Clear the DREQ bit because scatter gather has been enabled, so the previous transfer is not the last transfer, and channel request should be enabled at the next transfer(the next TCD). */ tcd->CSR = (tcd->CSR | (uint16_t)DMA_CSR_ESG_MASK) & ~(uint16_t)DMA_CSR_DREQ_MASK; } } /*! * brief Configures the eDMA TCD minor offset feature. * * A minor offset is a signed-extended value added to the source address or a destination * address after each minor loop. * * param tcd A point to the TCD structure. * param config A pointer to the minor offset configuration structure. */ void EDMA_TcdSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config_t *config) { assert(tcd != NULL); assert(((uint32_t)tcd & 0x1FU) == 0U); uint32_t tmpreg; tmpreg = tcd->NBYTES & ~(DMA_NBYTES_MLOFFYES_SMLOE_MASK | DMA_NBYTES_MLOFFYES_DMLOE_MASK | DMA_NBYTES_MLOFFYES_MLOFF_MASK); tmpreg |= (DMA_NBYTES_MLOFFYES_SMLOE(config->enableSrcMinorOffset) | DMA_NBYTES_MLOFFYES_DMLOE(config->enableDestMinorOffset) | DMA_NBYTES_MLOFFYES_MLOFF(config->minorOffset)); tcd->NBYTES = tmpreg; } /*! * brief Sets the channel link for the eDMA TCD. * * This function configures either a minor link or a major link. The minor link means the channel link is * triggered every time CITER decreases by 1. The major link means that the channel link is triggered when the CITER is * exhausted. * * note Users should ensure that DONE flag is cleared before calling this interface, or the configuration is invalid. * param tcd Point to the TCD structure. * param type Channel link type, it can be one of: * arg kEDMA_LinkNone * arg kEDMA_MinorLink * arg kEDMA_MajorLink * param linkedChannel The linked channel number. */ void EDMA_TcdSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t type, uint32_t linkedChannel) { assert(tcd != NULL); assert(((uint32_t)tcd & 0x1FU) == 0U); assert(linkedChannel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); if (type == kEDMA_MinorLink) /* Minor link config */ { uint16_t tmpreg; /* Enable minor link */ tcd->CITER |= DMA_CITER_ELINKYES_ELINK_MASK; tcd->BITER |= DMA_BITER_ELINKYES_ELINK_MASK; /* Set linked channel */ tmpreg = tcd->CITER & (~(uint16_t)DMA_CITER_ELINKYES_LINKCH_MASK); tmpreg |= DMA_CITER_ELINKYES_LINKCH(linkedChannel); tcd->CITER = tmpreg; tmpreg = tcd->BITER & (~(uint16_t)DMA_BITER_ELINKYES_LINKCH_MASK); tmpreg |= DMA_BITER_ELINKYES_LINKCH(linkedChannel); tcd->BITER = tmpreg; } else if (type == kEDMA_MajorLink) /* Major link config */ { uint16_t tmpreg; /* Enable major link */ tcd->CSR |= DMA_CSR_MAJORELINK_MASK; /* Set major linked channel */ tmpreg = tcd->CSR & (~(uint16_t)DMA_CSR_MAJORLINKCH_MASK); tcd->CSR = tmpreg | DMA_CSR_MAJORLINKCH(linkedChannel); } else /* Link none */ { tcd->CITER &= ~(uint16_t)DMA_CITER_ELINKYES_ELINK_MASK; tcd->BITER &= ~(uint16_t)DMA_BITER_ELINKYES_ELINK_MASK; tcd->CSR &= ~(uint16_t)DMA_CSR_MAJORELINK_MASK; } } /*! * brief Sets the source modulo and the destination modulo for the eDMA TCD. * * This function defines a specific address range specified to be the value after (SADDR + SOFF)/(DADDR + DOFF) * calculation is performed or the original register value. It provides the ability to implement a circular data * queue easily. * * param tcd A pointer to the TCD structure. * param srcModulo A source modulo value. * param destModulo A destination modulo value. */ void EDMA_TcdSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t destModulo) { assert(tcd != NULL); assert(((uint32_t)tcd & 0x1FU) == 0U); uint16_t tmpreg; tmpreg = tcd->ATTR & (~(uint16_t)(DMA_ATTR_SMOD_MASK | DMA_ATTR_DMOD_MASK)); tcd->ATTR = tmpreg | DMA_ATTR_DMOD(destModulo) | DMA_ATTR_SMOD(srcModulo); } /*! * brief Enables the interrupt source for the eDMA TCD. * * param tcd Point to the TCD structure. * param mask The mask of interrupt source to be set. Users need to use * the defined edma_interrupt_enable_t type. */ void EDMA_TcdEnableInterrupts(edma_tcd_t *tcd, uint32_t mask) { assert(tcd != NULL); /* Enable Major interrupt */ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable)) { tcd->CSR |= DMA_CSR_INTMAJOR_MASK; } /* Enable Half major interrupt */ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable)) { tcd->CSR |= DMA_CSR_INTHALF_MASK; } } /*! * brief Disables the interrupt source for the eDMA TCD. * * param tcd Point to the TCD structure. * param mask The mask of interrupt source to be set. Users need to use * the defined edma_interrupt_enable_t type. */ void EDMA_TcdDisableInterrupts(edma_tcd_t *tcd, uint32_t mask) { assert(tcd != NULL); /* Disable Major interrupt */ if (0U != (mask & (uint32_t)kEDMA_MajorInterruptEnable)) { tcd->CSR &= ~(uint16_t)DMA_CSR_INTMAJOR_MASK; } /* Disable Half major interrupt */ if (0U != (mask & (uint32_t)kEDMA_HalfInterruptEnable)) { tcd->CSR &= ~(uint16_t)DMA_CSR_INTHALF_MASK; } } /*! * brief Gets the remaining major loop count from the eDMA current channel TCD. * * This function checks the TCD (Task Control Descriptor) status for a specified * eDMA channel and returns the number of major loop count that has not finished. * * param base eDMA peripheral base address. * param channel eDMA channel number. * return Major loop count which has not been transferred yet for the current TCD. * note 1. This function can only be used to get unfinished major loop count of transfer without * the next TCD, or it might be inaccuracy. * 2. The unfinished/remaining transfer bytes cannot be obtained directly from registers while * the channel is running. * Because to calculate the remaining bytes, the initial NBYTES configured in DMA_TCDn_NBYTES_MLNO * register is needed while the eDMA IP does not support getting it while a channel is active. * In another word, the NBYTES value reading is always the actual (decrementing) NBYTES value the dma_engine * is working with while a channel is running. * Consequently, to get the remaining transfer bytes, a software-saved initial value of NBYTES (for example * copied before enabling the channel) is needed. The formula