Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 | /* * Copyright (c) 2011-2014 Wind River Systems, Inc. * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include <kernel.h> #include <ia32/mmustructs.h> #include <linker/linker-defs.h> #include <kernel_internal.h> #include <kernel_structs.h> #include <init.h> #include <ctype.h> #include <string.h> /* Despite our use of PAE page tables, we do not (and will never) actually * support PAE. Use a 64-bit x86 target if you have that much RAM. */ BUILD_ASSERT(DT_PHYS_RAM_ADDR + (DT_RAM_SIZE * 1024ULL) - 1ULL <= (unsigned long long)UINTPTR_MAX); /* Common regions for all x86 processors. * Peripheral I/O ranges configured at the SOC level */ /* Mark text and rodata as read-only. * Userspace may read all text and rodata. */ MMU_BOOT_REGION((u32_t)&_image_text_start, (u32_t)&_image_text_size, MMU_ENTRY_READ | MMU_ENTRY_USER); MMU_BOOT_REGION((u32_t)&_image_rodata_start, (u32_t)&_image_rodata_size, MMU_ENTRY_READ | MMU_ENTRY_USER | MMU_ENTRY_EXECUTE_DISABLE); #ifdef CONFIG_USERSPACE MMU_BOOT_REGION((u32_t)&_app_smem_start, (u32_t)&_app_smem_size, MMU_ENTRY_WRITE | MMU_ENTRY_EXECUTE_DISABLE); #endif #ifdef CONFIG_COVERAGE_GCOV MMU_BOOT_REGION((u32_t)&__gcov_bss_start, (u32_t)&__gcov_bss_size, MMU_ENTRY_WRITE | MMU_ENTRY_USER | MMU_ENTRY_EXECUTE_DISABLE); #endif /* __kernel_ram_size includes all unused memory, which is used for heaps. * User threads cannot access this unless granted at runtime. This is done * automatically for stacks. */ MMU_BOOT_REGION((u32_t)&__kernel_ram_start, (u32_t)&__kernel_ram_size, MMU_ENTRY_WRITE | MMU_ENTRY_EXECUTE_DISABLE); /* Works for PDPT, PD, PT entries, the bits we check here are all the same. * * Not trying to capture every flag, just the most interesting stuff, * Present, write, XD, user, in typically encountered combinations. */ static char get_entry_code(u64_t value) { char ret; if ((value & MMU_ENTRY_PRESENT) == 0) { ret = '.'; } else { if ((value & MMU_ENTRY_WRITE) != 0) { /* Writable page */ if ((value & MMU_ENTRY_EXECUTE_DISABLE) != 0) { /* RW */ ret = 'w'; } else { /* RWX */ ret = 'a'; } } else { if ((value & MMU_ENTRY_EXECUTE_DISABLE) != 0) { /* R */ ret = 'r'; } else { /* RX */ ret = 'x'; } } if ((value & MMU_ENTRY_USER) != 0) { /* Uppercase indicates user mode access */ ret = toupper(ret); } } return ret; } static void z_x86_dump_pt(struct x86_mmu_pt *pt, uintptr_t base, int index) { int column = 0; printk("Page table %d for 0x%08lX - 0x%08lX at %p\n", index, base, base + Z_X86_PT_AREA - 1, pt); for (int i = 0; i < Z_X86_NUM_PT_ENTRIES; i++) { printk("%c", get_entry_code(pt->entry[i].value)); column++; if (column == 64) { column = 0; printk("\n"); } } } static void z_x86_dump_pd(struct x86_mmu_pd *pd, uintptr_t base, int index) { int column = 0; printk("Page directory %d for 0x%08lX - 0x%08lX at %p\n", index, base, base + Z_X86_PD_AREA - 1, pd); for (int i = 0; i < Z_X86_NUM_PD_ENTRIES; i++) { printk("%c", get_entry_code(pd->entry[i].pt.value)); column++; if (column == 64) { column = 0; printk("\n"); } } for (int i = 0; i < Z_X86_NUM_PD_ENTRIES; i++) { struct x86_mmu_pt *pt; union