Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/*
 * Copyright (c) 2012-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file test memory pool and heap APIs
 *
 * This modules tests the following memory pool routines:
 *
 * - k_mem_pool_alloc(),
 * - k_mem_pool_free(),
 * - k_malloc(),
 * - k_free()
 */

#include <zephyr.h>
#include <tc_util.h>
#include <misc/util.h>

#define  ONE_SECOND     (sys_clock_ticks_per_sec)
#define  TENTH_SECOND   (sys_clock_ticks_per_sec / 10)

#define  NUM_BLOCKS     64

#define  DEFRAG_BLK_TEST 2222

/* size of stack area used by each thread */
#define STACKSIZE 512

K_SEM_DEFINE(ALTERNATE_SEM, 0, 1);
K_SEM_DEFINE(DEFRAG_SEM, 0, 1);
K_SEM_DEFINE(REGRESS_SEM, 0, 1);
K_SEM_DEFINE(HELPER_SEM, 0, 1);

K_MEM_POOL_DEFINE(POOL_ID, 64, 4096, 1, 4);
K_MEM_POOL_DEFINE(SECOND_POOL_ID, 16, 1024, 5, 4);

struct TEST_CASE {
	struct k_mem_block *block;      /* pointer to block data */
	struct k_mem_pool *pool_id;     /* pool ID */
	int size;                       /* request size in bytes */
	s32_t timeout;                  /* # of ticks to wait */
	int rcode;                      /* expected return code */
};

typedef int (*pool_block_get_func_t)(struct k_mem_block *, struct k_mem_pool *,
				     int, s32_t);
typedef int (*pool_move_block_func_t)(struct k_mem_block *, struct k_mem_pool *);

static volatile int evidence;

static struct k_mem_block block_list[NUM_BLOCKS];
static struct k_mem_block helper_block;

static struct TEST_CASE get_set[] = {
	{ &block_list[0], &POOL_ID, 0, 0, 0 },
	{ &block_list[1], &POOL_ID, 1, 0, 0 },
	{ &block_list[2], &POOL_ID, 32, 0, 0 },
	{ &block_list[3], &POOL_ID, 64, 0, 0 },
	{ &block_list[4], &POOL_ID, 128, 0, 0 },
	{ &block_list[5], &POOL_ID, 256, 0, 0 },
	{ &block_list[6], &POOL_ID, 512, 0, 0 },
	{ &block_list[7], &POOL_ID, 1024, 0, 0 },
	{ &block_list[8], &POOL_ID, 2048, 0, -ENOMEM },
	{ &block_list[9], &POOL_ID, 4096, 0, -ENOMEM }
};

static struct TEST_CASE get_set2[] = {
	{ &block_list[0], &POOL_ID, 4096, 0, 0 },
	{ &block_list[1], &POOL_ID, 2048, 0, -ENOMEM },
	{ &block_list[2], &POOL_ID, 1024, 0, -ENOMEM },
	{ &block_list[3], &POOL_ID, 512, 0, -ENOMEM },
	{ &block_list[4], &POOL_ID, 256, 0, -ENOMEM }
};

static struct TEST_CASE getwt_set[] = {
	{ &block_list[0], &POOL_ID, 4096, TENTH_SECOND, 0 },
	{ &block_list[1], &POOL_ID, 2048, TENTH_SECOND, -EAGAIN },
	{ &block_list[2], &POOL_ID, 1024, TENTH_SECOND, -EAGAIN },
	{ &block_list[3], &POOL_ID, 512, TENTH_SECOND, -EAGAIN },
	{ &block_list[4], &POOL_ID, 256, TENTH_SECOND, -EAGAIN }
};

static struct TEST_CASE defrag[] = {
	{ &block_list[0], &POOL_ID, 64, 0, 0 },
	{ &block_list[1], &POOL_ID, 64, 0, 0 },
	{ &block_list[2], &POOL_ID, 64, 0, 0 },
	{ &block_list[3], &POOL_ID, 64, 0, 0 },
	{ &block_list[4], &POOL_ID, 256, 0, 0 },
	{ &block_list[5], &POOL_ID, 256, 0, 0 },
	{ &block_list[6], &POOL_ID, 256, 0, 0 },
	{ &block_list[7], &POOL_ID, 1024, 0, 0 },
	{ &block_list[8], &POOL_ID, 1024, 0, 0 },
	{ &block_list[9], &POOL_ID, 1024, 0, 0 }
};