to calculate it is shown below: * RemainingBytes = RemainingMajorLoopCount * NBYTES(initially configured) */ uint32_t EDMA_GetRemainingMajorLoopCount(DMA_Type *base, uint32_t channel) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); uint32_t remainingCount = 0; if (0U != (DMA_CSR_DONE_MASK & base->TCD[channel].CSR)) { remainingCount = 0; } else { /* Calculate the unfinished bytes */ if (0U != (base->TCD[channel].CITER_ELINKNO & DMA_CITER_ELINKNO_ELINK_MASK)) { remainingCount = (((uint32_t)base->TCD[channel].CITER_ELINKYES & DMA_CITER_ELINKYES_CITER_MASK) >> DMA_CITER_ELINKYES_CITER_SHIFT); } else { remainingCount = (((uint32_t)base->TCD[channel].CITER_ELINKNO & DMA_CITER_ELINKNO_CITER_MASK) >> DMA_CITER_ELINKNO_CITER_SHIFT); } } return remainingCount; } /*! * brief Gets the eDMA channel status flags. * * param base eDMA peripheral base address. * param channel eDMA channel number. * return The mask of channel status flags. Users need to use the * _edma_channel_status_flags type to decode the return variables. */ uint32_t EDMA_GetChannelStatusFlags(DMA_Type *base, uint32_t channel) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); uint32_t retval = 0; /* Get DONE bit flag */ retval |= (((uint32_t)base->TCD[channel].CSR & DMA_CSR_DONE_MASK) >> DMA_CSR_DONE_SHIFT); /* Get ERROR bit flag */ retval |= ((((uint32_t)base->ERR >> channel) & 0x1U) << 1U); /* Get INT bit flag */ retval |= ((((uint32_t)base->INT >> channel) & 0x1U) << 2U); return retval; } /*! * brief Clears the eDMA channel status flags. * * param base eDMA peripheral base address. * param channel eDMA channel number. * param mask The mask of channel status to be cleared. Users need to use * the defined _edma_channel_status_flags type. */ void EDMA_ClearChannelStatusFlags(DMA_Type *base, uint32_t channel, uint32_t mask) { assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); /* Clear DONE bit flag */ if (0U != (mask & (uint32_t)kEDMA_DoneFlag)) { base->CDNE = (uint8_t)channel; } /* Clear ERROR bit flag */ if (0U != (mask & (uint32_t)kEDMA_ErrorFlag)) { base->CERR = (uint8_t)channel; } /* Clear INT bit flag */ if (0U != (mask & (uint32_t)kEDMA_InterruptFlag)) { base->CINT = (uint8_t)channel; } } static uint8_t Get_StartInstance(void) { static uint8_t StartInstanceNum; #if defined(DMA0) StartInstanceNum = (uint8_t)EDMA_GetInstance(DMA0); #elif defined(DMA1) StartInstanceNum = EDMA_GetInstance(DMA1); #elif defined(DMA2) StartInstanceNum = EDMA_GetInstance(DMA2); #elif defined(DMA3) StartInstanceNum = EDMA_GetInstance(DMA3); #endif return StartInstanceNum; } /*! * brief Creates the eDMA handle. * * This function is called if using the transactional API for eDMA. This function * initializes the internal state of the eDMA handle. * * param handle eDMA handle pointer. The eDMA handle stores callback function and * parameters. * param base eDMA peripheral base address. * param channel eDMA channel number. */ void EDMA_CreateHandle(edma_handle_t *handle, DMA_Type *base, uint32_t channel) { assert(handle != NULL); assert(channel < (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL); uint32_t edmaInstance; uint32_t channelIndex; uint8_t StartInstance; edma_tcd_t *tcdRegs; /* Zero the handle */ (void)memset(handle, 0, sizeof(*handle)); handle->base = base; handle->channel = (uint8_t)channel; /* Get the DMA instance number */ edmaInstance = EDMA_GetInstance(base); StartInstance = Get_StartInstance(); channelIndex = ((edmaInstance - StartInstance) * (uint32_t)FSL_FEATURE_EDMA_MODULE_CHANNEL) + channel; s_EDMAHandle[channelIndex] = handle; /* Enable NVIC interrupt */ (void)EnableIRQ(s_edmaIRQNumber[edmaInstance][channel]); /* Reset TCD registers to zero. Unlike the EDMA_TcdReset(DREQ will be set), CSR will be 0. Because in order to suit EDMA busy check mechanism in EDMA_SubmitTransfer, CSR must be set 0. */ tcdRegs = (edma_tcd_t *)(uint32_t)&handle->base->TCD[handle->channel]; tcdRegs->SADDR = 0; tcdRegs->SOFF = 0; tcdRegs->ATTR = 0; tcdRegs->NBYTES = 0; tcdRegs->SLAST = 0; tcdRegs->DADDR = 0; tcdRegs->DOFF = 0; tcdRegs->CITER = 0; tcdRegs->DLAST_SGA = 0; tcdRegs->CSR = 0; tcdRegs->BITER = 0; } /*! * brief Installs the TCDs memory pool into the eDMA handle. * * This function is called after the EDMA_CreateHandle to use scatter/gather feature. This function shall only be used * while users need to use scatter gather mode. Scatter gather mode enables EDMA to load a new transfer control block * (tcd) in hardware, and automatically reconfigure that DMA channel for a new transfer. * Users need to prepare tcd memory and also configure tcds using interface EDMA_SubmitTransfer. * * param handle eDMA handle pointer. * param tcdPool A memory pool to store TCDs. It must be 32 bytes aligned. * param tcdSize The number of TCD slots. */ void EDMA_InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize) { assert(handle != NULL); assert(((uint32_t)tcdPool & 0x1FU) == 0U); /* Initialize tcd queue attribute. */ handle->header = 0; handle->tail = 0; handle->tcdUsed = 0; handle->tcdSize = (int8_t)tcdSize; handle->flags = 0; handle->tcdPool = tcdPool; } /*! * brief Installs a callback function for the eDMA transfer. * * This callback is called in the eDMA IRQ handler. Use the callback to do something after * the current major loop transfer completes. This function will be called every time one tcd finished transfer. * * param handle eDMA handle pointer. * param callback eDMA callback function pointer. * param userData A parameter for the callback function. */ void EDMA_SetCallback(edma_handle_t *handle, edma_callback callback, void *userData) { assert(handle != NULL); handle->callback = callback; handle->userData = userData; } /*! * brief Prepares the eDMA transfer structure. * * This function prepares the transfer configuration structure according to the user input. * * param config The user configuration structure of type edma_transfer_t. * param srcAddr eDMA transfer source address. * param srcWidth eDMA transfer source