x86_mmu_pde_pt *pde = &pd->entry[i].pt; if (pde->p == 0 || pde->ps == 1) { /* Skip non-present, or 2MB directory entries, there's * no page table to examine */ continue; } pt = (struct x86_mmu_pt *)(pde->pt << MMU_PAGE_SHIFT); z_x86_dump_pt(pt, base + (i * Z_X86_PT_AREA), i); } } static void z_x86_dump_pdpt(struct x86_mmu_pdpt *pdpt, uintptr_t base, int index) { printk("Page directory pointer table %d for 0x%08lX - 0x%08lX at %p\n", index, base, base + Z_X86_PDPT_AREA - 1, pdpt); for (int i = 0; i < Z_X86_NUM_PDPT_ENTRIES; i++) { printk("%c", get_entry_code(pdpt->entry[i].value)); } printk("\n"); for (int i = 0; i < Z_X86_NUM_PDPT_ENTRIES; i++) { struct x86_mmu_pd *pd; if (pdpt->entry[i].p == 0) { continue; } pd = (struct x86_mmu_pd *)(pdpt->entry[i].pd << MMU_PAGE_SHIFT); z_x86_dump_pd(pd, base + (i * Z_X86_PD_AREA), i); } } void z_x86_dump_page_tables(struct x86_mmu_pdpt *pdpt) { z_x86_dump_pdpt(pdpt, 0, 0); } void z_x86_mmu_get_flags(struct x86_mmu_pdpt *pdpt, void *addr, x86_page_entry_data_t *pde_flags, x86_page_entry_data_t *pte_flags) { *pde_flags = (x86_page_entry_data_t)(X86_MMU_GET_PDE(pdpt, addr)->value & ~(x86_page_entry_data_t)MMU_PDE_PAGE_TABLE_MASK); if ((*pde_flags & MMU_ENTRY_PRESENT) != 0) { *pte_flags = (x86_page_entry_data_t) (X86_MMU_GET_PTE(pdpt, addr)->value & ~(x86_page_entry_data_t)MMU_PTE_PAGE_MASK); } else { *pte_flags = 0; } } int z_x86_mmu_validate(struct x86_mmu_pdpt *pdpt, void *addr, size_t size, int write) { u32_t start_pde_num; u32_t end_pde_num; u32_t starting_pte_num; u32_t ending_pte_num; u32_t pde; u32_t pte; union x86_mmu_pte pte_value; u32_t start_pdpte_num = MMU_PDPTE_NUM(addr); u32_t end_pdpte_num = MMU_PDPTE_NUM((char *)addr + size - 1); u32_t pdpte; struct x86_mmu_pt *pte_address; int ret = -EPERM; start_pde_num = MMU_PDE_NUM(addr); end_pde_num = MMU_PDE_NUM((char *)addr + size - 1); starting_pte_num = MMU_PAGE_NUM((char *)addr); for (pdpte = start_pdpte_num; pdpte <= end_pdpte_num; pdpte++) { if (pdpte != start_pdpte_num) { start_pde_num = 0U; } if (pdpte != end_pdpte_num) { end_pde_num = 0U; } else { end_pde_num = MMU_PDE_NUM((char *)addr + size - 1); } /* Ensure page directory pointer table entry is present */ if (X86_MMU_GET_PDPTE_INDEX(pdpt, pdpte)->p == 0) { goto out; } struct x86_mmu_pd *pd_address = X86_MMU_GET_PD_ADDR_INDEX(pdpt, pdpte); /* Iterate for all the pde's the buffer might take up. * (depends on the size of the buffer and start address * of the buff) */ for (pde = start_pde_num; pde <= end_pde_num; pde++) { union x86_mmu_pde_pt pde_value = pd_address->entry[pde].pt; if ((pde_value.p) == 0 || (pde_value.us) == 0 || ((write != 0) && (pde_value.rw == 0))) { goto out; } pte_address = (struct x86_mmu_pt *) (pde_value.pt << MMU_PAGE_SHIFT); /* loop over all the possible page tables for the * required size. If the pde is not the last one * then the last pte would be 511. So each pde * will be using all the page table entries except * for the last pde. For the last pde, pte is * calculated using the last memory address * of the buffer. */ if (pde != end_pde_num) { ending_pte_num = 511U; } else { ending_pte_num = MMU_PAGE_NUM((char *)addr + size - 1); } /* For all the pde's apart from the starting pde, * will have the start pte number as zero. */ if (pde != start_pde_num) { starting_pte_num = 0U; } pte_value.value = 0xFFFFFFFFU; /* Bitwise AND all the pte values. * An optimization done to make sure a compare is * done only once. */ for (pte = starting_pte_num; pte <= ending_pte_num; pte++) { pte_value.value &= pte_address->entry[pte].value; } if ((pte_value.p) == 0 || (pte_value.us) == 0 || ((write != 0) && (pte_value.rw == 0))) { goto out; } } } ret = 0; out: #ifdef CONFIG_X86_BOUNDS_CHECK_BYPASS_MITIGATION __asm__ volatile ("lfence" : : : "memory"); #endif return ret; } static inline void tlb_flush_page(void *addr) { /* Invalidate TLB entries corresponding to the page containing the * specified address */ char *page = (char *)addr; __asm__ ("invlpg %0" :: "m" (*page)); } #define PDPTE_FLAGS_MASK MMU_ENTRY_PRESENT #define PDE_FLAGS_MASK (MMU_ENTRY_WRITE | MMU_ENTRY_USER | \ PDPTE_FLAGS_MASK) #define PTE_FLAGS_MASK (PDE_FLAGS_MASK | MMU_ENTRY_EXECUTE_DISABLE | \ MMU_ENTRY_WRITE_THROUGH | \ MMU_ENTRY_CACHING_DISABLE) void z_x86_mmu_set_flags(struct x86_mmu_pdpt *pdpt, void *ptr, size_t size, x86_page_entry_data_t flags, x86_page_entry_data_t mask, bool flush) { u32_t addr = (u32_t)ptr; __ASSERT((addr & MMU_PAGE_MASK) == 0U, "unaligned address provided"); __ASSERT((size & MMU_PAGE_MASK) == 0U, "unaligned size provided"); /* L1TF mitigation: non-present PTEs will have address fields * zeroed. Expand the mask to include address bits if we are changing * the present bit. */ if ((mask & MMU_PTE_P_MASK) != 0) { mask |= MMU_PTE_PAGE_MASK; } while (size != 0) { union x86_mmu_pte *pte; union x86_mmu_pde_pt *pde; union x86_mmu_pdpte *pdpte; x86_page_entry_data_t cur_flags = flags; pdpte = X86_MMU_GET_PDPTE(pdpt, addr); __ASSERT(pdpte->p == 1, "set flags on non-present PDPTE"); pdpte->value |= (flags & PDPTE_FLAGS_MASK); pde = X86_MMU_GET_PDE(pdpt, addr); __ASSERT(pde->p == 1, "set flags on non-present PDE"); pde->value |= (flags & PDE_FLAGS_MASK); /* If any flags enable execution, clear execute disable at the * page directory level */ if ((flags & MMU_ENTRY_EXECUTE_DISABLE) == 0) { pde->value &= ~MMU_ENTRY_EXECUTE_DISABLE; } pte = X86_MMU_GET_PTE(pdpt, addr); /* If we're setting the present bit, restore the address * field. If we're clearing it, then the address field * will be zeroed instead, mapping the PTE to the NULL page. */ if (((mask & MMU_PTE_P_MASK) != 0) && ((flags & MMU_ENTRY_PRESENT) != 0)) { cur_flags |= addr; } pte->value = (pte->value & ~mask) | cur_flags; if (flush) { tlb_flush_page((void *)addr); } size -= MMU_PAGE_SIZE; addr += MMU_PAGE_SIZE; } } static char __aligned(MMU_PAGE_SIZE) page_pool[MMU_PAGE_SIZE * CONFIG_X86_MMU_PAGE_POOL_PAGES]; static char *page_pos = page_pool + sizeof(page_pool); static void *get_page(void) { page_pos -= MMU_PAGE_SIZE; __ASSERT(page_pos >= page_pool, "out of MMU pages\n"); return page_pos; } __aligned(0x20) struct x86_mmu_pdpt z_x86_kernel_pdpt; #ifdef CONFIG_X86_KPTI __aligned(0x20) struct x86_mmu_pdpt z_x86_user_pdpt; #endif extern char