/**
 *
 * @brief Compare the two blocks
 *
 * @return 0 if the same, non-zero if not the same
 */

int block_compare(struct k_mem_block *b1, struct k_mem_block *b2)
{
	char *p1 = (char *) b1;
	char *p2 = (char *) b2;
	int i;
	int diff = 0;

	for (i = 0; i < sizeof(struct k_mem_block); i++) {
		diff = p2[i] - p1[i];
		if (diff != 0) {
			break;
		}
	}

	return diff;
}

/**
 *
 * @brief Wrapper for k_mem_pool_alloc()
 *
 * @return k_mem_pool_alloc() return value
 */

int pool_block_get_func(struct k_mem_block *block, struct k_mem_pool *pool,
			int size, s32_t unused)
{
	ARG_UNUSED(unused);

	return k_mem_pool_alloc(pool, block, size, K_NO_WAIT);
}

/**
 *
 * @brief Wrapper for k_mem_pool_alloc(K_FOREVER)
 *
 * @return k_mem_pool_alloc() return value
 */

int pool_block_get_w_func(struct k_mem_block *block, struct k_mem_pool *pool,
			  int size, s32_t unused)
{
	ARG_UNUSED(unused);

	return k_mem_pool_alloc(pool, block, size, K_FOREVER);
}

/**
 *
 * @brief Wrapper for k_mem_pool_alloc(timeout)
 *
 * @return k_mem_pool_alloc(timeout) return value
 */

int pool_block_get_wt_func(struct k_mem_block *block, struct k_mem_pool *pool,
			   int size, s32_t timeout)
{
	return k_mem_pool_alloc(pool, block, size, timeout);
}

/**
 *
 * @brief Free any blocks allocated in the test set
 *
 * @return N/A
 */

void free_blocks(struct TEST_CASE *tests, int n_tests)
{
	int i;

	for (i = 0; i < n_tests; i++) {
		if (tests[i].rcode == 0) {
			k_mem_pool_free(tests[i].block);
		}
	}
}

/**
 *
 * @brief Perform the work of getting blocks
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int pool_block_get_work(char *string, pool_block_get_func_t func,
			struct TEST_CASE *tests, int n_tests)
{
	int i;
	int rv;

	for (i = 0; i < n_tests; i++) {
		rv = func(tests[i].block, tests[i].pool_id, tests[i].size,
			  tests[i].timeout);
		if (rv != tests[i].rcode) {
			TC_ERROR("%s() expected %d, got %d\n"
				 "size: %d, timeout: %d\n", string, tests[i].rcode, rv,
				 tests[i].size, tests[i].timeout);
			return TC_FAIL;
		}
	}

	return TC_PASS;
}

/**
 *
 * @brief Test the k_mem_pool_alloc(K_NO_WAIT) API
 *
 * The pool is 4 k_b in size.
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int pool_block_get_test(void)
{
	int rv;         /* return value from k_mem_pool_alloc() */
	int j;          /* loop counter */

	for (j = 0; j < 8; j++) {
		rv = pool_block_get_work("k_mem_pool_alloc", pool_block_get_func,
					 get_set, ARRAY_SIZE(get_set));
		if (rv != TC_PASS) {
			return TC_FAIL;
		}

		free_blocks(get_set, ARRAY_SIZE(get_set));

		rv = pool_block_get_work("k_mem_pool_alloc", pool_block_get_func,
					 get_set2, ARRAY_SIZE(get_set2));
		if (rv != TC_PASS) {
			return TC_FAIL;
		}

		free_blocks(get_set2, ARRAY_SIZE(get_set2));
	}

	return TC_PASS;
}

/**
 *
 * @brief Helper task to pool_block_get_timeout_test()
 *
 * @return N/A
 */

void helper_task(void)
{
	k_sem_take(&HELPER_SEM, K_FOREVER);

	k_sem_give(&REGRESS_SEM);
	k_mem_pool_free(&helper_block);
}

/**
 *
 * @brief Test k_mem_pool_alloc(timeout)
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int pool_block_get_timeout_test(void)
{
	struct k_mem_block block;
	int rv;         /* return value from k_mem_pool_alloc() */
	int j;          /* loop counter */

	for (j = 0; j < 8; j++) {
		rv = pool_block_get_work("k_mem_pool_alloc", pool_block_get_wt_func,
					 getwt_set, ARRAY_SIZE(getwt_set));
		if (rv != TC_PASS) {
			return TC_FAIL;
		}