address width(bytes). * param destAddr eDMA transfer destination address. * param destWidth eDMA transfer destination address width(bytes). * param bytesEachRequest eDMA transfer bytes per channel request. * param transferBytes eDMA transfer bytes to be transferred. * param type eDMA transfer type. * note The data address and the data width must be consistent. For example, if the SRC * is 4 bytes, the source address must be 4 bytes aligned, or it results in * source address error (SAE). */ void EDMA_PrepareTransfer(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth, void *destAddr, uint32_t destWidth, uint32_t bytesEachRequest, uint32_t transferBytes, edma_transfer_type_t type) { assert(config != NULL); assert(srcAddr != NULL); assert(destAddr != NULL); assert((srcWidth == 1U) || (srcWidth == 2U) || (srcWidth == 4U) || (srcWidth == 8U) || (srcWidth == 16U) || (srcWidth == 32U)); assert((destWidth == 1U) || (destWidth == 2U) || (destWidth == 4U) || (destWidth == 8U) || (destWidth == 16U) || (destWidth == 32U)); assert((transferBytes % bytesEachRequest) == 0U); /* Initializes the configure structure to zero. */ (void)memset(config, 0, sizeof(*config)); config->destAddr = (uint32_t)(uint32_t *)destAddr; config->srcAddr = (uint32_t)(uint32_t *)srcAddr; config->minorLoopBytes = bytesEachRequest; config->majorLoopCounts = transferBytes / bytesEachRequest; switch (srcWidth) { case 1U: config->srcTransferSize = kEDMA_TransferSize1Bytes; break; case 2U: config->srcTransferSize = kEDMA_TransferSize2Bytes; break; case 4U: config->srcTransferSize = kEDMA_TransferSize4Bytes; break; #if (defined(FSL_FEATURE_EDMA_SUPPORT_8_BYTES_TRANSFER) && FSL_FEATURE_EDMA_SUPPORT_8_BYTES_TRANSFER) case 8U: config->srcTransferSize = kEDMA_TransferSize8Bytes; break; #endif #if (defined(FSL_FEATURE_EDMA_SUPPORT_16_BYTES_TRANSFER) && FSL_FEATURE_EDMA_SUPPORT_16_BYTES_TRANSFER) case 16U: config->srcTransferSize = kEDMA_TransferSize16Bytes; break; #endif case 32U: config->srcTransferSize = kEDMA_TransferSize32Bytes; break; default: /* All the cases have been listed above, the default clause should not be reached. */ assert(false); break; } switch (destWidth) { case 1U: config->destTransferSize = kEDMA_TransferSize1Bytes; break; case 2U: config->destTransferSize = kEDMA_TransferSize2Bytes; break; case 4U: config->destTransferSize = kEDMA_TransferSize4Bytes; break; #if (defined(FSL_FEATURE_EDMA_SUPPORT_8_BYTES_TRANSFER) && FSL_FEATURE_EDMA_SUPPORT_8_BYTES_TRANSFER) case 8U: config->destTransferSize = kEDMA_TransferSize8Bytes; break; #endif #if (defined(FSL_FEATURE_EDMA_SUPPORT_16_BYTES_TRANSFER) && FSL_FEATURE_EDMA_SUPPORT_16_BYTES_TRANSFER) case 16U: config->destTransferSize = kEDMA_TransferSize16Bytes; break; #endif case 32U: config->destTransferSize = kEDMA_TransferSize32Bytes; break; default: /* All the cases have been listed above, the default clause should not be reached. */ assert(false); break; } switch (type) { case kEDMA_MemoryToMemory: config->destOffset = (int16_t)destWidth; config->srcOffset = (int16_t)srcWidth; break; case kEDMA_MemoryToPeripheral: config->destOffset = 0; config->srcOffset = (int16_t)srcWidth; break; case kEDMA_PeripheralToMemory: config->destOffset = (int16_t)destWidth; config->srcOffset = 0; break; default: /* All the cases have been listed above, the default clause should not be reached. */ assert(false); break; } } /*! * brief Submits the eDMA transfer request. * * This function submits the eDMA transfer request according to the transfer configuration structure. * In scatter gather mode, call this function will add a configured tcd to the circular list of tcd pool. * The tcd pools is setup by call function EDMA_InstallTCDMemory before. * * param handle eDMA handle pointer. * param config Pointer to eDMA transfer configuration structure. * retval kStatus_EDMA_Success It means submit transfer request succeed. * retval kStatus_EDMA_QueueFull It means TCD queue is full. Submit transfer request is not allowed. * retval kStatus_EDMA_Busy It means the given channel is busy, need to submit request later. */ status_t EDMA_SubmitTransfer(edma_handle_t *handle, const edma_transfer_config_t *config) { assert(handle != NULL); assert(config != NULL); uint32_t tmpCSR = 0; edma_tcd_t *tcdRegs = (edma_tcd_t *)(uint32_t)&handle->base->TCD[handle->channel]; if (handle->tcdPool == NULL) { /* Check if EDMA is busy: if the given channel started transfer, CSR will be not zero. Because if it is the last transfer, DREQ will be set. If not, ESG will be set. So in order to suit this check mechanism, EDMA_CreatHandle will clear CSR register. */ tmpCSR = tcdRegs->CSR; if ((tmpCSR != 0U) && ((tmpCSR & DMA_CSR_DONE_MASK) == 0U)) { return kStatus_EDMA_Busy; } else { EDMA_SetTransferConfig(handle->base, handle->channel, config, NULL); /* Enable auto disable request feature */ handle->base->TCD[handle->channel].CSR |= DMA_CSR_DREQ_MASK; /* Enable major interrupt */ handle->base->TCD[handle->channel].CSR |= DMA_CSR_INTMAJOR_MASK; return kStatus_Success; } } else /* Use the TCD queue. */ { uint32_t primask; uint16_t csr; int8_t currentTcd; int8_t previousTcd; int8_t nextTcd; int8_t tmpTcdUsed; int8_t tmpTcdSize; /* Check if tcd pool is full. */ primask = DisableGlobalIRQ(); tmpTcdUsed = handle->tcdUsed; tmpTcdSize = handle->tcdSize; if (tmpTcdUsed >= tmpTcdSize) { EnableGlobalIRQ(primask); return kStatus_EDMA_QueueFull; } currentTcd = handle->tail; handle->tcdUsed++; /* Calculate index of next TCD */ nextTcd = currentTcd + 1; if (nextTcd == handle->tcdSize) { nextTcd = 0; } /* Advance queue tail index */ handle->tail = nextTcd; EnableGlobalIRQ(primask); /* Calculate index of previous TCD */ previousTcd = currentTcd != 0 ? currentTcd - 1 : (handle->tcdSize - 1); /* Configure current TCD block. */ EDMA_TcdReset(&handle->tcdPool[currentTcd]); EDMA_TcdSetTransferConfig(&handle->tcdPool[currentTcd], config, NULL); /* Enable major interrupt */ handle->tcdPool[currentTcd].CSR |= DMA_CSR_INTMAJOR_MASK; /* Link