z_shared_kernel_page_start[]; static inline bool is_within_system_ram(uintptr_t addr) { return (addr >= DT_PHYS_RAM_ADDR) && (addr < (DT_PHYS_RAM_ADDR + (DT_RAM_SIZE * 1024U))); } static void add_mmu_region_page(struct x86_mmu_pdpt *pdpt, uintptr_t addr, u64_t flags, bool user_table) { union x86_mmu_pdpte *pdpte; struct x86_mmu_pd *pd; union x86_mmu_pde_pt *pde; struct x86_mmu_pt *pt; union x86_mmu_pte *pte; #ifdef CONFIG_X86_KPTI /* If we are generating a page table for user mode, and this address * does not have the user flag set, and this address falls outside * of system RAM, then don't bother generating any tables for it, * we will never need them later as memory domains are limited to * regions within system RAM. */ if (user_table && (flags & MMU_ENTRY_USER) == 0 && !is_within_system_ram(addr)) { return; } #endif /* Setup the PDPTE entry for the address, creating a page directory * if one didn't exist */ pdpte = &pdpt->entry[MMU_PDPTE_NUM(addr)]; if (pdpte->p == 0) { pd = get_page(); pdpte->pd = ((uintptr_t)pd) >> MMU_PAGE_SHIFT; } else { pd = (struct x86_mmu_pd *)(pdpte->pd << MMU_PAGE_SHIFT); } pdpte->value |= (flags & PDPTE_FLAGS_MASK); /* Setup the PDE entry for the address, creating a page table * if necessary */ pde = &pd->entry[MMU_PDE_NUM(addr)].pt; if (pde->p == 0) { pt = get_page(); pde->pt = ((uintptr_t)pt) >> MMU_PAGE_SHIFT; } else { pt = (struct x86_mmu_pt *)(pde->pt << MMU_PAGE_SHIFT); } pde->value |= (flags & PDE_FLAGS_MASK); /* Execute disable bit needs special handling, we should only set it * at the page directory level if ALL pages have XD set (instead of * just one). * * Use the 'ignored2' field to store a marker on whether any * configured region allows execution, the CPU never looks at * or modifies it. */ if ((flags & MMU_ENTRY_EXECUTE_DISABLE) == 0) { pde->ignored2 = 1; pde->value &= ~MMU_ENTRY_EXECUTE_DISABLE; } else if (pde->ignored2 == 0) { pde->value |= MMU_ENTRY_EXECUTE_DISABLE; } #ifdef CONFIG_X86_KPTI if (user_table && (flags & MMU_ENTRY_USER) == 0 && addr != (uintptr_t)(&z_shared_kernel_page_start)) { /* All non-user accessible pages except the shared page * are marked non-present in the page table. */ return; } #else ARG_UNUSED(user_table); #endif /* Finally set up the page table entry */ pte = &pt->entry[MMU_PAGE_NUM(addr)]; pte->page = addr >> MMU_PAGE_SHIFT; pte->value |= (flags & PTE_FLAGS_MASK); } static void add_mmu_region(struct x86_mmu_pdpt *pdpt, struct mmu_region *rgn, bool user_table) { size_t size; u64_t flags; uintptr_t addr; __ASSERT((rgn->address & MMU_PAGE_MASK) == 0U, "unaligned address provided"); __ASSERT((rgn->size & MMU_PAGE_MASK) == 0U, "unaligned size provided"); addr = rgn->address; /* Add the present flag, and filter out 'runtime user' since this * has no meaning to the actual MMU */ flags = rgn->flags | MMU_ENTRY_PRESENT; /* Iterate through the region a page at a time, creating entries as * necessary. */ size = rgn->size; while (size > 0) { add_mmu_region_page(pdpt, addr, flags, user_table); size -= MMU_PAGE_SIZE; addr += MMU_PAGE_SIZE; } } extern struct mmu_region z_x86_mmulist_start[]; extern struct mmu_region