		free_blocks(getwt_set, ARRAY_SIZE(getwt_set));
	}

	rv = k_mem_pool_alloc(&POOL_ID, &helper_block, 3148, 5);
	if (rv != 0) {
		TC_ERROR("Failed to get size 3148 byte block from POOL_ID\n");
		return TC_FAIL;
	}

	rv = k_mem_pool_alloc(&POOL_ID, &block, 3148, K_NO_WAIT);
	if (rv != -ENOMEM) {
		TC_ERROR("Unexpectedly got size 3148 "
			 "byte block from POOL_ID\n");
		return TC_FAIL;
	}

	k_sem_give(&HELPER_SEM);    /* Activate helper_task */
	rv = k_mem_pool_alloc(&POOL_ID, &block, 3148, 20);
	if (rv != 0) {
		TC_ERROR("Failed to get size 3148 byte block from POOL_ID\n");
		return TC_FAIL;
	}

	rv = k_sem_take(&REGRESS_SEM, K_NO_WAIT);
	if (rv != 0) {
		TC_ERROR("Failed to get size 3148 "
			 "byte block within 20 ticks\n");
		return TC_FAIL;
	}

	k_mem_pool_free(&block);

	return TC_PASS;
}

/**
 *
 * pool_block_get_wait_test -
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int pool_block_get_wait_test(void)
{
	int rv;

	rv = k_mem_pool_alloc(&POOL_ID, &block_list[0], 3000, K_FOREVER);
	if (rv != 0) {
		TC_ERROR("k_mem_pool_alloc(3000) expected %d, got %d\n", 0, rv);
		return TC_FAIL;
	}

	k_sem_give(&ALTERNATE_SEM);    /* Wake alternate_task */
	evidence = 0;
	rv = k_mem_pool_alloc(&POOL_ID, &block_list[1], 128, K_FOREVER);
	if (rv != 0) {
		TC_ERROR("k_mem_pool_alloc(128) expected %d, got %d\n", 0, rv);
		return TC_FAIL;
	}

	switch (evidence) {
	case 0:
		TC_ERROR("k_mem_pool_alloc(128) did not block!\n");
		return TC_FAIL;
	case 1:
		break;
	case 2:
	default:
		TC_ERROR("Rescheduling did not occur "
			 "after k_mem_pool_free()\n");
		return TC_FAIL;
	}

	k_mem_pool_free(&block_list[1]);

	return TC_PASS;
}

/**
 *
 * @brief Task responsible for defragmenting the pool POOL_ID
 *
 * @return N/A
 */

void defrag_task(void)
{
	k_sem_take(&DEFRAG_SEM, K_FOREVER);     /* Wait to be activated */

	k_mem_pool_defrag(&POOL_ID);

	k_sem_give(&REGRESS_SEM);   /* defrag_task is finished */
}

/**
 *
 * pool_defrag_test -
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int pool_defrag_test(void)
{
	int rv;
	struct k_mem_block new_block;

	/* Get a bunch of blocks */

	rv = pool_block_get_work("k_mem_pool_alloc", pool_block_get_func,
				 defrag, ARRAY_SIZE(defrag));
	if (rv != TC_PASS) {
		return TC_FAIL;
	}


	k_sem_give(&DEFRAG_SEM);    /* Activate defrag_task */

	/*
	 * Block on getting another block from the pool.
	 * This will allow defrag_task to execute so that we can get some
	 * better code coverage.  500 ms is expected to more than sufficient
	 * time for defrag_task to finish.
	 */

	rv = k_mem_pool_alloc(&POOL_ID, &new_block, DEFRAG_BLK_TEST, 500);
	if (rv != -EAGAIN) {
		TC_ERROR("k_mem_pool_alloc() returned %d, not %d\n", rv,
			 -EAGAIN);
		return TC_FAIL;
	}

	rv = k_sem_take(&REGRESS_SEM, K_NO_WAIT);
	if (rv != 0) {
		TC_ERROR("defrag_task did not finish in allotted time!\n");
		return TC_FAIL;
	}