current TCD with next TCD for identification of current TCD */ handle->tcdPool[currentTcd].DLAST_SGA = (uint32_t)&handle->tcdPool[nextTcd]; /* Chain from previous descriptor unless tcd pool size is 1(this descriptor is its own predecessor). */ if (currentTcd != previousTcd) { /* Enable scatter/gather feature in the previous TCD block. */ csr = (uint16_t)((handle->tcdPool[previousTcd].CSR | DMA_CSR_ESG_MASK) & ~DMA_CSR_DREQ_MASK); handle->tcdPool[previousTcd].CSR = csr; /* Check if the TCD block in the registers is the previous one (points to current TCD block). It is used to check if the previous TCD linked has been loaded in TCD register. If so, it need to link the TCD register in case link the current TCD with the dead chain when TCD loading occurs before link the previous TCD block. */ if (tcdRegs->DLAST_SGA == (uint32_t)&handle->tcdPool[currentTcd]) { /* Clear the DREQ bits for the dynamic scatter gather */ tcdRegs->CSR |= DMA_CSR_DREQ_MASK; /* Enable scatter/gather also in the TCD registers. */ csr = tcdRegs->CSR | DMA_CSR_ESG_MASK; /* Must write the CSR register one-time, because the transfer maybe finished anytime. */ tcdRegs->CSR = csr; /* It is very important to check the ESG bit! Because this hardware design: if DONE bit is set, the ESG bit can not be set. So it can be used to check if the dynamic TCD link operation is successful. If ESG bit is not set and the DLAST_SGA is not the next TCD address(it means the dynamic TCD link succeed and the current TCD block has been loaded into TCD registers), it means transfer finished and TCD link operation fail, so must install TCD content into TCD registers and enable transfer again. And if ESG is set, it means transfer has not finished, so TCD dynamic link succeed. */ if (0U != (tcdRegs->CSR & DMA_CSR_ESG_MASK)) { tcdRegs->CSR &= ~(uint16_t)DMA_CSR_DREQ_MASK; return kStatus_Success; } /* Check whether the current TCD block is already loaded in the TCD registers. It is another condition when ESG bit is not set: it means the dynamic TCD link succeed and the current TCD block has been loaded into TCD registers. */ if (tcdRegs->DLAST_SGA == (uint32_t)&handle->tcdPool[nextTcd]) { return kStatus_Success; } /* If go to this, means the previous transfer finished, and the DONE bit is set. So shall configure TCD registers. */ } else if (tcdRegs->DLAST_SGA != 0U) { /* The current TCD block has been linked successfully. */ return kStatus_Success; } else { /* DLAST_SGA is 0 and it means the first submit transfer, so shall configure TCD registers. */ } } /* There is no live chain, TCD block need to be installed in TCD registers. */ EDMA_InstallTCD(handle->base, handle->channel, &handle->tcdPool[currentTcd]); /* Enable channel request again. */ if (0U != (handle->flags & EDMA_TRANSFER_ENABLED_MASK)) { handle->base->SERQ = DMA_SERQ_SERQ(handle->channel); } return kStatus_Success; } } /*! * brief eDMA starts transfer. * * This function enables the channel request. Users can call this function after submitting the transfer request * or before submitting the transfer request. * * param handle eDMA handle pointer. */ void EDMA_StartTransfer(edma_handle_t *handle) { assert(handle != NULL); uint32_t tmpCSR = 0; if (handle->tcdPool == NULL) { handle->base->SERQ = DMA_SERQ_SERQ(handle->channel); } else /* Use the TCD queue. */ { uint32_t primask; edma_tcd_t *tcdRegs = (edma_tcd_t *)(uint32_t)&handle->base->TCD[handle->channel]; handle->flags |= EDMA_TRANSFER_ENABLED_MASK; /* Check if there was at least one descriptor submitted since reset (TCD in registers is valid) */ if (tcdRegs->DLAST_SGA != 0U) { primask = DisableGlobalIRQ(); /* Check if channel request is actually disable. */ if ((handle->base->ERQ & ((uint32_t)1U << handle->channel)) == 0U) { /* Check if transfer is paused. */ tmpCSR = tcdRegs->CSR; if ((0U == (tmpCSR & DMA_CSR_DONE_MASK)) || (0U != (tmpCSR & DMA_CSR_ESG_MASK))) { /* Re-enable channel request must be as soon as possible, so must put it into critical section to avoid task switching or interrupt service routine. */ handle->base->SERQ = DMA_SERQ_SERQ(handle->channel); } } EnableGlobalIRQ(primask); } } } /*! * brief eDMA stops transfer. * * This function disables the channel request to pause the transfer. Users can call EDMA_StartTransfer() * again to resume the transfer. * * param handle eDMA handle pointer. */ void EDMA_StopTransfer(edma_handle_t *handle) { assert(handle != NULL); handle->flags &= (~(uint8_t)EDMA_TRANSFER_ENABLED_MASK); handle->base->CERQ = DMA_CERQ_CERQ(handle->channel); } /*! * brief eDMA aborts transfer. * * This function disables the channel request and clear transfer status bits. * Users can submit another transfer after calling this API. * * param handle DMA handle pointer. */ void EDMA_AbortTransfer(edma_handle_t *handle) { handle->base->CERQ = DMA_CERQ_CERQ(handle->channel); /* Clear CSR to release channel. Because if the given channel started transfer, CSR will be not zero. Because if it is the last transfer, DREQ will be set. If not, ESG will be set. */ handle->base->TCD[handle->channel].CSR = 0; /* Cancel all next TCD transfer. */ handle->base->TCD[handle->channel].DLAST_SGA = 0; /* Handle the tcd */ if (handle->tcdPool != NULL) { handle->header = 0; handle->tail = 0; handle->tcdUsed = 0; } } /*! * brief eDMA IRQ handler for the current major loop transfer completion. * * This function clears the channel major interrupt flag and calls * the callback function if it is not NULL. * * Note: * For the case using TCD queue, when the major iteration count is exhausted, additional operations are performed. * These include the final address adjustments and reloading of the BITER field into the CITER. * Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from * memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled). * * For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been loaded into the eDMA engine. * As sga and sga_index are calculated based on the DLAST_SGA bitfield lies in the TCD_CSR register, the