z_x86_mmulist_end[]; /* Called from x86's kernel_arch_init() */ void z_x86_paging_init(void) { size_t pages_free; for (struct mmu_region *rgn = z_x86_mmulist_start; rgn < z_x86_mmulist_end; rgn++) { add_mmu_region(&z_x86_kernel_pdpt, rgn, false); #ifdef CONFIG_X86_KPTI add_mmu_region(&z_x86_user_pdpt, rgn, true); #endif } pages_free = (page_pos - page_pool) / MMU_PAGE_SIZE; if (pages_free != 0) { printk("Optimal CONFIG_X86_MMU_PAGE_POOL_PAGES %zu\n", CONFIG_X86_MMU_PAGE_POOL_PAGES - pages_free); } z_x86_enable_paging(); } #ifdef CONFIG_X86_USERSPACE int z_arch_buffer_validate(void *addr, size_t size, int write) { return z_x86_mmu_validate(z_x86_pdpt_get(_current), addr, size, write); } static uintptr_t thread_pd_create(uintptr_t pages, struct x86_mmu_pdpt *thread_pdpt, struct x86_mmu_pdpt *master_pdpt) { uintptr_t pos = pages, phys_addr = Z_X86_PD_START; for (int i = 0; i < Z_X86_NUM_PD; i++, phys_addr += Z_X86_PD_AREA) { union x86_mmu_pdpte *pdpte; struct x86_mmu_pd *master_pd, *dest_pd; /* Obtain PD in master tables for the address range and copy * into the per-thread PD for this range */ master_pd = X86_MMU_GET_PD_ADDR(master_pdpt, phys_addr); dest_pd = (struct x86_mmu_pd *)pos; (void)memcpy(dest_pd, master_pd, sizeof(struct x86_mmu_pd)); /* Update pointer in per-thread pdpt to point to the per-thread * directory we just copied */ pdpte = X86_MMU_GET_PDPTE(thread_pdpt, phys_addr); pdpte->pd = pos >> MMU_PAGE_SHIFT; pos += MMU_PAGE_SIZE; } return pos; } /* thread_pdpt must be initialized, as well as all the page directories */ static uintptr_t thread_pt_create(uintptr_t pages, struct x86_mmu_pdpt *thread_pdpt, struct x86_mmu_pdpt *master_pdpt) { uintptr_t pos = pages, phys_addr = Z_X86_PT_START; for (int i = 0; i < Z_X86_NUM_PT; i++, phys_addr += Z_X86_PT_AREA) { union x86_mmu_pde_pt *pde; struct x86_mmu_pt *master_pt, *dest_pt; /* Same as we did with the directories, obtain PT in master * tables for the address range and copy into per-thread PT * for this range */ master_pt = X86_MMU_GET_PT_ADDR(master_pdpt, phys_addr); dest_pt = (struct x86_mmu_pt *)pos; (void)memcpy(dest_pt, master_pt, sizeof(struct x86_mmu_pd)); /* And then wire this up to the relevant per-thread * page directory entry */ pde = X86_MMU_GET_PDE(thread_pdpt, phys_addr); pde->pt = pos >> MMU_PAGE_SHIFT; pos += MMU_PAGE_SIZE; } return pos; } /* Initialize the page tables for a thread. This will contain, once done, * the boot-time configuration for a user thread page tables. There are * no pre-conditions on the existing state of the per-thread tables. */ static void copy_page_tables(struct k_thread *thread, struct x86_mmu_pdpt *master_pdpt) { uintptr_t pos, start; struct x86_mmu_pdpt *thread_pdpt = z_x86_pdpt_get(thread); struct z_x86_thread_stack_header *header = (struct z_x86_thread_stack_header *)thread->stack_obj; __ASSERT(thread->stack_obj != NULL, "no stack object assigned"); __ASSERT(z_x86_page_tables_get() != thread_pdpt, "PDPT is active"); __ASSERT(((uintptr_t)thread_pdpt & 0x1f) == 0, "unaligned pdpt at %p", thread_pdpt); (void)memcpy(thread_pdpt, master_pdpt, sizeof(struct x86_mmu_pdpt)); /* pos