	/* Free the allocated blocks */

	free_blocks(defrag, ARRAY_SIZE(defrag));

	return TC_PASS;
}

/**
 *
 * @brief Alternate task in the test suite
 *
 * This routine runs at a lower priority than Regression_task().
 *
 * @return N/A
 */

void alternate_task(void)
{
	k_sem_take(&ALTERNATE_SEM, K_FOREVER);

	evidence = 1;

	k_mem_pool_free(&block_list[0]);

	evidence = 2;
}

/**
 *
 * @brief Test the k_malloc() and k_free() APIs
 *
 * The heap memory pool is 256 bytes in size, and thus has only 4 blocks
 * of 64 bytes or a single block of 256 bytes. (Each block has a lesser
 * amount of usable space, due to the hidden block descriptor info the
 * kernel adds at the start of any block allocated from this memory pool.)
 *
 * @return TC_PASS on success, TC_FAIL on failure
 */

int pool_malloc_test(void)
{
	char *block[4];
	int j;     /* loop counter */

	TC_PRINT("Testing k_malloc() and k_free() ...\n");

	/* allocate a large block (which consumes the entire pool buffer) */
	block[0] = k_malloc(150);
	if (block[0] == NULL) {
		TC_ERROR("150 byte allocation failed\n");
		return TC_FAIL;
	}

	/* ensure a small block can no longer be allocated */
	block[1] = k_malloc(16);
	if (block[1] != NULL) {
		TC_ERROR("16 byte allocation did not fail\n");
		return TC_FAIL;
	}

	/* return the large block */
	k_free(block[0]);

	/* allocate a small block (triggers block splitting)*/
	block[0] = k_malloc(16);
	if (block[0] == NULL) {
		TC_ERROR("16 byte allocation 0 failed\n");
		return TC_FAIL;
	}

	/* ensure a large block can no longer be allocated */
	block[1] = k_malloc(80);
	if (block[1] != NULL) {
		TC_ERROR("80 byte allocation did not fail\n");
		return TC_FAIL;
	}

	/* ensure all remaining small blocks can be allocated */
	for (j = 1; j < 4; j++) {
		block[j] = k_malloc(16);
		if (block[j] == NULL) {
			TC_ERROR("16 byte allocation %d failed\n", j);
			return TC_FAIL;
		}
	}

	/* ensure a small block can no longer be allocated */
	if (k_malloc(8) != NULL) {
		TC_ERROR("8 byte allocation did not fail\n");
		return TC_FAIL;
	}

	/* return the small blocks to pool in a "random" order */
	k_free(block[2]);
	k_free(block[0]);
	k_free(block[3]);
	k_free(block[1]);

	/* allocate large block (triggers autodefragmentation) */
	block[0] = k_malloc(100);
	if (block[0] == NULL) {
		TC_ERROR("100 byte allocation failed\n");
		return TC_FAIL;
	}

	/* ensure a small block can no longer be allocated */
	if (k_malloc(32) != NULL) {
		TC_ERROR("32 byte allocation did not fail\n");
		return TC_FAIL;
	}

	return TC_PASS;
}

/**
 *
 * @brief Main task in the test suite
 *
 * This is the entry point to the memory pool test suite.
 *
 * @return N/A
 */

void main(void)
{
	int tc_rC;     /* test case return code */

	TC_START("Test Memory Pool and Heap APIs");

	TC_PRINT("Testing k_mem_pool_alloc(K_NO_WAIT) ...\n");
	tc_rC = pool_block_get_test();
	if (tc_rC != TC_PASS) {
		goto done_tests;
	}

	TC_PRINT("Testing k_mem_pool_alloc(timeout) ...\n");
	tc_rC = pool_block_get_timeout_test();
	if (tc_rC != TC_PASS) {
		goto done_tests;
	}

	TC_PRINT("Testing k_mem_pool_alloc(K_FOREVER) ...\n");
	tc_rC = pool_block_get_wait_test();
	if (tc_rC != TC_PASS) {
		goto done_tests;
	}

	TC_PRINT("Testing k_mem_pool_defragment() ...\n");
	tc_rC = pool_defrag_test();
	if (tc_rC != TC_PASS) {
		goto done_tests;
	}

	tc_rC = pool_malloc_test();
	if (tc_rC != TC_PASS) {
		goto done_tests;
	}

done_tests:
	TC_END_RESULT(tc_rC);
	TC_END_REPORT(tc_rC);
}



K_THREAD_DEFINE(t_alternate, STACKSIZE, alternate_task, NULL, NULL, NULL,
		6, 0, K_NO_WAIT);

K_THREAD_DEFINE(t_defrag, STACKSIZE, defrag_task, NULL, NULL, NULL,
		7, 0, K_NO_WAIT);

K_THREAD_DEFINE(t_helper, STACKSIZE, helper_task, NULL, NULL, NULL,
		7, 0, K_NO_WAIT);