sga_index * in this case should be 2 (DLAST_SGA of TCD[1] stores the address of TCD[2]). Thus, the "tcdUsed" updated should be * (tcdUsed - 2U) which indicates the number of TCDs can be loaded in the memory pool (because TCD[0] and TCD[1] have * been loaded into the eDMA engine at this point already.). * * For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The last ISR does not * load a new TCD) from the memory pool to the eDMA engine when major loop completes. * Therefore, ensure that the header and tcdUsed updated are identical for them. * tcdUsed are both 0 in this case as no TCD to be loaded. * * See the "eDMA basic data flow" in the eDMA Functional description section of the Reference Manual for * further details. * * param handle eDMA handle pointer. */ void EDMA_HandleIRQ(edma_handle_t *handle) { assert(handle != NULL); bool transfer_done; /* Clear EDMA interrupt flag */ handle->base->CINT = handle->channel; /* Check if transfer is already finished. */ transfer_done = ((handle->base->TCD[handle->channel].CSR & DMA_CSR_DONE_MASK) != 0U); if (handle->tcdPool == NULL) { if (handle->callback != NULL) { (handle->callback)(handle, handle->userData, transfer_done, 0); } } else /* Use the TCD queue. Please refer to the API descriptions in the eDMA header file for detailed information. */ { uint32_t sga = handle->base->TCD[handle->channel].DLAST_SGA; uint32_t sga_index; int32_t tcds_done; uint8_t new_header; /* Get the offset of the next transfer TCD blocks to be loaded into the eDMA engine. */ sga -= (uint32_t)handle->tcdPool; /* Get the index of the next transfer TCD blocks to be loaded into the eDMA engine. */ sga_index = sga / sizeof(edma_tcd_t); /* Adjust header positions. */ if (transfer_done) { /* New header shall point to the next TCD to be loaded (current one is already finished) */ new_header = (uint8_t)sga_index; } else { /* New header shall point to this descriptor currently loaded (not finished yet) */ new_header = sga_index != 0U ? (uint8_t)sga_index - 1U : (uint8_t)handle->tcdSize - 1U; } /* Calculate the number of finished TCDs */ if (new_header == (uint8_t)handle->header) { int8_t tmpTcdUsed = handle->tcdUsed; int8_t tmpTcdSize = handle->tcdSize; if (tmpTcdUsed == tmpTcdSize) { tcds_done = handle->tcdUsed; } else { /* No TCD in the memory are going to be loaded or internal error occurs. */ tcds_done = 0; } } else { tcds_done = (uint32_t)new_header - (uint32_t)handle->header; if (tcds_done < 0) { tcds_done += handle->tcdSize; } } /* Advance header which points to the TCD to be loaded into the eDMA engine from memory. */ handle->header = (int8_t)new_header; /* Release TCD blocks. tcdUsed is the TCD number which can be used/loaded in the memory pool. */ handle->tcdUsed -= (int8_t)tcds_done; /* Invoke callback function. */ if (NULL != handle->callback) { (handle->callback)(handle, handle->userData, transfer_done, tcds_done); } /* clear the DONE bit here is meaningful for below cases: *1.A new TCD has been loaded to EDMA already: * need to clear the DONE bit in the IRQ handler to avoid TCD in EDMA been overwritten * if peripheral request isn't coming before next transfer request. *2.A new TCD has not been loaded to EDMA: * for the case that transfer request occur in the privious edma callback, this is a case that doesn't * need scatter gather, so keep DONE bit during the next transfer request will re-install the TCD. */ if (transfer_done) { handle->base->CDNE = handle->channel; } } } #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 4) /* 8 channels (Shared): kl28 */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL == 8U) #if defined(DMA0) void DMA0_04_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[0]); } if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[4]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_15_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[1]); } if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[5]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_26_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[2]); } if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[6]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_37_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[3]); } if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[7]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #if defined(DMA1) #if defined(DMA0) void DMA1_04_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 0U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[8]); } if ((EDMA_GetChannelStatusFlags(DMA1, 4U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[12]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_15_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 1U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[9]); } if ((EDMA_GetChannelStatusFlags(DMA1, 5U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[13]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_26_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 2U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[10]); } if ((EDMA_GetChannelStatusFlags(DMA1, 6U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[14]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_37_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 3U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[11]); } if ((EDMA_GetChannelStatusFlags(DMA1, 7U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[15]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #else void DMA1_04_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 0U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[0]); } if ((EDMA_GetChannelStatusFlags(DMA1, 4U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[4]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_15_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 1U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[1]); } if ((EDMA_GetChannelStatusFlags(DMA1, 