represents the page we are working with in the reserved area * in the stack buffer for per-thread tables. As we create tables in * this area, pos is incremented to the next free page. * * The layout of the stack object, when this is done: * * +---------------------------+ <- thread->stack_obj * | PDE(0) | * +---------------------------+ * | ... | * +---------------------------+ * | PDE(Z_X86_NUM_PD - 1) | * +---------------------------+ * | PTE(0) | * +---------------------------+ * | ... | * +---------------------------+ * | PTE(Z_X86_NUM_PT - 1) | * +---------------------------+ <- pos once this logic completes * | Stack guard | * +---------------------------+ * | Privilege elevation stack | * | PDPT | * +---------------------------+ <- thread->stack_info.start * | Thread stack | * | ... | * */ start = (uintptr_t)(&header->page_tables); pos = thread_pd_create(start, thread_pdpt, master_pdpt); pos = thread_pt_create(pos, thread_pdpt, master_pdpt); __ASSERT(pos == (start + Z_X86_THREAD_PT_AREA), "wrong amount of stack object memory used"); } static void reset_mem_partition(struct x86_mmu_pdpt *thread_pdpt, struct k_mem_partition *partition) { uintptr_t addr = partition->start; size_t size = partition->size; __ASSERT((addr & MMU_PAGE_MASK) == 0U, "unaligned address provided"); __ASSERT((size & MMU_PAGE_MASK) == 0U, "unaligned size provided"); while (size != 0) { union x86_mmu_pte *thread_pte, *master_pte; thread_pte = X86_MMU_GET_PTE(thread_pdpt, addr); master_pte = X86_MMU_GET_PTE(&USER_PDPT, addr); (void)memcpy(thread_pte, master_pte, sizeof(union x86_mmu_pte)); size -= MMU_PAGE_SIZE; addr += MMU_PAGE_SIZE; } } static void apply_mem_partition(struct x86_mmu_pdpt *pdpt, struct k_mem_partition *partition) { x86_page_entry_data_t x86_attr; x86_page_entry_data_t mask; if (IS_ENABLED(CONFIG_X86_KPTI)) { x86_attr = partition->attr | MMU_ENTRY_PRESENT; mask = K_MEM_PARTITION_PERM_MASK | MMU_PTE_P_MASK; } else { x86_attr = partition->attr; mask = K_MEM_PARTITION_PERM_MASK; } __ASSERT(partition->start >= DT_PHYS_RAM_ADDR, "region at %08lx[%u] extends below system ram start 0x%08x", partition->start, partition->size, DT_PHYS_RAM_ADDR); __ASSERT(((partition->start + partition->size) <= (DT_PHYS_RAM_ADDR + (DT_RAM_SIZE * 1024U))), "region at %08lx[%u] end at %08lx extends beyond system ram end 0x%08x", partition->start, partition->size, partition->start + partition->size, (DT_PHYS_RAM_ADDR + (DT_RAM_SIZE * 1024U))); z_x86_mmu_set_flags(pdpt, (void *)partition->start, partition->size, x86_attr, mask, false); } void z_x86_apply_mem_domain(struct x86_mmu_pdpt *pdpt, struct k_mem_domain *mem_domain) { for (int i = 0, pcount = 0; pcount < mem_domain->num_partitions; i++) { struct k_mem_partition *partition; partition = &mem_domain->partitions[i]; if (partition->size == 0) { continue; } pcount++; apply_mem_partition(pdpt, partition); } } /* Called on creation of a user thread or when a supervisor thread drops to * user mode. * * Sets up the per-thread page tables, such that when they are activated on * context switch, everything is ready to go. */ void z_x86_thread_pt_init(struct k_thread *thread) { struct x86_mmu_pdpt *pdpt = z_x86_pdpt_get(thread); /* USER_PDPT contains the page tables with the boot time memory * policy. We use it as a template to set up the per-thread page * tables. * * With KPTI, this is a distinct set of tables z_x86_user_pdpt from the * kernel page tables in z_x86_kernel_pdpt; it has all non user * accessible pages except the trampoline page marked as non-present. * Without KPTI, they are the same object. */ copy_page_tables(thread, &USER_PDPT); /* Enable access to the thread's own stack buffer */ z_x86_mmu_set_flags(pdpt, (void *)thread->stack_info.start, ROUND_UP(thread->stack_info.size, MMU_PAGE_SIZE), MMU_ENTRY_PRESENT | K_MEM_PARTITION_P_RW_U_RW, MMU_PTE_P_MASK | K_MEM_PARTITION_PERM_MASK, false); } /* * Memory domain interface * * In all cases, if one of these APIs is called on a supervisor thread, * we don't need to do anything. If the thread later drops into supervisor * mode the per-thread page tables will be generated and the memory domain * configuration applied. */ void z_arch_mem_domain_partition_remove(struct k_mem_domain *domain, u32_t partition_id) { sys_dnode_t *node, *next_node; /* Removing a partition. Need to reset the relevant memory range * to the defaults in USER_PDPT for each thread. */ SYS_DLIST_FOR_EACH_NODE_SAFE(&domain->mem_domain_q, node, next_node) { struct k_thread *thread = CONTAINER_OF(node, struct k_thread, mem_domain_info); if ((thread->base.user_options & K_USER) == 0) { continue; } reset_mem_partition(z_x86_pdpt_get(thread), &domain->partitions[partition_id]); } } void z_arch_mem_domain_destroy(struct k_mem_domain *domain) { for (int i = 0, pcount = 0; pcount < domain->num_partitions; i++) { struct k_mem_partition *partition; partition = &domain->partitions[i]; if (partition->size == 0) { continue; } pcount++; z_arch_mem_domain_partition_remove(domain, i); } } void z_arch_mem_domain_thread_remove(struct k_thread *thread) { struct k_mem_domain *domain = thread->mem_domain_info.mem_domain; /* Non-user threads don't have per-thread page tables set up */ if ((thread->base.user_options & K_USER) == 0) { return; } for (int i = 0, pcount = 0; pcount < domain->num_partitions; i++) { struct k_mem_partition *partition; partition = &domain->partitions[i]; if (partition->size == 0) { continue; } pcount++; reset_mem_partition(z_x86_pdpt_get(thread), partition); } } void z_arch_mem_domain_partition_add(struct k_mem_domain *domain, u32_t partition_id) { sys_dnode_t *node, *next_node; SYS_DLIST_FOR_EACH_NODE_SAFE(&domain->mem_domain_q, node, next_node) { struct k_thread *thread = CONTAINER_OF(node, struct k_thread, mem_domain_info); if ((thread->base.user_options & K_USER) == 0) { continue; } apply_mem_partition(z_x86_pdpt_get(thread), &domain->partitions[partition_id]); } } void z_arch_mem_domain_thread_add(struct k_thread *thread) { if ((thread->base.user_options & K_USER) == 0) { return; } z_x86_apply_mem_domain(z_x86_pdpt_get(thread), thread->mem_domain_info.mem_domain); } int z_arch_mem_domain_max_partitions_get(void) { return CONFIG_MAX_DOMAIN_PARTITIONS; } #endif /* CONFIG_X86_USERSPACE*/ |