5U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[5]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_26_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 2U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[2]); } if ((EDMA_GetChannelStatusFlags(DMA1, 6U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[6]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_37_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 3U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[3]); } if ((EDMA_GetChannelStatusFlags(DMA1, 7U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[7]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #endif #endif /* 8 channels (Shared) */ #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 8) /* 16 channels (Shared): K32H844P */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL == 16U) void DMA0_08_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[0]); } if ((EDMA_GetChannelStatusFlags(DMA0, 8U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[8]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_19_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[1]); } if ((EDMA_GetChannelStatusFlags(DMA0, 9U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[9]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_210_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[2]); } if ((EDMA_GetChannelStatusFlags(DMA0, 10U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[10]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_311_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[3]); } if ((EDMA_GetChannelStatusFlags(DMA0, 11U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[11]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_412_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[4]); } if ((EDMA_GetChannelStatusFlags(DMA0, 12U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[12]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_513_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[5]); } if ((EDMA_GetChannelStatusFlags(DMA0, 13U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[13]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_614_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[6]); } if ((EDMA_GetChannelStatusFlags(DMA0, 14U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[14]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_715_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[7]); } if ((EDMA_GetChannelStatusFlags(DMA0, 15U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[15]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #if defined(DMA1) void DMA1_08_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 0U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[16]); } if ((EDMA_GetChannelStatusFlags(DMA1, 8U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[24]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_19_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 1U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[17]); } if ((EDMA_GetChannelStatusFlags(DMA1, 9U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[25]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_210_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 2U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[18]); } if ((EDMA_GetChannelStatusFlags(DMA1, 10U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[26]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_311_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 3U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[19]); } if ((EDMA_GetChannelStatusFlags(DMA1, 11U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[27]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_412_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 4U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[20]); } if ((EDMA_GetChannelStatusFlags(DMA1, 12U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[28]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_513_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 5U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[21]); } if ((EDMA_GetChannelStatusFlags(DMA1, 13U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[29]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_614_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 6U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[22]); } if ((EDMA_GetChannelStatusFlags(DMA1, 14U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[30]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_715_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA1, 7U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[23]); } if ((EDMA_GetChannelStatusFlags(DMA1, 15U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[31]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #endif /* 16 channels (Shared) */ #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 16) /* 32 channels (Shared): k80 */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && FSL_FEATURE_EDMA_MODULE_CHANNEL == 32U void DMA0_DMA16_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[0]); } if ((EDMA_GetChannelStatusFlags(DMA0, 16U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[16]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_DMA17_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[1]); } if ((EDMA_GetChannelStatusFlags(DMA0, 17U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[17]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA2_DMA18_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[2]); } if ((EDMA_GetChannelStatusFlags(DMA0, 18U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[18]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA3_DMA19_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[3]); } if ((EDMA_GetChannelStatusFlags(DMA0, 19U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[19]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA4_DMA20_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[4]); } if ((EDMA_GetChannelStatusFlags(DMA0, 20U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[20]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA5_DMA21_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[5]); } if ((EDMA_GetChannelStatusFlags(DMA0, 21U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[21]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA6_DMA22_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[6]); } if ((EDMA_GetChannelStatusFlags(DMA0, 22U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[22]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA7_DMA23_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[7]); } if ((EDMA_GetChannelStatusFlags(DMA0, 23U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[23]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA8_DMA24_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 8U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[8]); } if ((EDMA_GetChannelStatusFlags(DMA0, 24U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[24]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA9_DMA25_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 9U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[9]); } if ((EDMA_GetChannelStatusFlags(DMA0, 25U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[25]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA10_DMA26_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 10U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[10]); } if ((EDMA_GetChannelStatusFlags(DMA0, 26U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[26]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA11_DMA27_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 11U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[11]); } if ((EDMA_GetChannelStatusFlags(DMA0, 27U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[27]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA12_DMA28_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 12U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[12]); } if ((EDMA_GetChannelStatusFlags(DMA0, 28U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[28]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA13_DMA29_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 13U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[13]); } if ((EDMA_GetChannelStatusFlags(DMA0, 29U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[29]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA14_DMA30_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 14U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[14]); } if ((EDMA_GetChannelStatusFlags(DMA0, 30U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[30]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA15_DMA31_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 15U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[15]); } if ((EDMA_GetChannelStatusFlags(DMA0, 31U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[31]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif /* 32 channels (Shared) */ #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 4) /* 32 channels (Shared): MCIMX7U5_M4 */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL == 32U) void DMA0_0_4_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 0U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[0]); } if ((EDMA_GetChannelStatusFlags(DMA0, 4U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[4]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_1_5_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 1U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[1]); } if ((EDMA_GetChannelStatusFlags(DMA0, 5U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[5]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_2_6_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 2U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[2]); } if ((EDMA_GetChannelStatusFlags(DMA0, 6U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[6]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_3_7_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 3U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[3]); } if ((EDMA_GetChannelStatusFlags(DMA0, 7U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[7]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_8_12_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 8U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[8]); } if ((EDMA_GetChannelStatusFlags(DMA0, 12U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[12]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_9_13_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 9U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[9]); } if ((EDMA_GetChannelStatusFlags(DMA0, 13U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[13]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_10_14_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 10U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[10]); } if ((EDMA_GetChannelStatusFlags(DMA0, 14U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[14]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_11_15_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 11U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[11]); } if ((EDMA_GetChannelStatusFlags(DMA0, 15U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[15]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_16_20_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 16U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[16]); } if ((EDMA_GetChannelStatusFlags(DMA0, 20U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[20]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_17_21_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 17U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[17]); } if ((EDMA_GetChannelStatusFlags(DMA0, 21U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[21]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_18_22_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 18U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[18]); } if ((EDMA_GetChannelStatusFlags(DMA0, 22U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[22]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_19_23_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 19U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[19]); } if ((EDMA_GetChannelStatusFlags(DMA0, 23U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[23]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_24_28_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 24U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[24]); } if ((EDMA_GetChannelStatusFlags(DMA0, 28U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[28]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_25_29_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 25U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[25]); } if ((EDMA_GetChannelStatusFlags(DMA0, 29U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[29]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_26_30_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 26U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[26]); } if ((EDMA_GetChannelStatusFlags(DMA0, 30U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[30]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA0_27_31_DriverIRQHandler(void) { if ((EDMA_GetChannelStatusFlags(DMA0, 27U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[27]); } if ((EDMA_GetChannelStatusFlags(DMA0, 31U) & kEDMA_InterruptFlag) != 0U) { EDMA_HandleIRQ(s_EDMAHandle[31]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif /* 32 channels (Shared): MCIMX7U5 */ #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET) && \ (FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET == 0) /* 4 channels (No Shared): kv10 */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 0) void DMA0_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[0]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA1_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[1]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA2_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[2]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA3_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[3]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } /* 8 channels (No Shared) */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 4U) void DMA4_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[4]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA5_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[5]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA6_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[6]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA7_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[7]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL == 8 */ /* 16 channels (No Shared) */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 8U) void DMA8_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[8]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA9_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[9]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA10_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[10]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA11_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[11]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA12_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[12]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA13_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[13]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA14_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[14]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA15_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[15]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL == 16 */ /* 32 channels (No Shared) */ #if defined(FSL_FEATURE_EDMA_MODULE_CHANNEL) && (FSL_FEATURE_EDMA_MODULE_CHANNEL > 16U) void DMA16_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[16]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA17_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[17]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA18_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[18]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA19_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[19]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA20_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[20]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA21_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[21]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA22_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[22]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA23_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[23]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA24_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[24]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA25_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[25]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA26_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[26]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA27_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[27]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA28_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[28]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA29_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[29]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA30_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[30]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } void DMA31_DriverIRQHandler(void) { EDMA_HandleIRQ(s_EDMAHandle[31]); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL == 32 */ #endif /* 4/8/16/32 channels (No Shared) */ #endif /* FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET */ |